1
|
Gunduz A, Valls-Solé J, Serranová T, Coppola G, Kofler M, Jääskeläinen SK. The blink reflex and its modulation - Part 2: Pathophysiology and clinical utility. Clin Neurophysiol 2024; 160:75-94. [PMID: 38412746 DOI: 10.1016/j.clinph.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
The blink reflex (BR) is integrated at the brainstem; however, it is modulated by inputs from various structures such as the striatum, globus pallidus, substantia nigra, and nucleus raphe magnus but also from afferent input from the peripheral nervous system. Therefore, it provides information about the pathophysiology of numerous peripheral and central nervous system disorders. The BR is a valuable tool for studying the integrity of the trigemino-facial system, the relevant brainstem nuclei, and circuits. At the same time, some neurophysiological techniques applying the BR may indicate abnormalities involving structures rostral to the brainstem that modulate or control the BR circuits. This is a state-of-the-art review of the clinical application of BR modulation; physiology is reviewed in part 1. In this review, we aim to present the role of the BR and techniques related to its modulation in understanding pathophysiological mechanisms of motor control and pain disorders, in which these techniques are diagnostically helpful. Furthermore, some BR techniques may have a predictive value or serve as a basis for follow-up evaluation. BR testing may benefit in the diagnosis of hemifacial spasm, dystonia, functional movement disorders, migraine, orofacial pain, and psychiatric disorders. Although the abnormalities in the integrity of the BR pathway itself may provide information about trigeminal or facial nerve disorders, alterations in BR excitability are found in several disease conditions. BR excitability studies are suitable for understanding the common pathophysiological mechanisms behind various clinical entities, elucidating alterations in top-down inhibitory systems, and allowing for follow-up and quantitation of many neurological syndromes.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Division of Neurophysiology, Istanbul, Turkey.
| | - Josep Valls-Solé
- IDIBAPS. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170 08024, Barcelona, Spain.
| | - Tereza Serranová
- Department of Neurology and Center of Clinical Neuroscience, Charles University, Prague 1st Faculty of Medicine and General University Hospital, Prague, Kateřinská 30, 12800 Prague 2, Czech Republic.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, via Franco Faggiana 1668 04100, Latina, Italy.
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, A-6170 Zirl, Austria.
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Division of Medical Imaging, Turku University Hospital and University of Turku, Postal Box 52, FIN 20521 Turku, Finland.
| |
Collapse
|
2
|
Edwards M, Koens L, Liepert J, Nonnekes J, Schwingenschuh P, van de Stouwe A, Morgante F. Clinical neurophysiology of functional motor disorders: IFCN Handbook Chapter. Clin Neurophysiol Pract 2024; 9:69-77. [PMID: 38352251 PMCID: PMC10862411 DOI: 10.1016/j.cnp.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Functional Motor Disorders are common and disabling. Clinical diagnosis has moved from one of exclusion of other causes for symptoms to one where positive clinical features on history and examination are used to make a "rule in" diagnosis wherever possible. Clinical neurophysiological assessments have developed increasing importance in assisting with this positive diagnosis, not being used simply to demonstrate normal sensory-motor pathways, but instead to demonstrate specific abnormalities that help to positively diagnose these disorders. Here we provide a practical review of these techniques, their application, interpretation and pitfalls. We also highlight particular areas where such tests are currently lacking in sensitivity and specificity, for example in people with functional dystonia and functional tic-like movements.
Collapse
Affiliation(s)
- M.J. Edwards
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Department of Neuropsychiatry, Maudsley Hospital, London, UK
| | - L.H. Koens
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Neurology and Clinical Neurophysiology, Martini Ziekenhuis, Groningen, the Netherlands
| | - J. Liepert
- Kliniken Schmieder Allensbach, Allensbach, Germany
| | - J. Nonnekes
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
- Center of Expertise for Parkinson & Movement Disorders, Department of Rehabilitation, Nijmegen, the Netherlands
- Department of Rehabilitation, Sint Maartenskliniek, Ubbergen, the Netherlands
| | | | - A.M.M. van de Stouwe
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Neurology, Ommelander Ziekenhuis, Scheemda, the Netherlands
| | - F. Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
3
|
Iravani MM, Shoaib M. Executive dysfunction and cognitive decline, a non-motor symptom of Parkinson's disease captured in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:231-255. [PMID: 38341231 DOI: 10.1016/bs.irn.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The non-motor symptoms of Parkinson's disease (PD) have gained increasing attention in recent years due to their significant impact on patients' quality of life. Among these non-motor symptoms, cognitive dysfunction has emerged as an area of particular interest where the clinical aspects are covered in Chapter 2 of this volume. This chapter explores the rationale for investigating the underlying neurobiology of cognitive dysfunction by utilising translational animal models of PD, from rodents to non-human primates. The objective of this chapter is to review the various animal models of cognition that have explored the dysfunction in animal models of Parkinson's disease. Some of the more advanced pharmacological studies aimed at restoring these cognitive deficits are reviewed, although this chapter highlights the lack of systematic approaches in dealing with this non-motor symptom at the pre-clinical stages.
Collapse
|
4
|
Kamble N, Pal PK. Electrophysiology in Functional Movement Disorders: An Update. Tremor Other Hyperkinet Mov (N Y) 2023; 13:49. [PMID: 38162980 PMCID: PMC10756160 DOI: 10.5334/tohm.793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
Background Functional movement disorders (FMD) are a diagnostic and therapeutic challenge, both to the neurologist and psychiatrists. The phenomenology is varied and can present as tremors, dystonia, jerks/myoclonus, gait disorder, other abnormal movements or a combination. There has been an increase in the use of electrophysiological studies that are an important tool in the evaluation of FMDs. Methods We searched the database platforms of MEDLINE, Google scholar, Web of Sciences, Scopus using the Medical Subject Heading terms (MeSH) for all the articles from 1st January 1970 till November 2022. A total of 658 articles were obtained by the search mechanism. A total of 79 relevant articles were reviewed thoroughly, of which 26 articles that had electrophysiological data were included in the present review. Results Variability, distractibility and entertainability can be demonstrated in functional tremors by using multichannel surface electromyography. Voluntary ballistic movements tend to decrease the tremor, while loading the tremulous limb with weight causes the tremor amplitude to increase in functional tremor. Presence of Bereitschaftspotential demonstrates the functional nature of palatal tremor and myoclonus. Co-contraction testing may be helpful in differentiating functional from organic dystonia. The R2 blink reflex recovery cycle has been found to be abnormally enhanced in organic blepharospasm, whereas it is normal in presumed functional blepharospasm. Plasticity is found to be abnormally high in organic dystonia and normal in functional dystonia, in addition to enhanced facilitation in patients with organic dystonia. Conclusions Electrophysiological tests supplement clinical examination and helps in differentiating FMD from organic movement disorders.
Collapse
Affiliation(s)
- Nitish Kamble
- Departments of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bengaluru-560029, Karnataka, India
| | - Pramod Kumar Pal
- Departments of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bengaluru-560029, Karnataka, India
| |
Collapse
|
5
|
Ginatempo F, Manzo N, Loi N, Belvisi D, Cutrona C, Conte A, Berardelli A, Deriu F. Abnormalities in the face primary motor cortex in oromandibular dystonia. Clin Neurophysiol 2023; 151:151-160. [PMID: 37150654 DOI: 10.1016/j.clinph.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/09/2023]
Abstract
OBJECTIVE To comprehensively investigate excitability in face and hand M1 and sensorimotor integration in oromandibular dystonia (OMD) patients. METHODS Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), short (SAI) and long (LAI) afferent inhibition were investigated in face and hand M1 using transcranial magnetic stimulation protocols in 10 OMD patients. Data were compared with those obtained in 10 patients with focal hand dystonia (FHD), in 10 patients with blepharospasm (BSP), and 10 matched healthy subjects (HS). RESULTS Results demonstrated that in OMD patients SICI was reduced in face M1 (p < 0.001), but not in hand M1, compared to HS. In FHD, SICI was significantly impaired in hand M1 (p = 0.029), but not in face M1. In BSP, SICI was normal in both face and hand M1 while ICF and LAI were normal in all patient groups and cortical area tested. SAI was significantly reduced (p = 0.003) only in the face M1 of OMD patients. CONCLUSIONS In OMD, SICI and SAI were significantly reduced. These abnormalities are specific to the motor cortical area innervating the muscular district involved in focal dystonia. SIGNIFICANCE In OMD, the integration between sensory inflow and motor output seem to be disrupted at cortical level with topographic specificity.
