1
|
Stawiski M, Bucciarelli V, Vogel D, Hemm S. Optimizing neuroscience data management by combining REDCap, BIDS and SQLite: a case study in Deep Brain Stimulation. Front Neuroinform 2024; 18:1435971. [PMID: 39301120 PMCID: PMC11410584 DOI: 10.3389/fninf.2024.1435971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Neuroscience studies entail the generation of massive collections of heterogeneous data (e.g. demographics, clinical records, medical images). Integration and analysis of such data in research centers is pivotal for elucidating disease mechanisms and improving clinical outcomes. However, data collection in clinics often relies on non-standardized methods, such as paper-based documentation. Moreover, diverse data types are collected in different departments hindering efficient data organization, secure sharing and compliance to the FAIR (Findable, Accessible, Interoperable, Reusable) principles. Henceforth, in this manuscript we present a specialized data management system designed to enhance research workflows in Deep Brain Stimulation (DBS), a state-of-the-art neurosurgical procedure employed to treat symptoms of movement and psychiatric disorders. The system leverages REDCap to promote accurate data capture in hospital settings and secure sharing with research institutes, Brain Imaging Data Structure (BIDS) as image storing standard and a DBS-specific SQLite database as comprehensive data store and unified interface to all data types. A self-developed Python tool automates the data flow between these three components, ensuring their full interoperability. The proposed framework has already been successfully employed for capturing and analyzing data of 107 patients from 2 medical institutions. It effectively addresses the challenges of managing, sharing and retrieving diverse data types, fostering advancements in data quality, organization, analysis, and collaboration among medical and research institutions.
Collapse
Affiliation(s)
- Marc Stawiski
- Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Vittoria Bucciarelli
- Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Dorian Vogel
- Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Simone Hemm
- Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
2
|
Krishnan J, Joseph R, Vayalappil MC, Krishnan S, Kishore A. A Review on Implantable Neuroelectrodes. Crit Rev Biomed Eng 2024; 52:21-39. [PMID: 37938182 DOI: 10.1615/critrevbiomedeng.2023049282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The efficacy of every neuromodulation modality depends upon the characteristics of the electrodes used to stimulate the chosen target. The geometrical, chemical, mechanical and physical configuration of electrodes used in neurostimulation affects several performance attributes like stimulation efficiency, selectivity, tissue response, etc. The efficiency of stimulation in relation to electrode impedance is influenced by the electrode material and/or its geometry. The nature of the electrode material determines the charge transfer across the electrode-tissue interface, which also relates to neuronal tissue damage. Electrode morphology or configuration pattern can facilitate the modulation of extracellular electric field (field shaping). This enables selective activation of neurons and minimizes side effects. Biocompatibility and biostability of the electrode materials or electrode coating have a role in glial formation and tissue damage. Mechanical and electrochemical stability (corrosion resistance) determines the long-term efficacy of any neuromodulation technique. Here, a review of electrodes typically used for implantable neuromodulation is discussed. Factors affecting the performance of electrodes like stimulation efficiency, selectivity and tissue responses to the electrode-tissue interface are discussed. Technological advancements to improve electrode characteristics are also included.
Collapse
Affiliation(s)
- Jithin Krishnan
- Department of Medical Devices Engineering, BMT Wing, SCTIMST, Kerala, India
| | - Roy Joseph
- Department of Medical Devices Engineering, BMT Wing, SCTIMST, Kerala, India
| | | | | | - Asha Kishore
- Aster Parkinson & Movement Disorder Centre, Senior Consultant Neurologist and Movement Disorder Specialist
| |
Collapse
|
3
|
Yearley AG, Chua M, Horn A, Cosgrove GR, Rolston JD. Deep Brain Stimulation Lead Localization Variability Comparing Intraoperative MRI Versus Postoperative Computed Tomography. Oper Neurosurg (Hagerstown) 2023; 25:441-448. [PMID: 37584483 DOI: 10.1227/ons.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Commercially available lead localization software for deep brain stimulation (DBS) often relies on postoperative computed tomography (CT) scans to define electrode positions. When cases are performed with intraoperative MRI, another imaging set exists with which to perform these localizations. To compare DBS localization error between postoperative CT scans and intraoperative MRI. METHODS A retrospective cohort of patients who underwent MRI-guided placement of DBS electrodes using the ClearPoint platform was identified. Using Brainlab Elements, postoperative CT scans were coregistered to intraoperative magnetic resonance images visualizing the ClearPoint guidance sheaths and ceramic stylets. DBS electrodes were identified in CT scans using Brainlab's lead localization tool. Trajectory and vector errors were quantified between scans for each lead in each patient. RESULTS Eighty patients with a total of 157 implanted DBS electrodes were included. We observed mean trajectory and vector errors of 0.78 ± 0.44 mm (range 0.1-2.0 mm) and 1.57 ± 0.79 mm (range 0.2-4.2 mm), respectively, between postoperative CT and intraoperative MRI. There were 7 patients with CT scans collected at multiple time points. Trajectory error increased by 0.15 ± 0.42 mm ( P = .31), and vector error increased by 0.22 ± 0.53 mm ( P = .13) in the later scans. Across all scans, there was no significant association between trajectory ( P = .053) or vector ( P = .98) error and the date of CT acquisition. DBS electrodes targeting the subthalamic nucleus had significantly greater trajectory errors ( P = .02) than those targeting the globus pallidus pars internus nucleus. CONCLUSION Commercially available software produced largely concordant lead localizations when comparing intraoperative MRIs with postoperative CT scans, with trajectory errors on average <1 mm. CT scans tend to be more comparable with intraoperative MRI in the immediate postoperative period, with increased time intervals associated with a greater magnitude of error between modalities.
Collapse
Affiliation(s)
- Alexander G Yearley
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Horn
- Department of Neurology, Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Hodge JO, Cook P, Brandmeir NJ. Awake Deep Brain Stimulation Surgery Without Intraoperative Imaging Is Accurate and Effective: A Case Series. Oper Neurosurg (Hagerstown) 2022; 23:133-138. [PMID: 35486875 DOI: 10.1227/ons.0000000000000249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/09/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The success of deep brain stimulation (DBS) surgery depends on the accuracy of electrode placement. Several factors can affect this such as brain shift, the quality of preoperative planning, and technical factors. It is crucial to determine whether techniques yield accurate lead placement and effective symptom relief. Many of the studies establishing the accuracy of frameless techniques used intraoperative imaging to further refine lead placement. OBJECTIVE To determine whether awake lead placement without intraoperative imaging can achieve similar minimal targeting error while preserving clinical results. METHODS Eighty-two trajectories in 47 patients who underwent awake, frameless DBS lead placement with the Fred Haer Corporation STarFix system for essential tremor or Parkinson's disease were analyzed. Neurological testing during lead placement was used to determine appropriate lead locations, and no intraoperative imaging was performed. Accuracy data were compared with previously performed studies. RESULTS The Euclidean error for the patient cohort was 1.79 ± 1.02 mm, and the Pythagorean error was 1.40 ± 0.95 mm. The percentage symptom improvement evaluated by the Unified Parkinson's Disease Rating Scale for Parkinson's disease or the Fahn-Tolosa-Marin scale for essential tremor was similar to reported values at 58% ± 17.2% and 67.4% ± 24.7%, respectively. The operative time was 95.0 ± 30.3 minutes for all study patients. CONCLUSION Awake, frameless DBS surgery with the Fred Haer Corporation STarFix system does not require intraoperative imaging for stereotactic accuracy or clinical effectiveness.
Collapse
Affiliation(s)
- Johnie O Hodge
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | | | | |
Collapse
|
5
|
Rodrigues RB, Araujo VL, Omori PY, Nunes NDSM, Neves MAO, Castro RRT, Pessoa BL. Lead-DBS: an additional tool for stereotactic surgery. Rev Assoc Med Bras (1992) 2021; 67:816-821. [PMID: 34709323 DOI: 10.1590/1806-9282.20201104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Use Lead-DBS software to analyze stereotactical surgical outcome of an operated population and demonstrate that small target deviations do not compromise the stimulation of desired structures, even with small amperages. METHODS Image exams of patients submitted to deep brain stimulation for movement disorders treatment were processed in Lead-DBS software. Electrode stereotactic coordinates were subtracted from the planned target and those deviations, compared among different anatomical targets and sides operated firstly and secondly. We also quantified the frequency of relation between the activated tissue volume and the planned target through computer simulations. RESULTS None of the 16 electrodes were exactly implanted at the planned coordinates. A stimulation of 3 mA reached 62.5% of the times the planned coordinates, rising to 68.75% with a 3,5 mA. No statistical significance was demonstrated in any comparison of laterality and anatomical sites. CONCLUSIONS The simulation of small amperage fields could reach the intended target even when electrode placement is suboptimal. Furthermore, such a goal can be achieved without overlapping the volume of activated tissue with undesired structures. Software Lead-DBS proved to be a valuable complementary asset for surgical stereotactical result assessment.
