1
|
Liu HK, Hao HL, You H, Feng F, Qi XH, Huang XY, Hou B, Tian CG, Wang H, Yang HM, Wang J, Wu R, Fang H, Zhou JN, Zhang JG, Zhang ZX. A Cysteinyl-tRNA Synthetase Mutation Causes Novel Autosomal-Dominant Inheritance of a Parkinsonism/Spinocerebellar-Ataxia Complex. Neurosci Bull 2024; 40:1489-1501. [PMID: 38869703 PMCID: PMC11422396 DOI: 10.1007/s12264-024-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/22/2023] [Indexed: 06/14/2024] Open
Abstract
This study aimed to identify possible pathogenic genes in a 90-member family with a rare combination of multiple neurodegenerative disease phenotypes, which has not been depicted by the known neurodegenerative disease. We performed physical and neurological examinations with International Rating Scales to assess signs of ataxia, Parkinsonism, and cognitive function, as well as brain magnetic resonance imaging scans with seven sequences. We searched for co-segregations of abnormal repeat-expansion loci, pathogenic variants in known spinocerebellar ataxia-related genes, and novel rare mutations via whole-genome sequencing and linkage analysis. A rare co-segregating missense mutation in the CARS gene was validated by Sanger sequencing and the aminoacylation activity of mutant CARS was measured by spectrophotometric assay. This pedigree presented novel late-onset core characteristics including cerebellar ataxia, Parkinsonism, and pyramidal signs in all nine affected members. Brain magnetic resonance imaging showed cerebellar/pons atrophy, pontine-midline linear hyperintensity, decreased rCBF in the bilateral basal ganglia and cerebellar dentate nucleus, and hypo-intensities of the cerebellar dentate nuclei, basal ganglia, mesencephalic red nuclei, and substantia nigra, all of which suggested neurodegeneration. Whole-genome sequencing identified a novel pathogenic heterozygous mutation (E795V) in the CARS gene, meanwhile, exhibited none of the known repeat-expansions or point mutations in pathogenic genes. Remarkably, this CARS mutation causes a 20% decrease in aminoacylation activity to charge tRNACys with L-cysteine in protein synthesis compared with that of the wild type. All family members carrying a heterozygous mutation CARS (E795V) had the same clinical manifestations and neuropathological changes of Parkinsonism and spinocerebellar-ataxia. These findings identify novel pathogenesis of Parkinsonism-spinocerebellar ataxia and provide insights into its genetic architecture.
Collapse
Affiliation(s)
- Han-Kui Liu
- BGI Genomics and BGI Research, Shenzhen, 518083, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050011, China
| | - Hong-Lin Hao
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hui You
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Feng Feng
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiu-Hong Qi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | | | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Han Wang
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Jian Wang
- BGI Genomics and BGI Research, Shenzhen, 518083, China
| | - Rui Wu
- Department of Pathology, Beijing Key Laboratory of Biomarker Research and Transformation for Neurodegenerative Diseases, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Fang
- Anhui Provincial Children's Hospital, Children's Hospital of Fudan University, Hefei, 230051, China
| | - Jiang-Ning Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jian-Guo Zhang
- BGI Genomics and BGI Research, Shenzhen, 518083, China.
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050011, China.
| | - Zhen-Xin Zhang
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
2
|
Duggirala N, Ngo KJ, Pagnoni SM, Rosa AL, Fogel BL. Spinocerebellar ataxia type 14 (SCA14) in an Argentinian family: a case report. J Med Case Rep 2023; 17:168. [PMID: 37101238 PMCID: PMC10134643 DOI: 10.1186/s13256-023-03897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/19/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Hereditary spinocerebellar ataxias are a group of genetic neurological disorders that result in degeneration of the cerebellum and brainstem, leading to difficulty in controlling balance and muscle coordination. CASE PRESENTATION A family affected by spinocerebellar ataxia was identified in Argentina and investigated using whole exome sequencing to determine the genetic etiology. The proband, a female white Hispanic aged 48, was noted to have slowly progressive gait ataxia, dysarthria, nystagmus, and moderate cerebellar atrophy. Whole exome sequencing was performed on three affected and two unaffected family members and revealed a dominant pathogenic variant, p.Gln127Arg (19:54392986 A>G), in the protein kinase C gamma gene, and the family was diagnosed with spinocerebellar ataxia type 14. CONCLUSIONS To our knowledge, no previous cases of spinocerebellar ataxia type 14 have been reported in Argentina, expanding the global presence of this neurological disorder. This diagnosis supports whole exome sequencing as a high-yield method for identifying coding variants causing cerebellar ataxias and emphasizes the importance of broadening the clinical availability of whole exome sequencing for undiagnosed patients and families.