Collapse
Affiliation(s)
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy.
| |
Collapse
|
6
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
7
|
Pathophysiology and Treatment of Functional Paralysis: Insight from Transcranial Magnetic Stimulation. Brain Sci 2023; 13:brainsci13020352. [PMID: 36831895 PMCID: PMC9954472 DOI: 10.3390/brainsci13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Functional paralysis (FP) or limb weakness is a common presentation of functional movement disorders (FMD), accounting for 18.1% of the clinical manifestations of FMD. The pathophysiology of FP is not known, but imaging studies have identified changes in structural and functional connectivity in multiple brain networks. It has been proposed that noninvasive brain stimulation techniques may be used to understand the pathophysiology of FP and may represent a possible therapeutic option. In this paper, we reviewed transcranial magnetic stimulation studies on functional paralysis, focusing on their pathophysiological and therapeutical implications. Overall, there is general agreement on the integrity of corticospinal pathways in FP, while conflicting results have been found about the net excitability of the primary motor cortex and its excitatory/inhibitory circuitry in resting conditions. The possible involvement of spinal cord circuits remains an under-investigated area. Repetitive transcranial magnetic stimulation appears to have a potential role as a safe and viable option for the treatment of functional paralysis, but more studies are needed to investigate optimal stimulation parameters and clarify its role in the context of other therapeutical options.
Collapse
|
8
|
Nilles C, Obadia MA, Sobesky R, Dumortier J, Guillaud O, Laurencin C, Moreau C, Vanlemmens C, Ory-Magne F, de Ledinghen V, Bardou-Jacquet E, Fluchère F, Collet C, Oussedik-Djebrani N, Woimant F, Poujois A. Diagnosis and Outcomes of Late-Onset Wilson's Disease: A National Registry-Based Study. Mov Disord 2023; 38:321-332. [PMID: 36573661 DOI: 10.1002/mds.29292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Wilson's disease (WD) is usually diagnosed in children and young adults; limited data exist on late-onset forms. OBJECTIVE The aim was to characterize the clinical and paraclinical presentations, therapeutic management, and outcomes in patients with late-onset WD. METHODS Patients diagnosed with WD after age 40 years were identified from the French Wilson's Disease Registry (FWDR). Clinical, laboratory, and imaging findings and treatment were reported at diagnosis and last follow-up. RESULTS Forty-five patients were identified (median age: 49, range: 40-64) and placed in three groups according to their clinical presentation: neurological (n = 20, median diagnostic delay: 20 months), hepatic (n = 13, diagnostic delay: 12 months), and family screening (n = 12), all confirmed genetically. Six neurological patients had an atypical presentation (1 torticollis, 2 writer's cramps, 2 functional movement disorders, and 1 isolated dysarthria), without T2/fluid-attenuated inversion recovery brain magnetic resonance imaging (MRI) hyperintensities; 5 of 6 had no Kayser-Fleischer ring (KFR); 5 of 6 had liver involvement. In the neurological group, 84% of patients improved clinically, and 1 developed copper deficiency. In the hepatic group, 77% had cirrhosis; 6 patients required liver transplantation. In the screened group, 43% had mild liver involvement; 3 were not treated and remained stable; 24-h urinary copper excretion was normal in 33% of patients at diagnosis. CONCLUSIONS In the FWDR, late-onset forms of WD affect 8% of patients, mostly with neurological presentations. Thirty percent of the neurological forms were atypical (isolated long-lasting symptoms, inconspicuous brain MRI, no KFR). With personalized treatment, prognosis was good. This study emphasized that WD should be suspected at any age and even in cases of atypical presentation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christelle Nilles
- Department of Neurology, Rothschild Foundation Hospital, Paris, France.,National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France
| | - Mickael Alexandre Obadia
- Department of Neurology, Rothschild Foundation Hospital, Paris, France.,National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France
| | - Rodolphe Sobesky
- Centre Hépato-Biliaire, AP-HP, DHU Hepatinov, INSERM UMR-S 1193, Hôpital Paul Brousse, Villejuif, France
| | - Jérôme Dumortier
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France.,Department of Hepatologie-Gastroenterologie, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Olivier Guillaud
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France.,Service d'explorations fonctionnelles digestives, CHU Lyon, Lyon, France
| | - Chloé Laurencin
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France.,Service de Neurologie HFME-GHE, Bron Cedex, France
| | - Caroline Moreau
- Service de neurologie et pathologies du mouvement, INSERM UMR, CHU Lille, Lille, France
| | - Claire Vanlemmens
- Service d'Hépatologie et soins intensifs digestifs, CHU Besançon, Hôpital Jean Minjoz, Besançon, France
| | - Fabienne Ory-Magne
- Service de Neurologie, Neurology Department, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Victor de Ledinghen
- Service d'Hépatologie-Gastroentérologie, Hôpital Haut-Lévêque, CHU Bordeaux, Pessac & INSERM U1312, Université de Bordeaux, Bordeaux, France
| | | | - Frederique Fluchère
- Service de Neurologie, Neurology Department, CHU Marseille, Hôpital de la Timone, Marseille, France
| | - Corinne Collet
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France.,Département de Génétique, Hôpital Robert Debré AP-HP, Paris, France
| | - Nouzha Oussedik-Djebrani
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France.,Laboratoire de Toxicologie Biologique, Hôpital Lariboisière AP-HP, Paris, France
| | - France Woimant
- National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France
| | - Aurélia Poujois
- Department of Neurology, Rothschild Foundation Hospital, Paris, France.,National Reference Center for Wilson's Disease and Other Copper-Related Rare Diseases, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
9
|
Frey J, Ramirez-Zamora A, Wagle Shukla A. Applications of Transcranial Magnetic Stimulation for Understanding and Treating Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:119-139. [PMID: 37338699 DOI: 10.1007/978-3-031-26220-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transcranial magnetic stimulation (TMS)-based studies have led to an advanced understanding of the pathophysiology of dystonia. This narrative review summarizes the TMS data contributed to the literature so far. Many studies have shown that increased motor cortex excitability, excessive sensorimotor plasticity, and abnormal sensorimotor integration are the core pathophysiological substrates for dystonia. However, an increasing body of evidence supports a more widespread network dysfunction involving many other brain regions. Repetitive TMS pulses (rTMS) in dystonia have therapeutic potential as they can induce local and network-wide effects through modulation of excitability and plasticity. The bulk of rTMS studies has targeted the premotor cortex with some promising results in focal hand dystonia. Some studies have targeted the cerebellum for cervical dystonia and the anterior cingulate cortex for blepharospasm. We believe that therapeutic potential could be leveraged better when rTMS is implemented in conjunction with standard-of-care pharmacological treatments. However, due to several limitations in the studies conducted to date, including small samples, heterogeneous populations, variability in the target sites, and inconsistencies in the study design and control arm, it is hard to draw a definite conclusion. Further studies are warranted to determine optimal targets and protocols yielding the most beneficial outcomes that will translate into meaningful clinical changes.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Ricciardi L, Bologna M, Marsili L, Espay AJ. Dysfunctional Networks in Functional Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:157-176. [PMID: 37338701 DOI: 10.1007/978-3-031-26220-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Functional dystonia, the second most common functional movement disorder, is characterized by acute or subacute onset of fixed limb, truncal, or facial posturing, incongruent with the action-induced, position-sensitive, and task-specific manifestations of dystonia. We review neurophysiological and neuroimaging data as the basis for a dysfunctional networks in functional dystonia. Reduced intracortical and spinal inhibition contributes to abnormal muscle activation, which may be perpetuated by abnormal sensorimotor processing, impaired selection of movements, and hypoactive sense of agency in the setting of normal movement preparation but abnormal connectivity between the limbic and motor networks. Phenotypic variability may be related to as-yet undefined interactions between abnormal top-down motor regulation and overactivation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortices. While there remain many gaps in knowledge, further combined neurophysiological and neuroimaging assessments stand to inform the neurobiological subtypes of functional dystonia and the potential therapeutic applications.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
- Nuffield Department of Clinical Neurosciences, Medical Research Council Brain Network Dynamics Unit, Oxford, UK