Collapse
Affiliation(s)
- Renato Barradas Rodrigues
- Universidade Federal Fluminense, Department of General and Specialized Surgery - Niterói (RJ), Brazil
| | - Victor Lima Araujo
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, School of Mechanical Engineering - Nova Iguaçu (RJ), Brazil
| | - Pamella Yoko Omori
- Universidade Federal Fluminense, Department of General and Specialized Surgery - Niterói (RJ), Brazil
| | | | | | | | - Bruno Lima Pessoa
- Universidade Federal Fluminense, Department of General and Specialized Surgery - Niterói (RJ), Brazil
| |
Collapse
|
6
|
Martino A, Darbin O, Templeton K, Dees D, Lammle M, Torres T, Williams D, Naritoku D. Physical Plasticity of the Brain and Deep Brain Stimulation Lead: Evolution in the First Post-operative Week. Front Surg 2020; 7:55. [PMID: 33062638 PMCID: PMC7477286 DOI: 10.3389/fsurg.2020.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Deep brain stimulation (DBS) is a therapy for movement disorders and psychiatric conditions. In the peri-operative period, brain shift occurs as the consequence of events related to the brain surgery which results in post-operative lead deformation. Objective: To quantify post-operative 3-dimensional DBS lead deformation after implantation. Methods: In 13 patients who had DBS lead implantation, we performed preoperative magnetic resonance imaging (MRI), preoperative computed tomography (CT) scans after placement of fiducial markers, and post-operative CT scans immediately, 24-48 h, and 7 days after implantation. The MRI scans were used to define brain orientation and merged with CT scans. Lead deviation was determined relative to a theoretical linear lead path defined by the skull entry and target lead tip points. Results: In the sagittal plane, we distinguished an initial period after surgery (<48 h) characterized by a deviation of the lead toward the rostral direction and a late period (over 1 week) characterized by a lead deviation toward the caudal direction. In the coronal plane, there was higher probability of lead deviation in the lateral than medial direction. During 7 days after implantation, there was net movement of the center of the lead anteriorly, and the half of the lead close to the entry point moved medially. These deviations appeared normative since all patients included in this study had benefits from DBS therapy with total power of charged comparable to those described in literature. Conclusion: DBS lead deviation occurs during 7 days after implantation. The range of deviation described in this study was not associated to adverse clinical effects and may be considered normative. Future multicenter studies would be helpful to define guide lines on DBS lead deformation and its contribution to clinical outcome.
Collapse
Affiliation(s)
- Anthony Martino
- Department of Neurosurgery, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Olivier Darbin
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Kelsey Templeton
- Department of Neurosurgery, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Daniel Dees
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Markus Lammle
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States.,Department of Radiology, Tulane University, New Orleans, LA, United States
| | - Tatiana Torres
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Dakota Williams
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Dean Naritoku
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
7
|
Helmers AK, Kubelt C, Birkenfeld F, Deuschl G, Falk D, Mehdorn H, Witt K, Nowak-Göttl U, Synowitz M, Paschen S. Screening for Platelet Dysfunction and Use of Prophylactic Tranexamic Acid in Patients Undergoing Deep Brain Stimulation: A Retrospective Analysis of Incidence and Outcome of Intracranial Hemorrhage. Stereotact Funct Neurosurg 2020; 98:176-181. [DOI: 10.1159/000505714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/30/2019] [Indexed: 11/19/2022]
|
8
|
Eleopra R, Rinaldo S, Devigili G, Mondani M, D’Auria S, Lettieri C, Ius T, Skrap M. Frameless Deep Brain Stimulation Surgery: A Single-Center Experience and Retrospective Analysis of Placement Accuracy of 220 Electrodes in a Series of 110 Patients. Stereotact Funct Neurosurg 2020; 97:337-346. [DOI: 10.1159/000503335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
|
9
|
Liu L, Mariani SG, De Schlichting E, Grand S, Lefranc M, Seigneuret E, Chabardès S. Frameless ROSA® Robot-Assisted Lead Implantation for Deep Brain Stimulation: Technique and Accuracy. Oper Neurosurg (Hagerstown) 2019; 19:57-64. [DOI: 10.1093/ons/opz320] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/31/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Frameless robotic-assisted surgery is an innovative technique for deep brain stimulation (DBS) that has not been assessed in a large cohort of patients.
OBJECTIVE
To evaluate accuracy of DBS lead placement using the ROSA® robot (Zimmer Biomet) and a frameless registration.
METHODS
All patients undergoing DBS surgery in our institution between 2012 and 2016 were prospectively included in an open label single-center study. Accuracy was evaluated by measuring the radial error (RE) of the first stylet implanted on each side and the RE of the final lead position at the target level. RE was measured on intraoperative telemetric X-rays (group 1), on intraoperative O-Arm® (Medtronic) computed tomography (CT) scans (group 2), and on postoperative CT scans or magnetic resonance imaging (MRI) in both groups.
RESULTS
Of 144 consecutive patients, 119 were eligible for final analysis (123 DBS; 186 stylets; 192 leads). In group 1 (76 patients), the mean RE of the stylet was 0.57 ± 0.02 mm, 0.72 ± 0.03 mm for DBS lead measured intraoperatively, and 0.88 ± 0.04 mm for DBS lead measured postoperatively on CT scans. In group 2 (43 patients), the mean RE of the stylet was 0.68 ± 0.05 mm, 0.75 ± 0.04 mm for DBS lead measured intraoperatively; 0.86 ± 0.05 mm and 1.10 ± 0.08 mm for lead measured postoperatively on CT scans and on MRI, respectively No statistical difference regarding the RE of the final lead position was found between the different intraoperative imaging modalities and postoperative CT scans in both groups.
CONCLUSION
Frameless ROSA® robot-assisted technique for DBS reached submillimeter accuracy. Intraoperative CT scans appeared to be reliable and sufficient to evaluate the final lead position.
Collapse
Affiliation(s)
- Lannie Liu
- CHU Grenoble Alpes, Clinique Universitaire de Neurochirurgie, Grenoble, France
| | | | | | - Sylvie Grand
- CHU Grenoble Alpes, Department de Neuroradiologie, Grenoble, France
| | - Michel Lefranc
- Department de Neurochirurgie, Amiens-Picardie University Hospital, Amiens, France
| | - Eric Seigneuret
- CHU Grenoble Alpes, Clinique Universitaire de Neurochirurgie, Grenoble, France
| | - Stéphan Chabardès
- CHU Grenoble Alpes, Clinique Universitaire de Neurochirurgie, Grenoble, France
- Inserm, U1216, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
- Clinatec, Centre de Recherche Edmond Safra, CEA-LETI, Grenoble, France
| |
Collapse
|
10
|
Analysis of patient-specific stimulation with segmented leads in the subthalamic nucleus. PLoS One 2019; 14:e0217985. [PMID: 31216311 PMCID: PMC6584006 DOI: 10.1371/journal.pone.0217985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2019] [Indexed: 11/19/2022] Open
Abstract
Objective Segmented deep brain stimulation leads in the subthalamic nucleus have shown to increase therapeutic window using directional stimulation. However, it is not fully understood how these segmented leads with reduced electrode size modify the volume of tissue activated (VTA) and how this in turn relates with clinically observed therapeutic and side effect currents. Here, we investigated the differences between directional and omnidirectional stimulation and associated VTAs with patient-specific therapeutic and side effect currents for the two stimulation modes. Approach Nine patients with Parkinson’s disease underwent DBS implantation in the subthalamic nucleus. Therapeutic and side effect currents were identified intraoperatively with a segmented lead using directional and omnidirectional stimulation (these current thresholds were assessed in a blinded fashion). The electric field around the lead was simulated with a finite-element model for a range of stimulation currents for both stimulation modes. VTAs were estimated from the electric field by numerical differentiation and thresholding. Then for each patient, the VTAs for given therapeutic and side effect currents were projected onto the patient-specific subthalamic nucleus and lead position. Results Stimulation with segmented leads with reduced electrode size was associated with a significant reduction of VTA and a significant increase of radial distance in the best direction of stimulation. While beneficial effects were associated with activation volumes confined within the anatomical boundaries of the subthalamic nucleus at therapeutic currents, side effects were associated with activation volumes spreading beyond the nucleus’ boundaries. Significance The clinical benefits of segmented leads are likely to be obtained by a VTA confined within the subthalamic nucleus and a larger radial distance in the best stimulation direction, while steering the VTA away from unwanted fiber tracts outside the nucleus. Applying the same concepts at a larger scale and in chronically implanted patients may help to predict the best stimulation area.
Collapse
|
11
|
VanSickle D, Volk V, Freeman P, Henry J, Baldwin M, Fitzpatrick CK. Electrode Placement Accuracy in Robot-Assisted Asleep Deep Brain Stimulation. Ann Biomed Eng 2019; 47:1212-1222. [PMID: 30796551 DOI: 10.1007/s10439-019-02230-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Deep brain stimulation (DBS) involves the implantation of electrodes into specific central brain structures for the treatment of Parkinson's disease. Image guidance and robot-assisted techniques have been developed to assist in the accuracy of electrode placement. Traditional DBS is performed with the patient awake and utilizes microelectrode recording for feedback, which yields lengthy operating room times. Asleep DBS procedures use imaging techniques to verify electrode placement. The objective of this study is to demonstrate the validity of an asleep robot-assisted DBS procedure that utilizes intraoperative imaging techniques for precise electrode placement in a large, inclusive cohort. Preoperative magnetic resonance imaging (MRI) was used to plan the surgical procedure for the 128 patients that underwent asleep DBS. During the surgery, robot assistance was used during the implantation of the electrodes. To verify electrode placement, intraoperative CT scans were fused with the preoperative MRIs. The mean radial error of all final electrode placements is 0.85 ± 0.38 mm. MRI-CT fusion error is 0.64 ± 0.40 mm. The average operating room time for bilateral and unilateral implantations are 139.3 ± 34.7 and 115.4 ± 42.1 min, respectively. This study shows the validity of the presented asleep DBS procedure using robot assistance and intraoperative CT verification for accurate electrode placement with shorter operating room times.