Collapse
Affiliation(s)
- Niharika Duggirala
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kathie J Ngo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabrina M Pagnoni
- Laboratorio de Genética y Biología Molecular, Fundación Allende Y Sanatorio Allende, Córdoba, Argentina
- Facultad de Ciencias Químicas, IRNASUS-CONICET, Universidad Católica de Cordoba, Córdoba, Argentina
- Departamento de Farmacología, IFEC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, Fundación Allende Y Sanatorio Allende, Córdoba, Argentina
- Facultad de Ciencias Químicas, IRNASUS-CONICET, Universidad Católica de Cordoba, Córdoba, Argentina
- Departamento de Farmacología, IFEC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Atypical Phenotype in a Spinocerebellar Ataxia Type 2 Kindred. Tremor Other Hyperkinet Mov (N Y) 2021; 11:32. [PMID: 34430069 PMCID: PMC8344955 DOI: 10.5334/tohm.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Non-ataxic manifestations in autosomal dominant cerebellar ataxias are variable and influenced by CAG repeat length and age at onset. This report describes a genetically proven SCA2 kindred with an atypical phenotype resembling SCA3. Case Report The phenotype of five genetically proven patients with SCA2 in this report differed from the typical phenotype owing to persistence of reflexes late into the course of illness, absence of peripheral neuropathy, and very prominent facial twitches. Discussion Despite descriptions of typical phenotypes of SCA, significant variations occur, especially within kindreds. Caution should be exercised in clinical diagnoses of SCA, especially with atypical features.
Collapse
|
4
|
Magaña JJ, Velázquez-Pérez L, Cisneros B. Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol 2012; 47:90-104. [PMID: 22996397 DOI: 10.1007/s12035-012-8348-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/05/2012] [Indexed: 12/13/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant genetic disease characterized by cerebellar dysfunction associated with slow saccades, early hyporeflexia, severe tremor of postural or action type, peripheral neuropathy, cognitive disorders, and other multisystemic features. SCA2, one of the most common ataxias worldwide, is caused by the expansion of a CAG triplet repeat located in the N-terminal coding region of the ATXN2 gene, which results in the incorporation of a segment of polyglutamines in the mutant protein, being longer expansions associated with earlier onset and more sever disease in subsequent generations. In this review, we offer a detailed description of the clinical manifestations of SCA2 and compile the experimental evidence showing the participation of ataxin-2 in crucial cellular processes, including messenger RNA maturation and translation, and endocytosis. In addition, we discuss in the light of present data the potential molecular mechanisms underlying SCA2 pathogenesis. The mutant protein exhibits a toxic gain of function that is mainly attributed to the generation of neuronal inclusions of phosphorylated and/or proteolytic cleaved mutant ataxin-2, which might alter normal ataxin-2 function, leading to cell dysfunction and death of target cells. In the final part of this review, we discuss the perspectives of development of therapeutic strategies for SCA2. Based on previous experience with other polyglutamine disorders and considering the molecular basis of SCA2 pathogenesis, a nuclei-acid-based strategy focused on the specific silencing of the dominant disease allele that preserves the expression of the wild-type allele is highly desirable and might prevent toxic neurodegenerative sequelae.
Collapse
Affiliation(s)
- J J Magaña
- Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | | | | |
Collapse
|
5
|
Affiliation(s)
- Georg W J Auburger
- Section Molecular Neurogenetics, Department of Neurology, Johann Wolfgang Goeche University Medical School, Frankfurt/Main, Germany.
| |
Collapse
|
6
|
Montes-Brown J, Machado A, Estévez M, Carricarte C, Velázquez-Pérez L. Autonomic dysfunction in presymptomatic spinocerebellar ataxia type-2. Acta Neurol Scand 2012; 125:24-9. [PMID: 22188373 DOI: 10.1111/j.1600-0404.2011.01494.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To explore and quantify possible abnormalities in the autonomic cardiovascular regulation in presymptomatic stage of type 2 spinocerebellar ataxia (PS-SCA2). MATERIALS & METHODS Heart rate variability (HRV) for 5-min series of RR intervals was analyzed in 48 PS-SCA2. Autonomic testing included resting recording, standing, Valsalva maneuver, and deep breathing. The results were compared with a group of sex- and age-matched controls. RESULTS Time-and-frequency domain HRV indices were significantly different between PS-SCA2 and control groups. Using two standard diagnostic procedures were identified 4 (8.33%) subjects with severe and 8 (16.66%) subjects with early cardiac autonomic neuropathy in PS-SCA2. CAG index significantly correlated with age (-0.35) and HR (0.31). CONCLUSIONS Our results confirm the presence of cardiovascular autonomic dysfunction in PS-SCA2 subjects.