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Bologna M, Valls-Solè J, Kamble N, Pal PK, Conte A, Guerra A, Belvisi D, Berardelli A. Dystonia, chorea, hemiballismus and other dyskinesias. Clin Neurophysiol 2022; 140:110-125. [PMID: 35785630 DOI: 10.1016/j.clinph.2022.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Hyperkinesias are heterogeneous involuntary movements that significantly differ in terms of clinical and semeiological manifestations, including rhythm, regularity, speed, duration, and other factors that determine their appearance or suppression. Hyperkinesias are due to complex, variable, and largely undefined pathophysiological mechanisms that may involve different brain areas. In this chapter, we specifically focus on dystonia, chorea and hemiballismus, and other dyskinesias, specifically, levodopa-induced, tardive, and cranial dyskinesia. We address the role of neurophysiological studies aimed at explaining the pathophysiology of these conditions. We mainly refer to human studies using surface and invasive in-depth recordings, as well as spinal, brainstem, and transcortical reflexology and non-invasive brain stimulation techniques. We discuss the extent to which the neurophysiological abnormalities observed in hyperkinesias may be explained by pathophysiological models. We highlight the most relevant issues that deserve future research efforts. The potential role of neurophysiological assessment in the clinical context of hyperkinesia is also discussed.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Josep Valls-Solè
- Institut d'Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| |
Collapse
|
12
|
Quartarone A, Ghilardi MF. Neuroplasticity in dystonia: Motor symptoms and beyond. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:207-218. [PMID: 35034735 DOI: 10.1016/b978-0-12-819410-2.00031-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This chapter first focuses on the role of altered neuroplasticity mechanisms and their regulation in the genesis of motor symptoms in the various forms of dystonia. In particular, a review of the available literature about focal dystonia suggests that use-dependent plasticity may become detrimental and produce dystonia when practice and repetition are excessive and predisposing conditions are present. Interestingly, recent evidence also shows that functional or psychogenic dystonia, despite the normal plasticity in the sensorimotor system, is characterized by plasticity-related dysfunction within limbic regions. Finally, this chapter reviews the non-motor symptoms that often accompany the motor features of dystonia, including depression and anxiety as well as obsessive-compulsive disorders, pain, and cognitive dysfunctions. Based on the current understanding of these symptoms, we discuss the evidence of their possible relationship to maladaptive plasticity in non-motor basal ganglia circuits involved in their genesis.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Maria Felice Ghilardi
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine and Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
13
|
Weissbach A, Steinmeier A, Pauly M, Al-Shorafat DM, Saranza G, Lang A, Brüggemann N, Tadic V, Klein C, Münchau A, Bäumer T, Brown MJN. Longitudinal evaluations of somatosensory-motor inhibition in Dopa-responsive dystonia. Parkinsonism Relat Disord 2022; 95:40-46. [PMID: 34999542 DOI: 10.1016/j.parkreldis.2021.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION GCH1 mutations have been linked to decreased striatal dopamine and development of dopa-responsive dystonia (DRD) and Parkinsonism. Sensory and sensorimotor integration impairments have been documented in various forms of dystonia. DRD patients with confirmed GCH1 mutations have demonstrated normal short-latency afferent inhibition (SAI), a measure of sensorimotor inhibition, under chronic dopaminergic replacement therapy (DRT), but reduced inhibition after a single l-dopa dose following 24 h withdrawal. Studies have revealed normal SAI in other forms of dystonia but reductions with DRT in Parkinson's disease. Longitudinal changes in sensorimotor inhibition are unknown. METHODS We analyzed sensorimotor inhibition using two different measures: SAI and somatosensory-motor inhibition using dual-site transcranial magnetic stimulation (ds-TMS). SAI was measured using digit stimulation 25 ms prior to contralateral primary motor cortex (M1) TMS. DS-TMS was measured using TMS over the somatosensory cortex 1 or 2.5 ms prior to ipsilateral M1 stimulation. A total of 20 GCH1 mutation carriers and 20 age-matched controls were included in the study. SAI and ds-TMS were evaluated in GCH1 mutation carriers both OFF and ON DRT compared to controls. Furthermore, longitudinal changes of SAI were examined in a subset of the same individuals that were measured ∼five years earlier. RESULTS Neither SAI nor ds-TMS were significantly different in GCH1 mutation carriers relative to controls. No effects of DRT on SAI or ds-TMS were seen but SAI decreased over time in mutation carriers OFF DRT. CONCLUSION Our longitudinal results suggest changes in SAI that could be associated with plasticity changes in sensorimotor networks.
Collapse
Affiliation(s)
- Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Annika Steinmeier
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Martje Pauly
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Duha M Al-Shorafat
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Neuroscience Department, Jordan University of Science and Technology, Irbid, Jordan
| | - Gerard Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Department of Internal Medicine, Chong Hua Hospital, Cebu, Philippines
| | - Anthony Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Vera Tadic
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Matt J N Brown
- Department of Kinesiology, California State University Sacramento, Sacramento, USA.
| |
Collapse
|
14
|
Bonassi G, Pelosin E, Lagravinese G, Bisio A, Grasselli G, Bove M, Avanzino L. Somatosensory inputs modulate the excitability of cerebellar-cortical interaction. Clin Neurophysiol 2021; 132:3095-3103. [PMID: 34740041 DOI: 10.1016/j.clinph.2021.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) delivered over the cerebellum 5-7 ms prior to a stimulus over the contralateral primary motor cortex (M1) reduces the excitability of M1 output, a phenomenon termed cerebellar brain inhibition (CBI). The cerebellum receives sensory information for adaptive motor coordination and motor planning. Here, we explored through TMS whether a peripheral electrical stimulus modulates CBI. METHODS We studied the effect of right median nerve electrical stimulation (ES) on CBI from right cerebellum (conditioning stimulus, CS) to left M1 (test stimulus, TS) in 12 healthy subjects. The following ES-CS inter-stimulus intervals (ISIs) were tested: 25, 30 and 35 ms. CS-TS ISI was set at 5 ms. RESULTS We found significantly weaker CBI when the ES was delivered 25 ms (p < 0.001) and 35 ms (p < 0.001) earlier the CS over the ipsilateral cerebellum and a trend for 30 ms ES-CS ISI (p = 0.07). CONCLUSIONS We hypothesize that the activation of cerebellar interneurons together with intrinsic properties of Purkinje cells may be responsible of the decreased CBI when the peripheral stimulation preceded the cerebellar stimulation of 25 and 35 ms. SIGNIFICANCE To test the interaction between somatosensory inputs and cerebello-cortical pathway may be important in a variety of motor tasks and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, ASL4, Azienda Sanitaria Locale, Chiavarese, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Ambra Bisio
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, 16132 Genoa, Italy
| | - Giorgio Grasselli
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy; Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, 16132 Genoa, Italy
| | - Marco Bove
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy; Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, 16132 Genoa, Italy
| | - Laura Avanzino
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy; Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, 16132 Genoa, Italy.
| |
Collapse
|
15
|
Caux-Dedeystère A, Allart E, Morel P, Kreisler A, Derambure P, Devanne H. Late cortical disinhibition in focal hand dystonia. Eur J Neurosci 2021; 54:4712-4720. [PMID: 34061422 DOI: 10.1111/ejn.15333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
In writer's cramp (WC), a form of focal hand dystonia, cortical GABAergic inhibitory mechanisms are altered and may cause involuntary tonic contractions while writing. The objective of this study was to explore the time course of long-interval intracortical inhibition (LICI) that involves gamma-amino butyric acid (GABA)-B transmission and late cortical disinhibition (LCD) (that combines GABA-A and GABA-B mechanisms) in patients with WC and in control subjects. A double pulse transcranial magnetic stimulation protocol was used to evoke LICI and LCD while the subjects either gripped a cylinder between their thumb and index fingers or relaxed all their upper limb muscles. We measured the ratio between primed and unprimed motor evoked potential in the first dorsal interosseous at interstimulus intervals ranging between 60 and 300 ms. Though the cortical silent period was not different between the groups, LICI lasted longer in patients with WC, that is, LCD was delayed for more than 30 ms and reached a higher level. In addition to the alteration of inhibitory mechanism mediated by GABA-B transmission, LCD which probably involves presynaptic inhibition is also modified in patients with WC with possible consequences on the activity of primary motor cortex inhibitory and excitatory circuits which control the hand muscles.caus.