Collapse
Affiliation(s)
- David VanSickle
- Littleton Adventist Hospital, Centura Health, Littleton, CO, USA.,Mechanical and Biomedical Engineering, Boise State University, 1910 University Drive, MS-2085, Boise, ID, 83725-2085, USA
| | - Victoria Volk
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA.,Mechanical and Biomedical Engineering, Boise State University, 1910 University Drive, MS-2085, Boise, ID, 83725-2085, USA
| | - Patricia Freeman
- Littleton Adventist Hospital, Centura Health, Littleton, CO, USA
| | - Jamie Henry
- Littleton Adventist Hospital, Centura Health, Littleton, CO, USA
| | - Meghan Baldwin
- Littleton Adventist Hospital, Centura Health, Littleton, CO, USA
| | - Clare K Fitzpatrick
- Mechanical and Biomedical Engineering, Boise State University, 1910 University Drive, MS-2085, Boise, ID, 83725-2085, USA.
| |
Collapse
|
12
|
Carl B, Bopp M, Gjorgjevski M, Oehrn C, Timmermann L, Nimsky C. Implementation of Intraoperative Computed Tomography for Deep Brain Stimulation: Pitfalls and Optimization of Workflow, Accuracy, and Radiation Exposure. World Neurosurg 2018; 124:S1878-8750(18)32902-4. [PMID: 30593970 DOI: 10.1016/j.wneu.2018.12.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an effective treatment for movement disorders. Stereotactic electrode placement can be guided by intraoperative imaging, which also allows for immediate intraoperative quality control. This article is about implementation and refining a workflow applying intraoperative computed tomography (iCT) for DBS. METHODS Eighteen patients underwent DBS with bilateral implantation of directional electrodes applying a 32-slice movable computed tomography scanner in combination with microelectrode recording. RESULTS iCT led to a significant decrease in overall procedural time, despite performing multiple scans. In 3 of the initial 5 cases, iCT caused an adjustment of the final electrodes demonstrating the learning curve and the necessity to integrate road mapping for the exchange of microelectrode to final electrode. Implementation of low-dose computed tomography protocols added microelectrode iCT to the refined workflow, resulting in an intraoperative adjustment of a trajectory in 1 patient. Low-dose protocols lowered the total effective dose to 1.15 mSv, that is, a reduction by a factor of 3.5 compared to a standard non-iCT DBS procedure, despite repeated iCTs. Intraoperative lead detection based on final iCT revealed a radial error of 1.04 ± 0.58 mm and a vector error of 2.28 ± 0.97 mm compared to the preoperative planning, adjusted by the findings of microelectrode recording. CONCLUSIONS iCT can be easily integrated into the surgical workflow resulting in an overall efficient time-saving procedure. Repeated intraoperative scanning ensures reliable electrode placement, although low-dose scanning protocols prevent extensive radiation exposure. iCT of microelectrodes is feasible and led to the adjustment of 1 electrode.
Collapse
Affiliation(s)
- Barbara Carl
- Department of Neurosurgery, University Marburg, Marburg, Germany.
| | - Miriam Bopp
- Department of Neurosurgery, University Marburg, Marburg, Germany; Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | | | - Carina Oehrn
- Department of Neurology, University Marburg, Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Marburg, Marburg, Germany; Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University Marburg, Marburg, Germany; Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
13
|
Engelhardt J, Guehl D, Damon-Perrière N, Branchard O, Burbaud P, Cuny E. Localization of Deep Brain Stimulation Electrode by Image Registration Is Software Dependent: A Comparative Study between Four Widely Used Software Programs. Stereotact Funct Neurosurg 2018; 96:364-369. [PMID: 30566953 DOI: 10.1159/000494982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The control of the anatomic position of the active contacts is essential to understand the effects and adapt the settings of the neurostimulation. The localization is commonly assessed by a registration between the preoperative MRI and the postoperative CT scan. However, its accuracy depends on the quality of the registration algorithm and many software programs are available. OBJECTIVE To compare the localization of implanted deep brain stimulation (DBS) leads in the subthalamic nucleus (STN) between four registration devices. METHODS The preoperative stereotactic MRI was co-registered and fused with the 3-month postoperative CT scan in 27 patients implanted in the STN for Parkinson's disease (53 leads). Localizations of the active contacts were calculated in the stereotactic frame space and compared between software programs. RESULTS The coordinates of the active contacts were different between software programs in the 3 axes (p < 0.001) with a mean vectorial error between the deepest contact locations of 1.17 mm (95% CI 1.09-1.25). CONCLUSION We found a small but significant difference in the coordinates calculated on four different devices. These results have to be considered when performing studies comparing active contact locations or when following patients with an implanted DBS lead.
Collapse
Affiliation(s)
- Julien Engelhardt
- CHU de Bordeaux, Service de neurochirurgie B, Bordeaux, France, .,Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, Bordeaux, France,
| | - Dominique Guehl
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations fonctionnelles du système nerveux, Bordeaux, France
| | - Nathalie Damon-Perrière
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations fonctionnelles du système nerveux, Bordeaux, France
| | | | - Pierre Burbaud
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations fonctionnelles du système nerveux, Bordeaux, France
| | - Emmanuel Cuny
- CHU de Bordeaux, Service de neurochirurgie B, Bordeaux, France.,Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
14
|
Erasmi R, Granert O, Zorenkov D, Falk D, Wodarg F, Deuschl G, Witt K. White Matter Changes Along the Electrode Lead in Patients Treated With Deep Brain Stimulation. Front Neurol 2018; 9:983. [PMID: 30519212 PMCID: PMC6259286 DOI: 10.3389/fneur.2018.00983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Deep brain stimulation (DBS) is an established treatment for various movement disorders. There is little data available about the potential damage to brain parenchyma through DBS treatment. The objective of this study was to investigate the occurrence of signal changes on magnetic resonance imaging (MRI) in patients treated with DBS. Methods: We retrospectively analyzed MRI scans of 30 DBS patients (21 patients with Parkinson's disease, 3 patients with dystonia and 6 patients with tremor) that had undergone additional MRI scans after DBS surgery (ranging from 2 months to 8 years). Axial T2 sequences were analyzed by two raters using a standardized lesion mapping procedure. Results: 26 out of 30 analyzed patients showed hyperintense white matter changes surrounding the DBS lead (mean volume = 2.43 ml). Lesions were prominent along the upper half of the electrode lead within the subcortical white matter, with no abnormalities along the lower lead. Their volume was significantly correlated to the time from surgery to MRI and to the number of microelectrodes used in surgery, but was independent from underlying disease (Parkinson's disease, dystonia, tremor), target structure (STN, GPi, VIM), demographical data, or cardiovascular risk factors. Discussion: White matter changes along the electrode leads in DBS patients are a frequent finding. These changes seem to evolve with certain latency after surgery and might be radiologically classified as a gliosis. Our findings identify the number of intraoperatively used microelectrodes as a risk factor in the formation of gliosis. Therefore, mechanical damage at the time of surgery and an individual tissue response might contribute to their evolution. Further studies are needed to define the exact mechanisms and their clinical impact.
Collapse
Affiliation(s)
- Richard Erasmi
- Department of Neurology, Christian-Albrechts University of Kiel, Kiel, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Oliver Granert
- Department of Neurology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dmitry Zorenkov
- Department of Neurology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daniela Falk
- Department of Neurosurgery, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Fritz Wodarg
- Department of Neuroradiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Karsten Witt
- Department of Neurology, Christian-Albrechts University of Kiel, Kiel, Germany.,Department of Neurology and Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
15
|
Koirala N, Fleischer V, Granert O, Deuschl G, Muthuraman M, Groppa S. Network effects and pathways in Deep brain stimulation in Parkinson's disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5533-5536. [PMID: 28269510 DOI: 10.1109/embc.2016.7591980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep brain stimulation of subthalamic nucleus (STN-DBS) became a standard therapeutic option in Parkinson's disease (PD), even though the underlying modulated network of STN-DBS is still poorly described. Probabilistic tractography and connectivity analysis as derived from diffusion tensor imaging (DTI) were performed together with modelling of implanted electrode positions and linked postoperative clinical outcome. Fifteen patients with idiopathic PD without dementia were selected for DBS treatment. After pre-processing, probabilistic tractography was run from cortical and subcortical seeds of the hypothesized network to targets represented by the positions of the active DBS contacts. The performed analysis showed that the projections of the stimulation site to supplementary motor area (SMA) and primary motor cortex (M1) are mainly involved in the network effects of STN-DBS. An involvement of the "hyperdirected pathway" and a clear delimitation of the cortico-spinal tract were demonstrated. This study shows the effects of STN-DBS in PD distinctly rely on the network connections of the stimulated region to M1 and SMA, motor and premotor regions.
Collapse
|
16
|
Peng S, Levine D, Ramirez-Zamora A, Chockalingam A, Feustel PJ, Durphy J, Hanspal E, Novak P, Pilitsis JG. A Comparison of Unilateral Deep Brain Stimulation (DBS), Simultaneous Bilateral DBS, and Staged Bilateral DBS Lead Accuracies. Neuromodulation 2017; 20:478-483. [DOI: 10.1111/ner.12588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Sophia Peng
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - David Levine
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | | | | | - Paul J. Feustel
- Department of Neuroscience and Experimental Therapeutics; Albany Medical College; Albany NY USA
| | - Jennifer Durphy
- Department of Neurology; Albany Medical Center; Albany NY USA
| | - Era Hanspal
- Department of Neurology; Albany Medical Center; Albany NY USA
| | - Peter Novak
- Department of Neurology; University of Massachusetts; Worchester MA USA
| | - Julie G. Pilitsis
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
- Department of Neuroscience and Experimental Therapeutics; Albany Medical College; Albany NY USA
| |
Collapse
|
17
|
Effects of DBS in parkinsonian patients depend on the structural integrity of frontal cortex. Sci Rep 2017; 7:43571. [PMID: 28262813 PMCID: PMC5337928 DOI: 10.1038/srep43571] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
While deep brain stimulation of the subthalamic nucleus (STN-DBS) has evolved to an evidence-based standard treatment for Parkinson’s disease (PD), the targeted cerebral networks are poorly described and no objective predictors for the postoperative clinical response exist. To elucidate the systemic mechanisms of DBS, we analysed cerebral grey matter properties using cortical thickness measurements and addressed the dependence of structural integrity on clinical outcome. Thirty one patients with idiopathic PD without dementia (23 males, age: 63.4 ± 9.3, Hoehn and Yahr: 3.5 ± 0.8) were selected for DBS treatment. The patients underwent whole-brain preoperative T1 MR-Imaging at 3 T. Grey matter integrity was assessed by cortical thickness measurements with FreeSurfer. The clinical motor outcome markedly improved after STN-DBS in comparison to the preoperative condition. The cortical thickness of the frontal lobe (paracentral area and superior frontal region) predicted the clinical improvement after STN-DBS. Moreover, in patients with cortical atrophy of these areas a higher stimulation voltage was needed for an optimal clinical response. Our data suggest that the effects of STN-DBS in PD directly depend on frontal lobe grey matter integrity. Cortical atrophy of this region might represent a distinct predictor of a poor motor outcome after STN-DBS in PD patients.