Collapse
Affiliation(s)
- J Montes-Brown
- General Hospital Dr Ernesto Guevara de la Serna, Las Tunas, Cuba.
| | | | | | | | | |
Collapse
|
7
|
Gispert S, Kurz A, Waibel S, Bauer P, Liepelt I, Geisen C, Gitler AD, Becker T, Weber M, Berg D, Andersen PM, Krüger R, Riess O, Ludolph AC, Auburger G. The modulation of Amyotrophic Lateral Sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiol Dis 2011; 45:356-61. [PMID: 21889984 DOI: 10.1016/j.nbd.2011.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 12/13/2022] Open
Abstract
Full expansions of the polyglutamine domain (polyQ≥34) within the polysome-associated protein ataxin-2 (ATXN2) are the cause of a multi-system neurodegenerative disorder, which usually presents as a Spino-Cerebellar Ataxia and is therefore known as SCA2, but may rarely manifest as Levodopa-responsive Parkinson syndrome or as motor neuron disease. Intermediate expansions (27≤polyQ≤33) were reported to modify the risk of Amyotrophic Lateral Sclerosis (ALS). We have now tested the reproducibility and the specificity of this observation. In 559 independent ALS patients from Central Europe, the association of ATXN2 expansions (30≤polyQ≤35) with ALS was highly significant. The study of 1490 patients with Parkinson's disease (PD) showed an enrichment of ATXN2 alleles 27/28 in a subgroup with familial cases, but the overall risk of sporadic PD was unchanged. No association was found between polyQ expansions in Ataxin-3 (ATXN3) and ALS risk. These data indicate a specific interaction between ATXN2 expansions and the causes of ALS, possibly through altered RNA-processing as a common pathogenic factor.
Collapse
Affiliation(s)
- Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Velázquez-Perez L, Díaz R, Pérez-González R, Canales N, Rodríguez-Labrada R, Medrano J, Sánchez G, Almaguer-Mederos L, Torres C, Fernandez-Ruiz J. Motor decline in clinically presymptomatic spinocerebellar ataxia type 2 gene carriers. PLoS One 2009; 4:e5398. [PMID: 19401771 PMCID: PMC2671146 DOI: 10.1371/journal.pone.0005398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 04/04/2009] [Indexed: 11/25/2022] Open
Abstract
Background Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. Methods and Findings 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. Conclusions The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents.
Collapse
Affiliation(s)
- Luis Velázquez-Perez
- Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias, Holguín, Cuba
| | - Rosalinda Díaz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, México
| | - Ruth Pérez-González
- Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias, Holguín, Cuba
| | - Nalia Canales
- Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias, Holguín, Cuba
| | | | - Jacquelín Medrano
- Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias, Holguín, Cuba
| | - Gilberto Sánchez
- Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias, Holguín, Cuba
| | - Luis Almaguer-Mederos
- Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias, Holguín, Cuba
| | - Cira Torres
- Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias, Holguín, Cuba
| | - Juan Fernandez-Ruiz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, México
- Facultad de Psicología, Universidad Veracruzana, Xalapa, Veracruzana, México
- * E-mail:
| |
Collapse
|
9
|
Spinocerebellar ataxia type 2 (SCA2) in an Egyptian family presenting with polyphagia and marked CAG expansion in infancy. J Neurol 2008; 255:413-9. [PMID: 18297329 DOI: 10.1007/s00415-008-0690-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 05/17/2007] [Accepted: 07/03/2007] [Indexed: 12/17/2022]
Abstract
We describe an Egyptian family having SCA2 affecting three generations with marked molecular and clinical anticipation observed in the index case. Our proband was a male child starting as early as 2 years old with progressive extrapyramidal manifestations, slow eye movements and cognitive impairment. A history of nonspecific mild developmental delay was recorded. The patient lost all cognitive functions, had persistent dystonic posture, trophic changes, vasomotor instability, dysphagia and died at the age of 7 years. The age at presentation among other affected family members varied between 11 and 45 years old across three generations. The early common neurological symptoms were choreoathetotic movements, myoclonic jerk, gait difficulty, expressionless face and emotional liability. Later, overt ataxia, incoordination, dysarthria, mild dementia and slow eye saccades predominated. Brisk tendon reflexes were detected in three cases. Peripheral nerve affection was a late manifestation. Interestingly, polyphagia and obesity were striking manifestations in the middle stage of the disease; an observation that might support a previously suggested relation between the ataxin-2 gene and body weight. The proband showed an amplified allele with marked CAG expansion in the form of a smear sized 69-75 repeats resulted from maternal transmission. To our knowledge, our index case is the second report in the literature presenting with infantile onset SCA2 and intermediate repeat expansion. This family expands the phenotypic spectrum of early onset SCA2 and points out the importance of considering SCA2 gene analysis in children with progressive neurological impairment and abnormal movements with or without polyphagia.
Collapse
|
10
|
Spadafora P, Annesi G, Liguori M, Tarantino P, Cutuli N, Carrideo S, Cirò Candiano IC, De Marco EV, Civitelli D, Annesi F, Giuffrida S, Quattrone A. Gene dosage influences the age at onset of SCA2 in a family from southern Italy. Clin Genet 2007; 72:381-3. [PMID: 17850638 DOI: 10.1111/j.1399-0004.2007.00868.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|