Collapse
Affiliation(s)
- Alexandre Caux-Dedeystère
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France
| | - Etienne Allart
- Rééducation Neurologique Cérébrolésion, CHU de Lille, Hôpital Pierre Swynghedauw, Lille, France.,univ Lille, UMR-S-1172 lilncog, Lille, France
| | - Pierre Morel
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France
| | - Alexandre Kreisler
- Neurologie & Pathologie du Mouvement, CHU de Lille, Hôpital Roger Salengro, Lille, France
| | - Philippe Derambure
- univ Lille, UMR-S-1172 lilncog, Lille, France.,Neurophysiologie Clinique, CHU de Lille, Hôpital Roger Salengro, Lille, France
| | - Hervé Devanne
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France.,Neurophysiologie Clinique, CHU de Lille, Hôpital Roger Salengro, Lille, France
| |
Collapse
|
16
|
Movement perception of the tonic vibration reflex is abnormal in functional limb weakness. Parkinsonism Relat Disord 2021; 87:1-6. [PMID: 33895678 DOI: 10.1016/j.parkreldis.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION We tested the hypothesis that functional limb weakness is associated with possible dysfunction of the central processing of proprioceptive information, by evaluating the amount of tonic vibration reflex (TVR) and the perception of the TVR movement. METHODS The study sample was 20 patients with functional weakness of the lower and/or the upper limbs and 25 healthy controls; delivery of 92-Hz transcutaneous vibration of the biceps brachii tendon of the unrestrained arm stimulated predominantly the muscle spindle afferent and elicited elbow flexion (tonic vibration reflex, TVR). Blindfolded participants had to match the final position of the vibrated arm with their contralateral tracking arm. The TVR and perception of the TVR movement were measured as angle movements of the vibrated arm and the tracking arm, respectively. RESULTS The magnitude of the TVR of the vibrated arm and movement perception of the TVR of the tracking arm were significantly reduced in the patients compared to the controls. No correlation was found between magnitude of the TVR and perception of the TVR movement, suggesting that the abnormalities were independent of each other. Moreover, the abnormalities did not differ between the patients with/without bilateral upper limb involvement or between the affected and the unaffected side in patients with unilateral impairment, suggesting that the observed deficits are independent of motor impairment. CONCLUSIONS Proprioceptive dysfunction may underlie alterations in body movement and in sense of agency in such patients and may play a role in the pathophysiology of functional limb weakness.
Collapse
|
17
|
Manzo N, Tocco P, Ginatempo F, Bertolasi L, Rocchi L. Brainstem Reflexes in Idiopathic Cervical Dystonia: Does Medullary Dysfunction Play a Role? Mov Disord Clin Pract 2021; 8:377-384. [PMID: 33816666 PMCID: PMC8015899 DOI: 10.1002/mdc3.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/08/2020] [Accepted: 01/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Neurophysiological markers in dystonia have so far not been sistematically applied in clinical practice due to limited reproducibility of results and low correlations with clinical findings. Exceptions might be represented by the blink reflex (BR), including its recovery cycle (BRRC) and the trigemino‐cervical reflex (TCR) which, compared to other neurophysiological methods, have shown more consistent alterations in cervical dystonia (CD). However, a comparison between the two techniques, and their possible correlation with disease symptoms, have not been thoroughly investigated. Objectives To assess the role of BR, BRCC and TCR in the pathophysiology of idiopathic cervical dystonia. Methods Fourteen patients and 14 age‐matched healthy controls (HC) were recruited. Neurophysiological outcome measures included latency of R1 and R2 components of the BR, R2 amplitude, BRRC, latency and amplitude of P19/N31 complex of TCR. Clinical and demographic features of patients were also collected, including age at disease onset, disease duration, presence of tremor, sensory trick and pain. The Toronto Western Spasmodic Torticollis Rating Scale was used to characterize dystonia. Results Compared to HC, CD patients showed increased latency of the BR R2 and decreased suppression of the BRRC. They also showed increased latency of the P19 and decreased amplitude of P19/N31 complex of TCR. The latency of P19 component of TCR was positively correlated with disease duration. Conclusions We propose that the increased latency of R2 and P19 observed here might be reflective of brainstem dysfunction, mediated either by local interneuronal excitability changes or by subtle structural damage.
Collapse
Affiliation(s)
| | - Pierluigi Tocco
- Department of Neuroscience, Biomedicine and Movement Sciences University of Verona Verona Italy
| | | | - Laura Bertolasi
- Department of Neuroscience, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
18
|
Abstract
Background: Functional (psychogenic) movement disorders are involuntary movements that seems to originate from activation of voluntary motor pathways in the brain. The movements typically present during the waking hours with variable frequency. Case presentation: We present the case of a 24-year-old woman with FMDs during the waking state, but also during stages 1 and 2 of non-REM sleep and REM sleep, recorded with polysomnography. Such movements caused arousal leading to excessive daytime sleepiness and fatigue. Conclusions: FMDs may disrupt sleep causing day time somnolence, adding morbidity to the disorder.
Collapse
|
19
|
Frucht L, Perez DL, Callahan J, MacLean J, Song PC, Sharma N, Stephen CD. Functional Dystonia: Differentiation From Primary Dystonia and Multidisciplinary Treatments. Front Neurol 2021; 11:605262. [PMID: 33613415 PMCID: PMC7894256 DOI: 10.3389/fneur.2020.605262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Dystonia is a common movement disorder, involving sustained muscle contractions, often resulting in twisting and repetitive movements and abnormal postures. Dystonia may be primary, as the sole feature (isolated) or in combination with other movement disorders (combined dystonia), or as one feature of another neurological process (secondary dystonia). The current hypothesis is that dystonia is a disorder of distributed brain networks, including the basal ganglia, cerebellum, thalamus and the cortex resulting in abnormal neural motor programs. In comparison, functional dystonia (FD) may resemble other forms of dystonia (OD) but has a different pathophysiology, as a subtype of functional movement disorders (FMD). FD is the second most common FMD and amongst the most diagnostically challenging FMD subtypes. Therefore, distinguishing between FD and OD is important, as the management of these disorders is distinct. There are also different pathophysiological underpinnings in FD, with for example evidence of involvement of the right temporoparietal junction in functional movement disorders that is believed to serve as a general comparator of internal predictions/motor intentions with actual motor events resulting in disturbances in self-agency. In this article, we present a comprehensive review across the spectrum of FD, including oromandibular and vocal forms and discuss the history, clinical clues, evidence for adjunctive "laboratory-based" testing, pathophysiological research and prognosis data. We also provide the approach used at the Massachusetts General Hospital Dystonia Center toward the diagnosis, management and treatment of FD. A multidisciplinary approach, including neurology, psychiatry, physical, occupational therapy and speech therapy, and cognitive behavioral psychotherapy approaches are frequently required; pharmacological approaches, including possible targeted use of botulinum toxin injections and inpatient programs are considerations in some patients. Early diagnosis and treatment may help prevent unnecessary investigations and procedures, while facilitating the appropriate management of these highly complex patients, which may help to mitigate frequently poor clinical outcomes.
Collapse
Affiliation(s)
- Lucy Frucht
- Faculty of Arts and Sciences, Harvard University, Boston, MA, United States
| | - David L. Perez
- Cognitive Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neuropsychiatry Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Janet Callahan
- MGH Institute of Healthcare Professionals, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Julie MacLean
- Occupational Therapy Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Phillip C. Song
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Nutan Sharma
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Dystonia Center and Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Christopher D. Stephen
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Dystonia Center and Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Tinazzi M, Geroin C, Erro R, Marcuzzo E, Cuoco S, Ceravolo R, Mazzucchi S, Pilotto A, Padovani A, Romito LM, Eleopra R, Zappia M, Nicoletti A, Dallocchio C, Arbasino C, Bono F, Pascarella A, Demartini B, Gambini O, Modugno N, Olivola E, Bonanni L, Antelmi E, Zanolin E, Albanese A, Ferrazzano G, de Micco R, Lopiano L, Calandra-Buonaura G, Petracca M, Esposito M, Pisani A, Manganotti P, Stocchi F, Coletti Moja M, Antonini A, Ercoli T, Morgante F. Functional motor disorders associated with other neurological diseases: Beyond the boundaries of "organic" neurology. Eur J Neurol 2021; 28:1752-1758. [PMID: 33300269 DOI: 10.1111/ene.14674] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE The aims of this study were to describe the clinical manifestations of functional motor disorders (FMDs) coexisting with other neurological diseases ("comorbid FMDs"), and to compare comorbid FMDs with FMDs not overlapping with other neurological diseases ("pure FMDs"). METHODS For this multicenter observational study, we enrolled outpatients with a definite FMD diagnosis attending 25 tertiary movement disorder centers in Italy. Each patient with FMDs underwent a detailed clinical assessment including screening for other associated neurological conditions. Group comparisons (comorbid FMDs vs. pure FMDs) were performed in order to compare demographic and clinical variables. Logistic regression models were created to estimate the adjusted odds ratios (95% confidence intervals) of comorbid FMDs (dependent variable) in relation to sociodemographic and clinical characteristics (independent variables). RESULTS Out of 410 FMDs, 21.7% of patients (n = 89) had comorbid FMDs. The most frequent coexisting neurological diseases were migraine, cerebrovascular disease and parkinsonism. In the majority of cases (86.5%), FMDs appeared after the diagnosis of a neurological disease. Patients with comorbid FMDs were older, and more frequently had tremor, non-neurological comorbidities, paroxysmal non-epileptic seizures, major depressive disorders, and benzodiazepine intake. Multivariate regression analysis showed that diagnosis of comorbid FMDs was more likely associated with longer time lag until the final diagnosis of FMD, presence of tremor and non-neurological comorbidities. CONCLUSIONS Our findings highlight the need for prompt diagnosis of FMDs, given the relatively high frequency of associated neurological and non-neurological diseases.