Collapse
|
18
|
Park SC, Lee CS, Kim SM, Choi EJ, Lee JK. Comparison of the Stereotactic Accuracies of Function-Guided Deep Brain Stimulation, Calculated Using Multitrack Target Locations Geometrically Inferred from Three-Dimensional Trajectory Rotations, and of Magnetic Resonance Imaging-Guided Deep Brain Stimulation and Outcomes. World Neurosurg 2017; 98:734-749.e7. [DOI: 10.1016/j.wneu.2016.11.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022]
|
19
|
Li Z, Zhang JG, Ye Y, Li X. Review on Factors Affecting Targeting Accuracy of Deep Brain Stimulation Electrode Implantation between 2001 and 2015. Stereotact Funct Neurosurg 2016; 94:351-362. [PMID: 27784015 DOI: 10.1159/000449206] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/16/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accurate implantation of a depth electrode into the brain is of the greatest importance in deep brain stimulation (DBS), and various stereotactic systems have been developed for electrode implantation. However, an updated analysis of depth electrode implantation in the modern era of DBS is lacking. OBJECTIVE This study aims at providing an updated review on targeting accuracy of DBS electrode implantation by analyzing contemporary DBS electrode implantation operations from the perspective of precision engineering. METHODS Eligible articles with information on targeting accuracy of DBS electrode implantation were searched in the PubMed database. RESULTS An average targeting error of DBS electrode implantation is reported to decrease toward 1 mm; the standard deviation of targeting error is decreasing toward 0.5 mm. Targeting accuracy is not only found to be affected by individual surgical steps, but also systematically affected by the architecture of the implantation operation. CONCLUSION A systematic strategy should be adopted to further improve the targeting accuracy of depth electrode implantation. Attention should be paid to optimizing the whole electrode implantation operation, which can help minimize error accumulation or amplification throughout the serially connected procedures for DBS electrode implantation.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
20
|
EP 46. Accuracy of deep brain stimulation electrodes placement using frameless system – Nexframe©. Clin Neurophysiol 2016. [DOI: 10.1016/j.clinph.2016.05.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Cui Z, Pan L, Song H, Xu X, Xu B, Yu X, Ling Z. Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. J Neurosurg 2016; 124:62-9. [DOI: 10.3171/2015.1.jns141534] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The degree of clinical improvement achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. This study reports on the evaluation of intraoperative MRI (iMRI) for adjusting deviated electrodes to the accurate anatomical position during DBS surgery and acute intracranial changes.
METHODS
Two hundred and six DBS electrodes were implanted in the subthalamic nucleus (STN) in 110 patients with Parkinson disease. All patients underwent iMRI after implantation to define the accuracy of lead placement. Fifty-six DBS electrode positions in 35 patients deviated from the center of the STN, according to the result of the initial postplacement iMRI scans. Thus, we adjusted the electrode positions for placement in the center of the STN and verified this by means of second or third iMRI scans. Recording was performed in adjusted parameters in the x-, y-, and z-axes.
RESULTS
Fifty-six (27%) of 206 DBS electrodes were adjusted as guided by iMRI. Electrode position was adjusted on the basis of iMRI 62 times. The sum of target coordinate adjustment was −0.5 mm in the x-axis, −4 mm in the y-axis, and 15.5 mm in the z-axis; the total of distance adjustment was 74.5 mm in the x-axis, 88 mm in the y-axis, and 42.5 mm in the z-axis. After adjustment with the help of iMRI, all electrodes were located in the center of the STN. Intraoperative MRI revealed 2 intraparenchymal hemorrhages in 2 patients, brain shift in all patients, and leads penetrating the lateral ventricle in 3 patients.
CONCLUSIONS
The iMRI technique can guide surgeons as they adjust deviated electrodes to improve the accuracy of implanting the electrodes into the correct anatomical position. The iMRI technique can also immediately demonstrate acute changes such as hemorrhage and brain shift during DBS surgery.
Collapse
Affiliation(s)
- Zhiqiang Cui
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Longsheng Pan
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Huifang Song
- 2Department of Neurology, Hebei Province Luan County People’s Hospital, Luan County, Hebei Province, China
| | - Xin Xu
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Bainan Xu
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Xinguang Yu
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Zhipei Ling
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| |
Collapse
|
22
|
von Langsdorff D, Paquis P, Fontaine D. In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg 2015; 122:191-4. [DOI: 10.3171/2014.9.jns14256] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The application accuracy of the Neuromate neurosurgical robot has been validated in vitro but has not been evaluated in vivo for deep brain stimulation (DBS) electrode implantations. The authors conducted a study to evaluate this application accuracy in routine frame-based DBS procedures, with an independent system of measurement.
METHODS
The Euclidian distance was measured between the point theoretically targeted by the robot and the point actually reached, based on their respective stereotactic coordinates. The coordinates of the theoretical target were given by the robot's dedicated targeting software. The coordinates of the point actually reached were recalculated using the Stereoplan localizer system. This experiment was performed in vitro, with the frame fixed in the robot space without a patient, for 21 points spatially distributed. The in vivo accuracy was then measured in 30 basal ganglia targets in 17 consecutive patients undergoing DBS for movement disorders.
RESULTS
The mean in vitro application accuracy was 0.44 ± 0.23 mm. The maximal localization error was 1.0 mm. The mean (± SD) in vivo application accuracy was 0.86 ± 0.32 mm (Δx = 0.37 ± 0.34 mm, Δy = 0.32 ± 0.24 mm, Δz = 0.58 ± 0.31 mm). The maximal error was 1.55 mm.
CONCLUSIONS
The in vivo application accuracy of the Neuromate neurosurgical robot, measured with a system independent from the robot, in frame-based DBS procedures was better than 1 mm. This accuracy is at least similar to the accuracy of stereotactic frame arms and is compatible with the accuracy required in DBS procedures.
Collapse
Affiliation(s)
| | - Philippe Paquis
- 1Department of Neurosurgery, Centre Hospitalier Universitaire de Nice; and
| | - Denys Fontaine
- 1Department of Neurosurgery, Centre Hospitalier Universitaire de Nice; and
- 2IGCN-EA 7282 (Image-Guided Clinical Neuroscience and Connectomics), UMR 6284 ISIT, Université d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
23
|
Schmalbach B, Günther V, Raethjen J, Wailke S, Falk D, Deuschl G, Witt K. The Subthalamic Nucleus Influences Visuospatial Attention in Humans. J Cogn Neurosci 2014; 26:543-50. [DOI: 10.1162/jocn_a_00502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Spatial attention is a lateralized feature of the human brain. Whereas the role of cortical areas of the nondominant hemisphere on spatial attention has been investigated in detail, the impact of the BG, and more precisely the subthalamic nucleus, on signs and symptoms of spatial attention is not well understood. Here we used unilateral deep brain stimulation of the subthalamic nucleus to reversibly, specifically, and intraindividually modify the neuronal BG outflow and its consequences on signs and symptoms of visuospatial attention in patients suffering from Parkinson disease. We tested 13 patients with Parkinson disease and chronic deep brain stimulation in three stimulation settings: unilateral right and left deep brain stimulation of the subthalamic nucleus as well as bilateral deep brain stimulation of the subthalamic nucleus. In all three stimulation settings, the patients viewed a set of pictures while an eye-tracker system recorded eye movements. During the exploration of the visual stimuli, we analyzed the time spent in each visual hemispace, as well as the number, duration, amplitude, peak velocity, acceleration peak, and speed of saccades. In the unilateral left-sided stimulation setting, patients show a shorter ipsilateral exploration time of the extrapersonal space, whereas number, duration, and speed of saccades did not differ between the different stimulation settings. These results demonstrated reduced visuospatial attention toward the side contralateral to the right subthalamic nucleus that was not being stimulated in a unilateral left-sided stimulation. Turning on the right stimulator, the reduced visuospatial attention vanished. These results support the involvement of the subthalamic nucleus in modulating spatial attention. Therefore, the subthalamic nucleus is part of the subcortical network that subserves spatial attention.