Collapse
Affiliation(s)
- Michele Tinazzi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Christian Geroin
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry -Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Baronissi, SA, Italy
| | - Enrico Marcuzzo
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sofia Cuoco
- Department of Medicine, Surgery and Dentistry -Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Baronissi, SA, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sonia Mazzucchi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,FERB Onlus, Ospedale S. Isidoro, Trescore Balneario, Bergamo, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luigi Michele Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mario Zappia
- Section of Neurosciences, Department G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alessandra Nicoletti
- Section of Neurosciences, Department G.F. Ingrassia, University of Catania, Catania, Italy
| | - Carlo Dallocchio
- Neurology Unit, Department of Medical Area, ASST Pavia, Pavia, Italy
| | - Carla Arbasino
- Neurology Unit, Department of Medical Area, ASST Pavia, Pavia, Italy
| | - Francesco Bono
- Botulinum Toxin Center, Neurology Unit, A.O.U. Mater Domini, Catanzaro, Italy
| | - Angelo Pascarella
- Botulinum Toxin Center, Neurology Unit, A.O.U. Mater Domini, Catanzaro, Italy
| | - Benedetta Demartini
- Aldo Ravelli Research Center for Neurotechnology and Experimental Brain Therapeutics - Department of Health Sciences, University of Milan, Milan, Italy
| | - Orsola Gambini
- Aldo Ravelli Research Center for Neurotechnology and Experimental Brain Therapeutics - Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Elena Antelmi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisabetta Zanolin
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Università La Sapienza, Rome, Italy
| | - Rosa de Micco
- Department of Advanced Medical and Surgery Sciences, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Leonardo Lopiano
- Department of Neuroscience - Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Neurological Sciences of Bologna, IRCCS, Bologna, Italy
| | - Martina Petracca
- Movement Disorder Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Paolo Manganotti
- Clinical Neurology Unit, Department of Medical, Surgical and Health Services, University of Trieste, Trieste, Italy
| | - Fabrizio Stocchi
- University and Institute of Research and Medical Care San Raffaele, Roma, Italy
| | | | - Angelo Antonini
- Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Tommaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.,Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| |
Collapse
|
21
|
Functional and Idiopathic Cervical Dystonia in Two Family Members: A Challenging Diagnosis. Tremor Other Hyperkinet Mov (N Y) 2020; 10:51. [PMID: 33354397 PMCID: PMC7731715 DOI: 10.5334/tohm.558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Cervical dystonia (CD) often occurs in the same family. Case report: A 40-year-old woman presented with a longstanding history of CD and signs of inconsistency at history taking and neurological examination; her 65-year-old mother was diagnosed instead with idiopathic CD, which had begun 7 years after the onset of CD in her daughter. Discussion: Idiopathic and functional CD share common clinical and endophenotypic traits, making the differential diagnosis particularly challenging. A complete examination is warranted.
Collapse
|
22
|
Thomsen BLC, Teodoro T, Edwards MJ. Biomarkers in functional movement disorders: a systematic review. J Neurol Neurosurg Psychiatry 2020; 91:1261-1269. [PMID: 33087421 DOI: 10.1136/jnnp-2020-323141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/11/2020] [Accepted: 09/23/2020] [Indexed: 11/04/2022]
Abstract
Functional movement disorders (FMD) are proposed to reflect a specific problem with voluntary control of movement, despite normal intent to move and an intact neural capacity for movement. In many cases, a positive diagnosis of FMD can be established on clinical grounds. However, the diagnosis remains challenging in certain scenarios, and there is a need for predictors of treatment response and long-term prognosis.In this context, we performed a systematic review of biomarkers in FMD. Eighty-six studies met our predefined criteria and were included.We found fairly reliable electroencephalography and electromyography-based diagnostic biomarkers for functional myoclonus and tremor. Promising biomarkers have also been described for functional paresis, gait and balance disorders. In contrast, there is still a lack of diagnostic biomarkers of functional dystonia and tics, where clinical diagnosis is often also more challenging. Importantly, many promising findings focus on pathophysiology and reflect group-level comparisons, but cannot differentiate on an individual basis. Some biomarkers also require access to time-consuming and resource-consuming techniques such as functional MRI.In conclusion, there are important gaps in diagnostic biomarkers in FMD in the areas of most clinical uncertainty. There is also is a lack of treatment response and prognostic biomarkers to aid in the selection of patients who would benefit from rehabilitation and other forms of treatment.
Collapse
Affiliation(s)
- Birgitte Liang Chen Thomsen
- Neurology, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tiago Teodoro
- Neurosciences Research Centre, St George's University of London, London, UK.,Instituto de Medicina Molecular, University of Lisbon, Lisboa, Portugal
| | - Mark J Edwards
- Neurosciences Research Centre, St George's University of London, London, UK
| |
Collapse
|
23
|
Can Pallidal Deep Brain Stimulation Rescue Borderline Dystonia? Possible Coexistence of Functional (Psychogenic) and Organic Components. Brain Sci 2020; 10:brainsci10090636. [PMID: 32942724 PMCID: PMC7563555 DOI: 10.3390/brainsci10090636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
The diagnosis and treatment of functional movement disorders are challenging for clinicians who manage patients with movement disorders. The borderline between functional and organic dystonia is often ambiguous. Patients with functional dystonia are poor responders to pallidal deep brain stimulation (DBS) and are not good candidates for DBS surgery. Thus, if patients with medically refractory dystonia have functional features, they are usually left untreated with DBS surgery. In order to investigate the outcome of functional dystonia in response to pallidal DBS surgery, we retrospectively included five patients with this condition. Their dystonia was diagnosed as organic by dystonia specialists and also as functional according to the Fahn and Williams criteria or the Gupta and Lang Proposed Revisions. Microelectrode recordings in the globus pallidus internus of all patients showed a cell-firing pattern of bursting with interburst intervals, which is considered typical of organic dystonia. Although their clinical course after DBS surgery was incongruent to organic dystonia, the outcome was good. Our results question the possibility to clearly differentiate functional dystonia from organic dystonia. We hypothesized that functional dystonia can coexist with organic dystonia, and that medically intractable dystonia with combined functional and organic features can be successfully treated by DBS surgery.
Collapse
|
24
|
Latorre A, Rocchi L, Bhatia KP. Delineating the electrophysiological signature of dystonia. Exp Brain Res 2020; 238:1685-1692. [PMID: 32712678 DOI: 10.1007/s00221-020-05863-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Over the last 30 years, the concept of dystonia has dramatically changed, from being considered a motor neurosis, to a pure basal ganglia disorder, to finally reach the definition of a network disorder involving the basal ganglia, cerebellum, thalamus and sensorimotor cortex. This progress has been possible due to the collaboration between clinicians and scientists, and the development of increasingly sophisticated electrophysiological techniques able to non-invasively investigate pathophysiological mechanisms in humans. This review is a chronological excursus of the electrophysiological studies that laid the foundation for the understanding of the pathophysiology of dystonia and delineated its electrophysiological signatures. Evidence for neurophysiological abnormalities is grouped according to the neural system involved, and a unifying theory, bringing together all the hypothesis and evidence provided to date, is proposed at the end.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
25
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
26
|
Benussi A, Premi E, Cantoni V, Compostella S, Magni E, Gilberti N, Vergani V, Delrio I, Gamba M, Spezi R, Costa A, Tinazzi M, Padovani A, Borroni B, Magoni M. Cortical Inhibitory Imbalance in Functional Paralysis. Front Hum Neurosci 2020; 14:153. [PMID: 32457588 PMCID: PMC7220997 DOI: 10.3389/fnhum.2020.00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Functional neurological disorders are characterized by neurological symptoms that have no identifiable pathology and little is known about their underlying pathophysiology. OBJECTIVES To analyze motor cortex excitability and intracortical inhibitory and excitatory circuits' imbalance in patients with flaccid functional weakness. METHODS Twenty-one consecutive patients with acute onset of flaccid functional weakness were recruited. Single and paired-pulse transcranial magnetic stimulation (TMS) protocols were used to analyze resting motor thresholds (RMT) and intracortical inhibitory (short interval intracortical inhibition - SICI) and excitatory (intracortical facilitation - ICF) circuits' imbalance between the affected and non-affected motor cortices. RESULTS We observed a significant increase in RMT and SICI in the affected motor cortex (p < 0.001), but not for ICF, compared to the contralateral unaffected side. CONCLUSION This study extends current knowledge of functional weakness, arguing for a specific central nervous system abnormality which may be involved in the symptoms' pathophysiology.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Premi
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Compostella
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eugenio Magni
- U.O. Neurologia, Fondazione Poliambulanza Hospital, Brescia, Italy
| | - Nicola Gilberti
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Veronica Vergani
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Ilenia Delrio
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Massimo Gamba
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Raffaella Spezi
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Angelo Costa
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Michele Tinazzi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mauro Magoni
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| |
Collapse
|
27
|
Horisawa S, Arai T, Suzuki N, Kawamata T, Taira T. The striking effects of deep cerebellar stimulation on generalized fixed dystonia: case report. J Neurosurg 2020; 132:712-716. [PMID: 30835688 DOI: 10.3171/2018.11.jns182180] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/08/2018] [Indexed: 11/06/2022]
Abstract
Cerebellar neuromodulation could influence the pathological abnormalities of movement disorders through several connections between the cerebellum and the basal ganglia or other cortices. In the present report, the authors demonstrate the effects of cerebellar deep brain stimulation (DBS) on a patient with severe generalized fixed dystonia (FD) that was refractory to bilateral pallidotomy and intrathecal baclofen therapy. A previously healthy 16-year-old girl presented with generalized FD. Bilateral pallidotomy and intrathecal baclofen therapy had failed to resolve her condition, following which she received DBS through the bilateral superior cerebellar peduncle (SCP) and dentate nucleus (DN). Ipsilateral stimulation of the SCP or DN improved the FD, and the ability of DBS administered via the SCP to relax muscles was better than that of DN DBS. A considerable improvement of generalized FD, from a bedridden state to a wheelchair-bound state, was observed in the patient following 6 months of chronic bilateral DBS via the SCP; moreover, the patient was able to move her arms and legs. The findings in the present case suggest that neuromodulation of deep cerebellar structures is a promising treatment for FD that is refractory to conventional treatments.
Collapse
|
28
|
Conte A, Rocchi L, Latorre A, Belvisi D, Rothwell JC, Berardelli A. Ten‐Year Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. Mov Disord 2019; 34:1616-1628. [DOI: 10.1002/mds.27859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Anna Latorre
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | | | - John C. Rothwell
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Alfredo Berardelli
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| |
Collapse
|
29
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Mov Disord 2019; 34:936-949. [DOI: 10.1002/mds.27736] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli Isernia Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
30
|
Versace V, Campostrini S, Sebastianelli L, Soda M, Saltuari L, Lun S, Nardone R, Kofler M. Adult-Onset Gilles de la Tourette Syndrome: Psychogenic or Organic? The Challenge of Abnormal Neurophysiological Findings. Front Neurol 2019; 10:461. [PMID: 31130912 PMCID: PMC6509948 DOI: 10.3389/fneur.2019.00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is characterized by multiple motor and vocal tics. Adult-onset cases are rare and may be due to "reactivation" of childhood tics, or secondary to psychiatric or genetic diseases, or due to central nervous system lesions of different etiologies. Late-onset psychogenic motor/vocal tics resembling GTS have been described. Neurophysiology may serve to differentiate organic from functional GTS. Altered blink reflex pre-pulse inhibition (BR-PPI), blink reflex excitability recovery (BR-ERC), and short-interval intracortical inhibition (SICI) have been described in GTS. We report a 48-years-old male, who developed numerous motor/vocal tics 2 months after sustaining non-commotional craniofacial trauma in a car accident. Both his father and brother had died earlier in car crashes. He presented with blepharospasm-like forced lid closure, forceful lip pursing, noisy suction movements, and deep moaning sounds, occurring in variable combinations, without warning symptoms or internal "urge." Tics showed low distractibility and these increased with attention. Standard magnetic resonance imaging, electroencephalography, and evoked potentials were unremarkable. Neuropsychology diagnosed moderately impaired intellect, attention, and executive functions. Psychiatric assessment revealed somatization disorder and generalized anxiety. BR-PPI was unremarkable, while BR-ERC was enhanced, even showing facilitation at short intervals. SICI was markedly reduced at 1 and 3 ms and intracortical facilitation (ICF) was enhanced at 10 ms. The patient fulfilled Fahn and Williams' diagnostic criteria for a psychogenic movement disorder. Neurophysiology, however, documented hyperexcitability of motor cortex and brainstem. We suggest that-similar to what has been reported in psychogenic dystonia-a pre-existing predisposition may have led to the functional hyperkinetic disorder in response to severe psychic stress.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Stefania Campostrini
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Mirco Soda
- Department of Neuropsychology, Hospital of Bressanone, Bressanone, Italy
| | - Leopold Saltuari
- Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy.,Department of Neurology, State Hospital Hochzirl, Zirl, Austria
| | - Sigrid Lun
- Department of Psychiatry, Hospital of Bressanone, Bressanone, Italy
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy.,Department of Neurology, Christian Doppler Medical Center, Paracelsus Private Medical University of Salzburg, Salzburg, Austria
| | - Markus Kofler
- Department of Neurology, State Hospital Hochzirl, Zirl, Austria
| |
Collapse
|
31
|
Baizabal-Carvallo JF, Hallett M, Jankovic J. Pathogenesis and pathophysiology of functional (psychogenic) movement disorders. Neurobiol Dis 2019; 127:32-44. [PMID: 30798005 DOI: 10.1016/j.nbd.2019.02.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/31/2019] [Accepted: 02/20/2019] [Indexed: 11/17/2022] Open
Abstract
Functional movement disorders (FMDs), known over time as "hysteria", "dissociative", "conversion", "somatoform", "non-organic" and "psychogenic" disorders, are characterized by having a voluntary quality, being modifiable by attention and distraction but perceived by the patient as involuntary. Although a high prevalence of depression and anxiety is observed in these patients, a definitive role of psychiatric disorders in FMDs has not been proven, and many patients do not endorse such manifestations. Stressful events, social influences and minor trauma may precede the onset of FMDs, but their pathogenic mechanisms are unclear. Patients with FMDs have several abnormalities in their neurobiology including strengthened connectivity between the limbic and motor networks. Additionally, there is altered top-down regulation of motor activities and increased activation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortex. Decreased activation of the supplementary motor area (SMA) and pre-SMA, implicated in motor control and preparation, is another finding. The sense of agency defined as the feeling of controlling external events through one's own action also seems to be impaired in individuals with FMDs. Correlating with this is a loss of intentional binding, a subjective time compression between intentional action and its sensory consequences. Organic and functional dystonia may be difficult to differentiate since they share diverse neurophysiological features including decreased cortical inhibition, and similar local field potentials in the globus pallidus and thalamus; although increased cortical plasticity is observed only in patients with organic dystonia. Advances in the pathogenesis and pathophysiology of FMDs may be helpful to understand the nature of these disorders and plan further treatment strategies.
Collapse
Affiliation(s)
- José Fidel Baizabal-Carvallo
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA; University of Guanajuato, Mexico.
| | - Mark Hallett
- Human Motor Control Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Leon-Sarmiento FE, Bayona-Prieto J, Leon-Ariza JS, Leon-Ariza DS, Jacob AE, LaFaver K, Doty RL. Smell status in functional movement disorders: New clues for diagnosis and underlying mechanisms. Clin Neurol Neurosurg 2019; 177:68-72. [DOI: 10.1016/j.clineuro.2018.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 01/11/2023]
|
33
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
34
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [PMID: 28964754 DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
35
|
Pastore A, Pierri G, Fabio G, Ferramosca S, Gigante A, Superbo M, Pellicciari R, Margari F. Differences in psychopathology and behavioral characteristics of patients affected by conversion motor disorder and organic dystonia. Neuropsychiatr Dis Treat 2018; 14:1287-1295. [PMID: 29849460 PMCID: PMC5965383 DOI: 10.2147/ndt.s151695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Typically, the diagnosis of conversion motor disorder (CMD) is achieved by the exclusion of a wide range of organic illnesses rather than by applying positive criteria. New diagnostic criteria are highly needed in this scenario. The main aim of this study was to explore the use of behavioral features as an inclusion criterion for CMD, taking into account the relationship of the patients with physicians, and comparing the results with those from patients affected by organic dystonia (OD). PATIENTS AND METHODS Patients from the outpatient Movement Disorder Service were assigned to either the CMD or the OD group based on Fahn and Williams criteria. Differences in sociodemographics, disease history, psychopathology, and degree of satisfaction about care received were assessed. Patient-neurologist agreement about the etiological nature of the disorder was also assessed using the k-statistic. A logistic regression analysis estimated the discordance status as a predictor to case/control status. RESULTS In this study, 31 CMD and 31 OD patients were included. CMD patients showed a longer illness life span, involvement of more body regions, higher comorbidity with anxiety, depression, and borderline personality disorder, as well as higher negative opinions about physicians' delivering of proper care. Contrary to our expectations, CMD disagreement with neurologists about the etiological nature of the disorder was not statistically significant. Additional analysis showed that having at least one personality disorder was statistically associated with the discordance status. CONCLUSION This study suggests that CMD patients show higher conflicting behavior toward physicians. Contrary to our expectations, they show awareness of their psychological needs, suggesting a possible lack of recognition of psychological distress in the neurological setting.