Collapse
|
24
|
Groppa S, Herzog J, Falk D, Riedel C, Deuschl G, Volkmann J. Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain 2013; 137:109-21. [DOI: 10.1093/brain/awt304] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Peprah MK, Astary GW, Mareci TH, Meisel MW. Absolute magnetic susceptibility of rat brain tissue. Magn Reson Med 2013; 72:876-9. [PMID: 24123079 DOI: 10.1002/mrm.24965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/08/2022]
Abstract
PURPOSE This study was performed to test the commonly held hypothesis that the absolute magnetic susceptibility of brain tissue is close to that of water since water accounts for over 50% of the tissue composition. In addition, the absolute value of susceptibility of brain tissue is needed for the development of materials that are implanted into or in close proximity to tissue. METHODS The absolute magnetic susceptibilities of different sections of rat brain, which were exsanguinated and perfusion-fixed, have been measured in a commercial superconducting quantum interference device magnetometer operating in fields up to 7T. RESULTS The average measured values ranged from -(9.51 ± 0.01) × 10(-6) for the cerebellum to -(8.99 ± 0.01) × 10(-6) for a mixture of hippocampus, corpus callosum, and striatum. The time evolution of the samples was also studied, and deviations of <1% were observed after 4 weeks, although this trend was sample-specific. CONCLUSION The measured susceptibilities are close to the value measured for high-performance liquid chromatography H2 O and depend on the amount of gray and white matter regions present in the samples.
Collapse
Affiliation(s)
- Marcus K Peprah
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
26
|
van den Munckhof P, Contarino MF, Bour LJ, Speelman JD, de Bie RMA, Schuurman PR. Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift. Neurosurgery 2013; 67:49-53; discussion 53-4. [PMID: 20559091 DOI: 10.1227/01.neu.0000370597.44524.6d] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Accurate electrode position is important for the efficacy of deep brain stimulation (DBS). Several reports revealed errors during stereotactic surgery due to cerebrospinal fluid (CSF) loss and subdural air invasion. Because subdural air resolves in the weeks after surgery and the brain returns to its original position, DBS electrodes may become displaced postoperatively. OBJECTIVE To quantitatively assess postoperative DBS electrode displacement in relation to subdural air invasion. METHODS We retrospectively analyzed 14 patients with advanced Parkinson disease and subthalamic nucleus DBS electrodes that underwent immediate postoperative frame-based stereotactic computer tomography (CT) and repeated CT after longer follow-up. We performed volumetric measurements of postoperative subdural air collections on both sides of the brain and determined stereotactic coordinates of the deepest DBS contact on the direct postoperative and follow-up CT. RESULTS Subdural air collections measured on average 17+/-24 cm. Consequently, the frontal cortex shifted posteriorly. On follow-up imaging after 16+/-8 months, air collections had resolved and the frontal cortex had returned to its original position, causing anterior curving of the electrodes. The electrodes moved on average 3.3+/-2.5 mm upward along the trajectory. This displacement significantly correlated with the amount of postoperative subdural air. CONCLUSION Considerable displacement of DBS electrodes may occur in the weeks following surgery, especially in cases with large postoperative subdural air volumes. Postoperative documentation of electrode localization should therefore be repeated after longer follow-up.
Collapse
Affiliation(s)
- Pepijn van den Munckhof
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Contarino MF, Bot M, Speelman JD, de Bie RMA, Tijssen MA, Denys D, Bour LJ, Schuurman PR, van den Munckhof P. Postoperative Displacement of Deep Brain Stimulation Electrodes Related to Lead-Anchoring Technique. Neurosurgery 2013; 73:681-8; discussion 188. [DOI: 10.1227/neu.0000000000000079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
BACKGROUND:
Displacement of deep brain stimulation (DBS) electrodes may occur after surgery, especially due to large subdural air collections, but other factors might contribute.
OBJECTIVE:
To investigate factors potentially contributing to postoperative electrode displacement, in particular, different lead-anchoring techniques.
METHODS:
We retrospectively analyzed 55 patients (106 electrodes) with Parkinson disease, dystonia, tremor, and obsessive-compulsive disorder in whom early postoperative and long-term follow-up computed tomography (CT) was performed. Electrodes were anchored with a titanium microplate or with a commercially available plastic cap system. Two independent examiners determined the stereotactic coordinates of the deepest DBS contact on early postoperative and long-term follow-up CT. The influence of age, surgery duration, subdural air volume, use of microrecordings, fixation method, follow-up time, and side operated on first was assessed.
RESULTS:
Subdural air collections measured on average 4.3 ± 6.2 cm3. Three-dimensional (3-D) electrode displacement and displacement in the X, Y, and Z axes significantly correlated only with the anchoring method, with larger displacement for microplate-anchored electrodes. The average 3-D displacement for microplate-anchored electrodes was 2.3 ± 2.0 mm vs 1.5 ± 0.6 mm for electrodes anchored with the plastic cap (P = .030). Fifty percent of the microplate-anchored electrodes showed 2-mm or greater (potentially relevant) 3-D displacement vs only 25% of the plastic cap–anchored electrodes (P < .01).
CONCLUSION:
The commercially available plastic cap system is more efficient in preventing postoperative DBS electrode displacement than titanium microplates. A reliability analysis of the electrode fixation is warranted when alternative anchoring methods are used.
Collapse
Affiliation(s)
- M. Fiorella Contarino
- Departments of Neurology Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten Bot
- Departments ofNeurosurgery; and Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes D. Speelman
- Departments of Neurology Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rob M. A. de Bie
- Departments of Neurology Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marina A. Tijssen
- Departments of Neurology Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Departments of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan Denys
- Department of Neurology, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lo J. Bour
- Departments of Neurology Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - P. Richard Schuurman
- Departments ofNeurosurgery; and Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Pepijn van den Munckhof
- Departments ofNeurosurgery; and Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Lumsden DE, Ashmore J, Charles-Edwards G, Lin JP, Ashkan K, Selway R. Accuracy of stimulating electrode placement in paediatric pallidal deep brain stimulation for primary and secondary dystonia. Acta Neurochir (Wien) 2013; 155:823-36. [PMID: 23430231 DOI: 10.1007/s00701-013-1629-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accuracy of electrode placement is an important determinant of outcome following deep brain stimulation (DBS) surgery. Data on accuracy of electrode placement into the globus pallidum interna (GPi) in paediatric patients is limited, particularly those with non-primary dystonia who often have smaller GPi. Pallidal DBS is known to be more effective in the treatment of primary dystonia compared with secondary dystonia. OBJECTIVES We aimed to determine if accuracy of pallidal electrode placement differed between primary, secondary and NBIA (neuronal degeneration and brain iron accumulation) associated dystonia and how this related to motor outcome following surgery. METHODS A retrospective review of a consecutive cohort of children and young people undergoing DBS surgery in a single centre. Fused in frame preoperative planning magnetic resonance imaging (MRI) and postoperative computed tomography (CT) brain scans were used to determine the accuracy of placement of DBS electrode tip in Leskell stereotactic system compared with the planned target. The differences along X, Y, and Z coordinates were calculated, as was the Euclidean distance of electrode tip from the target. The relationship between proximity to target and change in Burke-Fahn-Marsden Dystonia Rating Scale at 1 year was also measured. RESULTS Data were collected from 88 electrodes placed in 42 patients (14 primary dystonia, 18 secondary dystonia and 10 NBIA associated dystonia). Median differences between planned target and actual position were: left-side X-axis 1.05 mm, Y-axis 0.85 mm, Z-axis 0.94 mm and Euclidean difference 2.04 mm; right-side X-axis 1.28 mm, Y-axis 0.70 mm, Z-axis 0.70 mm and Euclidean difference 2.45 mm. Accuracy did not differ between left and right-sided electrodes. No difference in accuracy was seen between primary, secondary or NBIA associated dystonia. Dystonia reduction at 1 year post surgery did not appear to relate to proximity of implanted electrode to surgical target across the cohort. CONCLUSIONS Accuracy of surgical placement did not differ between primary, secondary or NBIA associated dystonia. Decreased efficacy of pallidal DBS in secondary and NBIA associated dystonia is unlikely to be related to difficulties in achieving the planned electrode placement.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorders Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, Lambeth Palace Road, London, SE1 7EH, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Wodarg F, Herzog J, Reese R, Falk D, Pinsker MO, Steigerwald F, Jansen O, Deuschl G, Mehdorn HM, Volkmann J. Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord 2012; 27:874-9. [DOI: 10.1002/mds.25006] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 11/08/2022] Open
|
30
|
Pezeshkian P, DeSalles AAF, Gorgulho A, Behnke E, McArthur D, Bari A. Accuracy of frame-based stereotactic magnetic resonance imaging vs frame-based stereotactic head computed tomography fused with recent magnetic resonance imaging for postimplantation deep brain stimulator lead localization. Neurosurgery 2012; 69:1299-306. [PMID: 21725253 DOI: 10.1227/neu.0b013e31822b7069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Introduction of the portable intraoperative CT scanner provides for a precise and cost-effective way of fusing head CT images with high-tesla MRI for the exquisite definition of soft tissue needed for stereotactic targeting. OBJECTIVE To evaluate the accuracy of stereotactic electrode placement in patients undergoing deep brain stimulation (DBS) by comparing frame-based postimplantation intraoperative CT (iCT) images fused to a recent 3T-MRI with frame-based postimplantation intraoperative MRI (iMRI) alone. METHODS Frame-based DBS surgeries of 46 targets performed from February 8, 2007 to April 28, 2008 in 26 patients with the use of immediate postimplantation iMRI for target localization were compared with frame-based immediate postimplantation iCT fused with a recent 3T brain MRI for DBS localization of 50 targets performed from August 13, 2008 to February 18, 2010 in 26 patients. Pre- and postoperative mid anterior commissure-posterior commissure line coordinates and XYZ coordinates for preoperatively calculated DBS targets (intended target) and for the permanent DBS lead tips were determined. The differences between preoperative DBS target and postoperative permanent DBS lead-tip coordinates based on postimplantation intraoperative MRI for the MRI-alone group and based on postimplantation intraoperative CT fused to recent preoperative MRI in the CT-MRI group were measured. The t test and Yuen test were used for comparison. RESULTS No statistically significant differences were found between the 2 groups when comparing the pre- and postperative changes in mid anterior commissure-posterior commissure line coordinates and XYZ coordinates. CONCLUSION Postimplantation DBS lead localization and therefore targeting accuracy was not significantly different between frame-based stereotactic 1.5T-MRI and frame-based stereotactic head CT fused with recent 3T-MRI.