Collapse
Affiliation(s)
- Adriana Pastore
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Pierri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Giada Fabio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Silvia Ferramosca
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Angelo Gigante
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Superbo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Roberta Pellicciari
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Margari
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
36
|
Lozeron P, Poujois A, Richard A, Masmoudi S, Meppiel E, Woimant F, Kubis N. Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia. Front Neural Circuits 2016; 10:90. [PMID: 27891079 PMCID: PMC5102895 DOI: 10.3389/fncir.2016.00090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug's side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve our understanding of the pathophysiology of dystonia but large controlled studies using sham stimulation are still necessary to delineate the place of rTMS in the therapeutic strategy of dystonia. In this review, we will focus successively on the use of TMS as a tool to better understand pathophysiology, and the use of rTMS as a therapeutic strategy.
Collapse
Affiliation(s)
- Pierre Lozeron
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; INSERM UMR965Paris, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - Aurélia Poujois
- Service de Neurologie, AP-HP, Hôpital LariboisièreParis, France; Centre de Référence National de la Maladie de Wilson, Hôpital LariboisièreParis, France
| | - Alexandra Richard
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - Sana Masmoudi
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière Paris, France
| | - Elodie Meppiel
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| | - France Woimant
- Service de Neurologie, AP-HP, Hôpital LariboisièreParis, France; Centre de Référence National de la Maladie de Wilson, Hôpital LariboisièreParis, France
| | - Nathalie Kubis
- Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital LariboisièreParis, France; INSERM UMR965Paris, France; Sorbonne Paris Cité - Université Paris DiderotParis, France
| |
Collapse
|
37
|
Morgante F, Naro A, Terranova C, Russo M, Rizzo V, Risitano G, Girlanda P, Quartarone A. Normal sensorimotor plasticity in complex regional pain syndrome with fixed posture of the hand. Mov Disord 2016; 32:149-157. [DOI: 10.1002/mds.26836] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Francesca Morgante
- Dipartimento di Medicina Clinica e Sperimentale; Università di Messina; Messina Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi “Bonino-Pulejo”; Messina Italy
| | - Carmen Terranova
- Dipartimento di Medicina Clinica e Sperimentale; Università di Messina; Messina Italy
| | | | - Vincenzo Rizzo
- Dipartimento di Medicina Clinica e Sperimentale; Università di Messina; Messina Italy
| | - Giovanni Risitano
- Unità Funzionale di Ortopedia e Traumatologia; Casa di Cura “Cappellani-GIOMI”; Messina Italy
| | - Paolo Girlanda
- Dipartimento di Medicina Clinica e Sperimentale; Università di Messina; Messina Italy
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences, and Morphological and Functional Images; University of Messina; Messina Italy
| |
Collapse
|
38
|
Newby R, Alty J, Kempster P. Functional dystonia and the borderland between neurology and psychiatry: New concepts. Mov Disord 2016; 31:1777-1784. [PMID: 27753149 DOI: 10.1002/mds.26805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/21/2016] [Accepted: 08/29/2016] [Indexed: 01/07/2023] Open
Abstract
Mind-brain dualism has dominated historical commentary on dystonia, a dichotomous approach that has left our conceptual grasp of it stubbornly incomplete. This is particularly true of functional dystonia, most diagnostically challenging of all functional movement disorders, in which the question of inherent psychogenicity remains a focus of debate. Phenomenological signs considered in isolation lack the specificity to distinguish organic and nonorganic forms, and dystonia's variability has frustrated attempts to develop objective laboratory-supported standards. Diagnostic criteria for functional dystonia that place emphasis on psychiatric symptoms perform poorly in studies of reliability, partly explained by the high frequency of psychopathology in organic dystonia. Novel approaches from the cognitive neurosciences may offer a way forward. Theory on Bayesian statistical prediction in cognitive processing is supported by sufficient experimental evidence for this model to be taken seriously as a way of reconciling contradictory notions about voluntary and unconscious motor control in functional movement disorders. In a Bayesian formulation of functional dystonia, misallocation of attention and abnormal predictive beliefs generate movements that are executed without a sense of agency. Building on this framework, there is a consensus that a biopsychosocial approach is required and that a unified philosophy of brain and mind is the best way to locate dystonia in the neurology-psychiatry borderland. At a practical level, movement disorder neurologists are best placed to differentiate organic from functional dystonia. The main role of psychiatrists is in the diagnosis and management of the primarily psychiatric disorders that often accompany dystonia. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rachel Newby
- Neurosciences Department, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Neurology, Leeds General Infirmary, Leeds, UK
| | - Jane Alty
- Department of Neurology, Leeds General Infirmary, Leeds, UK
| | - Peter Kempster
- Neurosciences Department, Monash Medical Centre, Clayton, Victoria, Australia.,Department of Medicine, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
39
|
Temporal discrimination threshold with healthy aging. Neurobiol Aging 2016; 43:174-9. [PMID: 27255827 DOI: 10.1016/j.neurobiolaging.2016.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/10/2016] [Accepted: 04/13/2016] [Indexed: 01/16/2023]
Abstract
The temporal discrimination threshold (TDT) is the shortest interstimulus interval at which a subject can perceive successive stimuli as separate. To investigate the effects of aging on TDT, we studied tactile TDT using the method of limits with 120% of sensory threshold in each hand for each of 100 healthy volunteers, equally divided among men and women, across 10 age groups, from 18 to 79 years. Linear regression analysis showed that age was significantly related to left-hand mean, right-hand mean, and mean of 2 hands with R-square equal to 0.08, 0.164, and 0.132, respectively. Reliability analysis indicated that the 3 measures had fair-to-good reliability (intraclass correlation coefficient: 0.4-0.8). We conclude that TDT is affected by age and has fair-to-good reproducibility using our technique.
Collapse
|
40
|
Abstract
Functional neurologic disorders are largely genuine and represent conversion disorders, where the dysfunction is unconscious, but there are some that are factitious, where the abnormality is feigned and conscious. Malingering, which can have the same manifestations, is similarly feigned, but not considered a genuine disease. There are no good methods for differentiating these three entities at the present time. Physiologic studies of functional weakness and sensory loss reveal normal functioning of primary motor and sensory cortex, but abnormalities of premotor cortex and association cortices. This suggests a top-down influence creating the dysfunction. Studies of functional tremor and myoclonus show that these disorders utilize normal voluntary motor structures to produce the involuntary movements, again suggesting a higher-level abnormality. Agency is abnormal and studies shows that dysfunction of the temporoparietal junction may be a correlate. The limbic system is overactive and might initiate involuntary movements, but the mechanism for this is not known. The limbic system would then be the source of top-down dysfunction. It can be speculated that the involuntary movements are involuntary due to lack of proper feedforward signaling.
Collapse
Affiliation(s)
- M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
41
|
Abstract
Although currently lacking a sensitive and specific electrophysiologic battery test, functional (psychogenic) dystonia can sometimes be diagnosed with clinically definite certainty using available criteria. Certain regional phenotypes have been recognized as distinctive, such as unilateral lip and jaw deviation, laterocollis with ipsilateral shoulder elevation and contralateral shoulder depression, fixed wrist and finger flexion with relative sparing of the thumb and index fingers, and fixed foot plantar flexion and inversion. The pathophysiologic abnormalities in functional dystonia overlap substantially with those of organic dystonia, with similar impairments in cortical and spinal inhibition and somatosensory processing, but with emerging data suggesting abnormalities in regional blood flow and activation patterns on positron emission tomography and functional magnetic resonance imaging, respectively. Management of functional dystonia begins with compassionate and assertive debriefing of the diagnosis to ensure full acceptance by the patient, a critical step in enhancing the likelihood of success with physical rehabilitation, and psychodynamic or cognitive therapy. Physical therapy, with or without cognitive behavioral therapy, appears to be of benefit but has not yet been examined in a controlled fashion. While the prognosis remains grim for a substantial majority of patients, partly stemming from restricted mobility, delayed diagnosis, and inappropriate pharmacotherapy, early recognition and initiation of therapy stand to minimize iatrogenic harm and unnecessary laboratory investigations, and potentially reduce the long-term neurologic disability.