Collapse
Affiliation(s)
- Patrick Pezeshkian
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Zrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg 2012; 116:84-94. [PMID: 21905798 DOI: 10.3171/2011.8.jns101407] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Hemorrhagic complications carry by far the highest risk of devastating neurological outcome in functional neurosurgery. Literature published over the past 10 years suggests that hemorrhage, although relatively rare, remains a significant problem. Estimating the true incidence of and risk factors for hemorrhage in functional neurosurgery is a challenging issue.
Methods
The authors analyzed the hemorrhage rate in a consecutive series of 214 patients undergoing imageguided deep brain stimulation (DBS) lead placement without microelectrode recording (MER) and with routine postoperative MR imaging lead verification. They also conducted a systematic review of the literature on stereotactic ablative surgery and DBS over a 10-year period to determine the incidence and risk factors for hemorrhage as a complication of functional neurosurgery.
Results
The total incidence of hemorrhage in our series of image-guided DBS was 0.9%: asymptomatic in 0.5%, symptomatic in 0.5%, and causing permanent deficit in 0.0% of patients. Weighted means calculated from the literature review suggest that the overall incidence of hemorrhage in functional neurosurgery is 5.0%, with asymptomatic hemorrhage occurring in 1.9% of patients, symptomatic hemorrhage in 2.1% and hemorrhage resulting in permanent deficit or death in 1.1%. Hypertension and age were the most important patient-related factors associated with an increased risk of hemorrhage. Risk factors related to surgical technique included use of MER, number of MER penetrations, as well as sulcal or ventricular involvement by the trajectory. The incidence of hemorrhage in studies adopting an image-guided and image-verified approach without MER was significantly lower than that reported with other operative techniques (p < 0.001 for total number of hemorrhages, p < 0.001 for asymptomatic hemorrhage, p < 0.004 for symptomatic hemorrhage, and p = 0.001 for hemorrhage leading to permanent deficit; Fisher exact test).
Conclusions
Age and a history of hypertension are associated with an increased risk of hemorrhage in functional neurosurgery. Surgical factors that increase the risk of hemorrhage include the use of MER and sulcal or ventricular incursion. The meticulous use of neuroimaging—both in planning the trajectory and for target verification—can avoid all of these surgery-related risk factors and appears to carry a significantly lower risk of hemorrhage and associated permanent deficit.
Collapse
Affiliation(s)
- Ludvic Zrinzo
- 1Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London
- 2Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom; and
| | - Thomas Foltynie
- 1Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London
| | - Patricia Limousin
- 1Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London
| | - Marwan I. Hariz
- 1Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London
- 3Department of Neurosurgery, University Hospital, Umeå, Sweden
| |
Collapse
|
32
|
Holl EM, Petersen EA, Foltynie T, Martinez-Torres I, Limousin P, Hariz MI, Zrinzo L. Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery 2011; 67:437-47. [PMID: 21099570 DOI: 10.1227/neu.0b013e3181f7422a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is commonly used in the treatment of movement disorders such as Parkinson disease (PD), dystonia, and other tremors. OBJECTIVE To examine systematic errors in image-guided DBS electrode placement and to explore a calibration strategy for stereotactic targeting. METHODS Pre- and postoperative stereotactic MR images were analyzed in 165 patients. The perpendicular error between planned target coordinates and electrode trajectory was calculated geometrically for all 312 DBS electrodes implanted. Improvement in motor unified PD rating scale III subscore was calculated for those patients with PD with at least 6 months of follow-up after bilateral subthalamic DBS. RESULTS Mean (standard deviation) scalar error of all electrodes was 1.4(0.9) mm with a significant difference between left and right hemispheres. Targeting error was significantly higher for electrodes with coronal approach angle (ARC) ≥10° (P < .001). Mean vector error was X: -0.6, Y: -0.7, and Z: -0.4 mm (medial, posterior, and superior directions, respectively). Targeting error was significantly improved by using a systematic calibration strategy based on ARC and target hemisphere (mean: 0.6 mm, P < .001) for 47 electrodes implanted in 24 patients. Retrospective theoretical calibration for all 312 electrodes would have reduced the mean (standard deviation) scalar error from 1.4(0.9) mm to 0.9(0.5) mm (36% improvement). With calibration, 97% of all electrodes would be within 2 mm of the intended target as opposed to 81% before calibration. There was no significant correlation between the degree of error and clinical outcome from bilateral subthalamic nucleus DBS (R = 0.07). CONCLUSION After calibration of a systematic targeting error an MR image-guided stereotactic approach would be expected to deliver 97% of all electrodes to within 2 mm of the intended target point with a single brain pass.
Collapse
Affiliation(s)
- Etienne M Holl
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Smith AP, Bakay RAE. Frameless deep brain stimulation using intraoperative O-arm technology. J Neurosurg 2011; 115:301-9. [DOI: 10.3171/2011.3.jns101642] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Correct lead location in the desired target has been proven to be a strong influential factor for good clinical outcome in deep brain stimulation (DBS) surgery. Commonly, a surgeon's first reliable assessment of such location is made on postoperative imaging. While intraoperative CT (iCT) and intraoperative MR imaging have been previously described, the authors present a series of frameless DBS procedures using O-arm iCT.
Methods
Twelve consecutive patients with 15 leads underwent frameless DBS placement using electrophysiological testing and O-arm iCT. Initial target coordinates were made using standard indirect and direct assessment. Microelectrode recording (MER) with kinesthetic responses was performed, followed by microstimulation to evaluate the side-effect profile. Intraoperative 3D CT acquisitions obtained between each MER pass and after final lead placement were fused with the preoperative MR image to verify intended MER movements around the target area and to identify the final lead location. Tip coordinates from the initial plan, final intended target, and actual lead location on iCT were later compared with the lead location on postoperative MR imaging, and euclidean distances were calculated. The amount of radiation exposure during each procedure was calculated and compared with the estimated radiation exposure if iCT was not performed.
Results
The mean euclidean distances between the coordinates for the initial plan, final intended target, and actual lead on iCT compared with the lead coordinates on postoperative MR imaging were 3.04 ± 1.45 mm (p = 0.0001), 2.62 ± 1.50 mm (p = 0.0001), and 1.52 ± 1.78 mm (p = 0.0052), respectively. The authors obtained good merging error during image fusion, and postoperative brain shift was minimal. The actual radiation exposure from iCT was invariably less than estimates of exposure using standard lateral fluoroscopy and anteroposterior radiographs (p < 0.0001).
Conclusions
O-arm iCT may be useful in frameless DBS surgery to approximate microelectrode or lead locations intraoperatively. Intraoperative CT, however, may not replace fundamental DBS surgical techniques such as electrophysiological testing in movement disorder surgery. Despite the lack of evidence for brain shift from the procedure, iCT-measured coordinates were statistically different from those obtained postoperatively, probably indicating image merging inaccuracy and the difficulties in accurately denoting lead location. Therefore, electrophysiological testing may truly be the only means of precisely knowing the location in 3D space intraoperatively. While iCT may provide clues to electrode or lead location during the procedure, its true utility may be in DBS procedures targeting areas where electrophysiology is less useful. The use of iCT appears to reduce radiation exposure compared with the authors' traditional frameless technique.
Collapse
|
34
|
Stimulation at dorsal and ventral electrode contacts targeted at the subthalamic nucleus has different effects on motor and emotion functions in Parkinson's disease. Neuropsychologia 2011; 49:528-34. [DOI: 10.1016/j.neuropsychologia.2010.12.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/10/2010] [Accepted: 12/15/2010] [Indexed: 11/22/2022]
|
35
|
Martens HCF, Toader E, Decré MMJ, Anderson DJ, Vetter R, Kipke DR, Baker KB, Johnson MD, Vitek JL. Spatial steering of deep brain stimulation volumes using a novel lead design. Clin Neurophysiol 2010; 122:558-566. [PMID: 20729143 DOI: 10.1016/j.clinph.2010.07.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/28/2010] [Accepted: 07/31/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate steering the volume of activated tissue (VTA) with deep brain stimulation (DBS) using a novel high spatial-resolution lead design. METHODS We examined the effect of asymmetric current-injection across the DBS-array on the VTA. These predictions were then evaluated acutely in a non-human primate implanted with the DBS-array, using motor side-effect thresholds as the metric for estimating VTA asymmetries. RESULTS Simulations show the DBS-array, with electrodes arranged together in a cylindrical configuration, can generate field distributions equivalent to commercial DBS leads, and these field distributions can be modulated using field-steering methods. Stimulation with implanted DBS-arrays showed directionally-selective muscle activation, presumably through spread of stimulation fields into portions of the corticospinal tract lying in the internal capsule. CONCLUSIONS Our computational and experimental studies demonstrate that the DBS-array is capable of spatially selective stimulation. Displacing VTAs away from the lead's axis can be achieved using a single simple and intuitive control parameter. SIGNIFICANCE Optimal DBS likely requires non-uniform VTAs that may differentially affect a nucleus or fiber pathway. The DBS-array allows positioning VTAs with sub-millimeter precision, which is especially relevant for those patients with DBS leads placed in sub-optimal locations. This may present clinicians with an additional degree of freedom to optimize the DBS therapy.
Collapse
Affiliation(s)
- H C F Martens
- Philips Research, High Tech Campus 34, 5656 AE, Eindhoven, The Netherlands.
| | - E Toader
- Philips Research, High Tech Campus 34, 5656 AE, Eindhoven, The Netherlands
| | - M M J Decré
- Philips Research, High Tech Campus 34, 5656 AE, Eindhoven, The Netherlands
| | - D J Anderson
- Neuronexus Technologies, 3985 Research Park Dr. Suite 100, Ann Arbor, MI 48108, USA
| | - R Vetter
- Neuronexus Technologies, 3985 Research Park Dr. Suite 100, Ann Arbor, MI 48108, USA
| | - D R Kipke
- Neuronexus Technologies, 3985 Research Park Dr. Suite 100, Ann Arbor, MI 48108, USA
| | - Kenneth B Baker
- Cleveland Clinic, Department of Neurosciences, NC30, 8900 Euclid Ave., Cleveland, OH 44195, USA; University of Minnesota, Department of Neurology, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Matthew D Johnson
- Cleveland Clinic, Department of Neurosciences, NC30, 8900 Euclid Ave., Cleveland, OH 44195, USA; University of Minnesota, Department of Biomedical Engineering, 7-105 NHH, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Jerrold L Vitek
- Cleveland Clinic, Department of Neurosciences, NC30, 8900 Euclid Ave., Cleveland, OH 44195, USA; University of Minnesota, Department of Neurology, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
36
|
D'Haese PF, Pallavaram S, Li R, Remple MS, Kao C, Neimat JS, Konrad PE, Dawant BM. CranialVault and its CRAVE tools: a clinical computer assistance system for deep brain stimulation (DBS) therapy. Med Image Anal 2010; 16:744-53. [PMID: 20732828 DOI: 10.1016/j.media.2010.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 03/09/2010] [Accepted: 07/11/2010] [Indexed: 11/29/2022]
Abstract
A number of methods have been developed to assist surgeons at various stages of deep brain stimulation (DBS) therapy. These include construction of anatomical atlases, functional databases, and electrophysiological atlases and maps. But, a complete system that can be integrated into the clinical workflow has not been developed. In this paper we present a system designed to assist physicians in pre-operative target planning, intra-operative target refinement and implantation, and post-operative DBS lead programming. The purpose of this system is to centralize the data acquired a the various stages of the procedure, reduce the amount of time needed at each stage of the therapy, and maximize the efficiency of the entire process. The system consists of a central repository (CranialVault), of a suite of software modules called CRAnialVault Explorer (CRAVE) that permit data entry and data visualization at each stage of the therapy, and of a series of algorithms that permit the automatic processing of the data. The central repository contains image data for more than 400 patients with the related pre-operative plans and position of the final implants and about 10,550 electrophysiological data points (micro-electrode recordings or responses to stimulations) recorded from 222 of these patients. The system has reached the stage of a clinical prototype that is being evaluated clinically at our institution. A preliminary quantitative validation of the planning component of the system performed on 80 patients who underwent the procedure between January 2009 and December 2009 shows that the system provides both timely and valuable information.
Collapse
Affiliation(s)
- Pierre-François D'Haese
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Stereotactic implantation of deep brain stimulation electrodes: a review of technical systems, methods and emerging tools. Med Biol Eng Comput 2010; 48:611-24. [DOI: 10.1007/s11517-010-0633-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
|
38
|
Nazzaro JM, Lyons KE, Wetzel LH, Pahwa R. Use of Brain MRI after Deep Brain Stimulation Hardware Implantation. Int J Neurosci 2010; 120:176-83. [DOI: 10.3109/00207450903389156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Abstract
Functional neurosurgery involves precise surgical targeting of anatomic structures to modulate neurologic function. From its conception, advances in the surgical treatment of movement disorders have been intertwined with developments in medical imaging, culminating in the use of stereotactic magnetic resonance imaging (MRI). Meticulous attention to detail during image acquisition, direct anatomic localization, and planning of the initial surgical trajectory allows the surgeon to reach the desired anatomic and functional target with the initial trajectory in most cases, thus reducing the need for multiple passes through the brain, and the associated risk of hemorrhage and functional deficit. This philosophy is of paramount importance in a procedure that is primarily aimed at improving quality of life. Documentation of electrode contact location by means of stereotactic imaging is essential to audit surgical targeting accuracy and to further the knowledge of structure-to-function relationships within the human brain.
Collapse
|
40
|
D'Haese PF, Pallavaram S, Konrad PE, Neimat J, Fitzpatrick JM, Dawant BM. Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift. Stereotact Funct Neurosurg 2010; 88:81-7. [PMID: 20068383 DOI: 10.1159/000271823] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 10/17/2009] [Indexed: 11/19/2022]
Abstract
Previous studies have evaluated the accuracy of several approaches for the placement of electrodes for deep brain stimulation. In this paper, we present a strategy to minimize the effect of brain shift on the estimation of the electrode placement error (EPE) for a stereotactic platform in the absence of intraoperative imaging data, and we apply it to the StarFix microTargeting Platform (FHC Inc., Bowdoin, Me., USA). This method involves comparing the intraoperative stereotactic coordinates of the implant with its position in the postoperative CT images in a population for which the effect of brain shift is minimal. The study we have conducted on 75 patients demonstrates that the EPE is overestimated at least by about 60% if brain shift is not taken into account, and shows a clinical accuracy of 1.24 +/- 0.37 mm for the StarFix frame, which is similar to the reported G frame accuracy and better than the reported Nexframe accuracy (2.5 +/- 1.4 mm) [Stereotact Funct Neurosurg 2007;85:235-242].
Collapse
Affiliation(s)
- Pierre-François D'Haese
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA. pf.dhaese @ vanderbilt.edu
| | | | | | | | | | | |
Collapse
|
41
|
Balachandran R, Mitchell JE, Dawant BM, Fitzpatrick JM. Accuracy evaluation of microTargeting Platforms for deep-brain stimulation using virtual targets. IEEE Trans Biomed Eng 2009; 56:37-44. [PMID: 19224717 DOI: 10.1109/tbme.2008.2002110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Deep-brain-stimulation (DBS) surgery requires implanting stimulators at target positions with submillimetric accuracy. Traditional stereotactic frames can provide such accuracy, but a recent innovation called the microTargeting Platform (FHC, Inc.) replaces this large, universal frame with a single-use, miniature, and custom-designed platform. Both single-target and dual-target platforms are available for unilateral and bilateral procedures, respectively. In this paper, their targeting accuracies are evaluated in vitro. Our approach employs "virtual targets," which eliminates the problem of collision of the implant with the target. We implement virtual targets by mounting fiducial markers, which are not used in platform targeting, on an artificial skull and defining targets relative to the skull via that fiducial system. The fiducial system is designed to surround the targets, thereby reducing the overall effect of fiducial localization inaccuracies on the evaluation. It also provides the geometrical transformation from image to physical space. Target selection is based on an atlas of stimulation targets from a set of 31 DBS patients. The measured targeting error is the displacement between the phantom implant and the virtual target. Our results show that the microTargeting Platform exhibits submillimetric in vitro accuracy with a mean of 0.42 mm and a 99.9% level of 0.90 mm.
Collapse
Affiliation(s)
- Ramya Balachandran
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville TN 37232, USA.
| | | | | | | |
Collapse
|
42
|
Zrinzo L, van Hulzen ALJ, Gorgulho AA, Limousin P, Staal MJ, De Salles AAF, Hariz MI. Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg 2009; 110:1283-90. [PMID: 19301961 DOI: 10.3171/2008.12.jns08885] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy. METHODS The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images. RESULTS The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean +/- SD and the 95% CI of the mean was 1.5 +/- 1.0 and 0.1 mm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 +/- 0.7 and 0.1 mm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 +/- 1.1 and 0.3 mm; p < 0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between an increased requirement for multiple brain passes and ventricular involvement in the trajectory (p < 0.01). CONCLUSIONS Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target as defined by clinical and physiological observations.
Collapse
Affiliation(s)
- Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London.
| | | | | | | | | | | | | |
Collapse
|
43
|
Daniluk S, Davies KG, Novak P, Vu T, Nazzaro JM, Ellias SA. Isolation of the brain-related factor of the error between intended and achieved position of deep brain stimulation electrodes implanted into the subthalamic nucleus for the treatment of Parkinson's disease. Neurosurgery 2009; 64:374-82; discussion 382-4. [PMID: 19404117 DOI: 10.1227/01.neu.0000335171.38334.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Although a few studies have quantified errors in the implantation of deep brain stimulation electrodes into the subthalamic nucleus (STN), a significant trend in error direction has not been reported. We have previously found that an error in axial plane, which is of most concern because it cannot be compensated for during deep brain stimulation programming, had a posteromedial trend. We hypothesized that this trend results from a predominance of a directionally oriented error factor of brain origin. Accordingly, elimination of nonbrain (technical) error factors could augment this trend. Thus, implantation accuracy could be improved by anterolateral compensation during target planning. METHODS Surgical technique was revised to minimize technical error factors. During 22 implantations, targets were selected on axial magnetic resonance imaging scans up to 1.5 mm anterolateral from the STN center. Using fusion of postoperative computed tomographic and preoperative magnetic resonance imaging scans, implantation errors in the axial plane were obtained and compared with distances from the lead to the STN to evaluate the benefit of anterolateral compensation. RESULTS Twenty errors and the mean error had a posteromedial direction. The average distances from the lead to the target and to the STN were 1.7 mm (range, 0.8-3.1 mm) and 1.1 mm (range, 0.1-1.9 mm), respectively. The difference between the 2 distances was significant (paired t test, P < 0.0001). The lower parts of the lead were consistently bent in the posteromedial direction on postoperative scout computed tomographic scans, suggesting that a brain-related factor is responsible for the reported error. CONCLUSION Elimination of the technical factors of error during STN deep brain stimulation implantation can result in a consistent posteromedial error. Implantation accuracy may be improved by compensation for this error in advance.
Collapse
Affiliation(s)
- Slawomir Daniluk
- Department of Neurosurgery, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Fiegele T, Feuchtner G, Sohm F, Bauer R, Anton JV, Gotwald T, Twerdy K, Eisner W. Accuracy of stereotactic electrode placement in deep brain stimulation by intraoperative computed tomography. Parkinsonism Relat Disord 2008; 14:595-9. [DOI: 10.1016/j.parkreldis.2008.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/13/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022]
|
45
|
Pötter-Nerger M, Ilic TV, Siebner HR, Deuschl G, Volkmann J. Subthalamic nucleus stimulation restores corticospinal facilitation in Parkinson's disease. Mov Disord 2008; 23:2210-5. [DOI: 10.1002/mds.22284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
46
|
Paek SH, Han JH, Lee JY, Kim C, Jeon BS, Kim DG. ELECTRODE POSITION DETERMINED BY FUSED IMAGES OF PREOPERATIVE AND POSTOPERATIVE MAGNETIC RESONANCE IMAGING AND SURGICAL OUTCOME AFTER SUBTHALAMIC NUCLEUS DEEP BRAIN STIMULATION. Neurosurgery 2008; 63:925-36; discussion 936-7. [DOI: 10.1227/01.neu.0000334045.43940.fb] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE
The electrode position is important to the surgical outcome after subthalamic nucleus (STN) deep brain stimulation (DBS). The aim of this study was to compare the surgical outcome of bilateral STN DBS with the electrode position estimated using fused magnetic resonance imaging.
METHODS
Bilateral STN DBS was performed in 60 patients with advanced Parkinson's disease. Patients were evaluated with the Unified Parkinson's Disease Rating Scale, Hoehn and Yahr staging, Schwab and England Activities of Daily Living, L-dopa equivalent dose, and Short Form-36 Health Survey before and at 3 and 6 months after surgery. Brain magnetic resonance imaging (1.5-T) was performed in 53 patients at 6 months after STN DBS. The electrode position was estimated in the fused pre- and postoperative magnetic resonance images and correlated with the surgical results.
RESULTS
As a group, the Unified Parkinson's Disease Rating Scale, Hoehn and Yahr staging, Schwab and England Activities of Daily Living, and Short Form-36 Health Survey scores improved at 3 and 6 months after STN DBS. The L-dopa equivalent dose decreased by 60% at 3 and 6 months after STN DBS. The electrode position was divided into 6 types according to its relationship to the STN and the red nucleus. Most off-medication Unified Parkinson's Disease Rating Scale motor subscale scores improved regardless of the type of electrode position. The off-medication speech subscale score improved only in the patients whose electrodes were correctly positioned in the STN bilaterally.
CONCLUSION
The electrodes accurately positioned in the STN led to improved speech after bilateral STN DBS. An effort should be made in each patient to document the electrode position to monitor surgical performance and to improve the surgical outcome after STN DBS.
Collapse
Affiliation(s)
- Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheolyoung Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Jeon
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Gyu Kim
- Medical Imaging Laboratory, CyberMed, Inc., Seoul, Republic of Korea
| |
Collapse
|
47
|
Elias WJ, Fu KM, Frysinger RC. Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 2007; 107:983-8. [DOI: 10.3171/jns-07/11/0983] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The success of stereotactic surgery depends upon accuracy. Tissue deformation, or brain shift, can result in clinically significant errors. The authors measured cortical and subcortical brain shift during stereotactic surgery and assessed several variables that may affect it.
Methods
Preoperative and postoperative magnetic resonance imaging volumes were fused and 3D vectors of deviation were calculated for the anterior commissure (AC), posterior commissure (PC), and frontal cortex. Potential preoperative (age, diagnosis, and ventricular volume), intraoperative (stereotactic target, penetration of ventricles, and duration of surgery), and postoperative (volume of pneumocephalus) variables were analyzed and correlated with cortical (frontal cortex) and subcortical (AC, PC) deviations.
Results
Of 66 cases, nine showed a shift of the AC by more than 1.5 mm, and five by more than 2.0 mm. The largest AC shift was 5.67 mm. Deviation in the x, y, and z dimensions for each case was determined, and most of the cortical and subcortical shift occurred in the posterior direction. The mean 3D vector deviations for frontal cortex, AC, and PC were 3.5 ± 2.0, 1.0 ± 0.8, and 0.7 ± 0.5 mm, respectively. The mean change in AC–PC length was −0.2 ± −0.9 mm (range −4.28 to 1.66 mm). The volume of postoperative pneumocephalus, assumed to represent cerebrospinal fluid (CSF) loss, was significantly correlated with shift of the frontal cortex (r = 0.640, 64 degrees of freedom, p < 0.001) and even more strongly with shift of the AC (r = 0.754, p < 0.001). No other factors were significantly correlated with AC shift. Interestingly, penetration of the ventricles during electrode insertion, whether unilateral or bilateral, did not affect volume of pneumocephalus.
Conclusions
Cortical and subcortical brain shift occurs during stereotactic surgery as a direct function of the volume of pneumocephalus, which probably reflects the volume of CSF that is lost. Clinically significant shifts appear to be uncommon, but stereotactic surgeons should be vigilant in preventing CSF loss.
Collapse
|
48
|
Sudhyadhom A, Bova FJ, Foote KD, Rosado CA, Kirsch-Darrow L, Okun MS. Limbic, associative, and motor territories within the targets for deep brain stimulation: Potential clinical implications. Curr Neurol Neurosci Rep 2007; 7:278-89. [PMID: 17618533 DOI: 10.1007/s11910-007-0043-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The use of deep brain stimulation (DBS) has recently been expanding for the treatment of many neurologic disorders such as Parkinson disease, dystonia, essential tremor, Tourette's syndrome, cluster headache, epilepsy, depression, and obsessive compulsive disorder. The target structures for DBS include specific segregated territories within limbic, associative, or motor regions of very small subnuclei. In this review, we summarize current clinical techniques for DBS, the cognitive/mood/motor outcomes, and the relevant neuroanatomy with respect to functional territories within specific brain targets. Future development of new techniques and technology that may include a more direct visualization of "motor" territories within target structures may prove useful for avoiding side effects that may result from stimulation of associative and limbic regions. Alternatively, newer procedures may choose and specifically target non-motor territories for chronic electrical stimulation.
Collapse
Affiliation(s)
- Atchar Sudhyadhom
- Department of Neurology, McKnight Brain Institute, 100 South Newell Drive, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Pollo C, Vingerhoets F, Pralong E, Ghika J, Maeder P, Meuli R, Thiran JP, Villemure JG. Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. J Neurosurg 2007; 106:36-44. [PMID: 17240554 DOI: 10.3171/jns.2007.106.1.36] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors describe a new method of localizing electrodes on magnetic resonance (MR) images and focus on the positions of both the most efficient contact and the electrode related to the MR imaging target. METHODS Thirty-one patients who had undergone bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) were included in this study. Target coordinates were calculated in the anterior commissure-posterior commissure referential. A study of the correlation between the artifact and the related contact allowed one to deduce the contact position from the identification of the distal artifact on MR imaging. The best stimulation point corresponded with the contact resulting in the best Unified Parkinson's Disease Rating Scale (UPDRS) motor score improvement. It was compared (Student t-test) with the dorsal margin of the STN (DM STN), which was determined electrophysiologically. The distance between the target and the electrode was calculated individually in each axis. The best stimulation point was located at anteroposterior -2.34 +/- 1.63 mm, lateral 12.04 +/- 1.62 mm, and vertical -2.57 +/- 1.68 mm. This point was not significantly different from the DM STN (p < 0.05). The postoperative UPDRS motor score was 28.07 +/- 12.16, as opposed to the preoperative score of 46.27 +/- 13.89. The distance between the expected and actual target in the x- and y-axes was 1.34 +/- 1.02 and 1.03 +/- 0.76 mm, respectively. In the z-axis, 39.7% of the distal contacts were located proximal to the target. CONCLUSIONS This approach proposed for the localization of the electrodes on MR imaging shows that DBS is most effective in the dorsal and lateral part of the STN and indicates that the DBS electrode can be located more proximally than originally expected because of the caudal brain shift that may occur during the implantation procedure.
Collapse
Affiliation(s)
- Claudio Pollo
- Department of Neurosurgery, Neurosurgical Neurophysiology Institute, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, Baltuch G. Deep brain stimulation in neurologic disorders. Parkinsonism Relat Disord 2007; 13:1-16. [PMID: 17141550 DOI: 10.1016/j.parkreldis.2006.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 10/23/2022]
Abstract
Deep brain stimulation (DBS) is an effective surgical therapy for well-selected patients with medically intractable Parkinson's disease (PD) and essential tremor (ET). The purpose of this review is to describe the success of DBS in these two disorders and its promising application in dystonia, Tourette Syndrome (TS) and epilepsy. In the last 10 years, numerous short- and intermediate-term outcome studies have demonstrated significant relief to patients with PD and ET. A few long-term follow-up studies have also reported sustained benefits. When successful, DBS greatly reduces most of parkinsonian motor symptoms and drug-induced dyskinesia, and it frequently improves patients' ability to perform activities of daily living with less encumbrance from motor fluctuations. Quality of life is enhanced and many patients are able to significantly reduce the amount of antiparkinsonian medications required to still get good pharmacological benefit. Overall, adverse effects associated with DBS tend to be transient, although device-related and other postoperative complications do occur. DBS should be considered the surgical procedure of choice for patients who meet strict criteria with medically intractable PD, ET and selected cases of dystonia.
Collapse
Affiliation(s)
- Casey Halpern
- Department of Neurology, Penn Neurological Institute at Pennsylvania Hospital, Hospital of the University of Pennsylvania, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|