Collapse
|
42
|
Kamble NL, Pal PK. Electrophysiological evaluation of psychogenic movement disorders. Parkinsonism Relat Disord 2015; 22 Suppl 1:S153-8. [PMID: 26403429 DOI: 10.1016/j.parkreldis.2015.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Psychogenic movement disorders (PMD) include a group of neurological symptoms which cannot be explained by any organic syndrome. The diagnosis of PMD is challenging for both neurologist and psychiatrist. Electrophysiological examination is a useful tool to evaluate and support a diagnosis PMD. It includes a set of tests which are chosen appropriate to the clinical setting that provides objective criteria for the diagnosis of PMD. The various tests available include accelerometry, surface electromyography, electroencephalography, jerk locked back averaging and pre-movement potentials, somatosensory evoked potentials, transcranial magnetic stimulation (TMS) etc. Electrophysiologically psychogenic tremors display features of variability, entrainability, coactivation, distractibility and increase in the amplitude and frequency on mass loading. Movement related cortical potentials such as Bereitschaftspotential is seen in psychogenic myoclonus. Presence of triphasic contraction of muscles and absence of co-contraction suggests psychogenic myoclonus. Latency of C-reflex is longer in psychogenic myoclonus as compared to organic myoclonus. The role of TMS to differentiate psychogenic from organic dystonia is still not clear. In conclusion, electrophysiological tests are most useful for tremor, followed by jerks and least for dystonia. In patients with long-standing PMD or those with mixed pathology, electrophysiological tests may not be very useful.
Collapse
Affiliation(s)
- Nitish L Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
43
|
Avanzino L, Tinazzi M, Ionta S, Fiorio M. Sensory-motor integration in focal dystonia. Neuropsychologia 2015; 79:288-300. [PMID: 26164472 DOI: 10.1016/j.neuropsychologia.2015.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/04/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
Traditional definitions of focal dystonia point to its motor component, mainly affecting planning and execution of voluntary movements. However, focal dystonia is tightly linked also to sensory dysfunction. Accurate motor control requires an optimal processing of afferent inputs from different sensory systems, in particular visual and somatosensory (e.g., touch and proprioception). Several experimental studies indicate that sensory-motor integration - the process through which sensory information is used to plan, execute, and monitor movements - is impaired in focal dystonia. The neural degenerations associated with these alterations affect not only the basal ganglia-thalamic-frontal cortex loop, but also the parietal cortex and cerebellum. The present review outlines the experimental studies describing impaired sensory-motor integration in focal dystonia, establishes their relationship with changes in specific neural mechanisms, and provides new insight towards the implementation of novel intervention protocols. Based on the reviewed state-of-the-art evidence, the theoretical framework summarized in the present article will not only result in a better understanding of the pathophysiology of dystonia, but it will also lead to the development of new rehabilitation strategies.
Collapse
Affiliation(s)
- Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132 genoa, Italy
| | - Michele Tinazzi
- Department of Neurological and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Silvio Ionta
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Mirta Fiorio
- Department of Neurological and Movement Sciences, University of Verona, 37131 Verona, Italy.
| |
Collapse
|
44
|
Espay AJ, Lang AE. Phenotype-Specific Diagnosis of Functional (Psychogenic) Movement Disorders. Curr Neurol Neurosci Rep 2015; 15:32. [DOI: 10.1007/s11910-015-0556-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
|
46
|
Avanzino L, Fiorio M. Proprioceptive dysfunction in focal dystonia: from experimental evidence to rehabilitation strategies. Front Hum Neurosci 2014; 8:1000. [PMID: 25538612 PMCID: PMC4260499 DOI: 10.3389/fnhum.2014.01000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/25/2014] [Indexed: 11/13/2022] Open
Abstract
Dystonia has historically been considered a disorder of the basal ganglia, mainly affecting planning and execution of voluntary movements. This notion comes from the observation that most lesions responsible for secondary dystonia involve the basal ganglia. However, what emerges from recent research is that dystonia is linked to the dysfunction of a complex neural network that comprises basal ganglia–thalamic–frontal cortex, but also the inferior parietal cortex and the cerebellum. While dystonia is clearly a motor problem, it turned out that sensory aspects are also fundamental, especially those related to proprioception. We outline experimental evidence for proprioceptive dysfunction in focal dystonia from intrinsic sensory abnormalities to impaired sensorimotor integration, which is the process by which sensory information is used to plan and execute volitional movements. Particularly, we will focus on proprioceptive aspects of dystonia, including: (i) processing of vibratory input, (ii) temporal discrimination of two passive movements, (iii) multimodal integration of visual-tactile and proprioceptive inputs, and (iv) motor control in the absence of visual feedback. We suggest that these investigations contribute not only to a better understanding of dystonia pathophysiology, but also to develop rehabilitation strategies aimed at facilitating the processing of proprioceptive input.
Collapse
Affiliation(s)
- Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine, Centro Polifunzionale di Scienze Motorie, University of Genoa , Genoa , Italy
| | - Mirta Fiorio
- Department of Neurological and Movement Sciences, University of Verona , Verona , Italy
| |
Collapse
|
47
|
Fahn S, Olanow CW. Reply to: Psychogenic movement disorders: What's in a name? Mov Disord 2014; 29:1699-701. [DOI: 10.1002/mds.26042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 11/06/2022] Open
|
48
|
van Rooijen DE, Lalli S, Marinus J, Maihöfner C, McCabe CS, Munts AG, van der Plas AA, Tijssen MAJ, van de Warrenburg BP, Albanese A, van Hilten JJ. Reliability and validity of the range of motion scale (ROMS) in patients with abnormal postures. PAIN MEDICINE 2014; 16:488-93. [PMID: 25220173 DOI: 10.1111/pme.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Sustained abnormal postures (i.e., fixed dystonia) are the most frequently reported motor abnormalities in complex regional pain syndrome (CRPS), but these symptoms may also develop after peripheral trauma without CRPS. Currently, there is no valid and reliable measurement instrument available to measure the severity and distribution of these postures. The range of motion scale (ROMS) was therefore developed to assess the severity based on the possible active range of motion of all joints (arms, legs, trunk, and neck), and the present study evaluates its reliability and validity. METHODS Inter- and intra-rater reliability of the ROMS was determined in 16 patients with abnormal sustained postures, who were videotaped following a standard video protocol in a university hospital. The recordings were rated by a panel of international experts. In addition, 30 patients were clinically tested with both the Burke-Fahn-Marsden (BFM) scale as well as the ROMS to assess construct validity. RESULTS Inter-rater reliability for total ROMS scores showed an intra-class correlation coefficient (ICC) of 0.85. The majority of the scores for the separate joints (13 out of 18) demonstrated an almost perfect agreement with ICCs ranging from 0.81 to 0.94; of the other items, one showed fair, one moderate, and three substantial agreement. The ICCs for the intra-rater reliability ranged from moderate to almost perfect (0.68-0.98). Spearman's correlation coefficients between corresponding body areas as measured with the ROMS or BFM were all above 0.82. CONCLUSION The ROMS is a reliable and valid instrument to evaluate the severity and distribution of sustained abnormal postures.
Collapse
Affiliation(s)
- Diana E van Rooijen
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tinazzi M, Fasano A, Peretti A, Bove F, Conte A, Dall'Occhio C, Arbasino C, Defazio G, Fiorio M, Berardelli A. Tactile and proprioceptive temporal discrimination are impaired in functional tremor. PLoS One 2014; 9:e102328. [PMID: 25051180 PMCID: PMC4106827 DOI: 10.1371/journal.pone.0102328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
Background and Methods In order to obtain further information on the pathophysiology of functional tremor, we assessed tactile discrimination threshold and proprioceptive temporal discrimination motor threshold values in 11 patients with functional tremor, 11 age- and sex-matched patients with essential tremor and 13 healthy controls. Results Tactile discrimination threshold in both the right and left side was significantly higher in patients with functional tremor than in the other groups. Proprioceptive temporal discrimination threshold for both right and left side was significantly higher in patients with functional and essential tremor than in healthy controls. No significant correlation between discrimination thresholds and duration or severity of tremor was found. Conclusions Temporal processing of tactile and proprioceptive stimuli is impaired in patients with functional tremor. The mechanisms underlying this impaired somatosensory processing and possible ways to apply these findings clinically merit further research.
Collapse
Affiliation(s)
- Michele Tinazzi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Alfonso Fasano
- Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Alessia Peretti
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Francesco Bove
- Department of Neurology, Università Cattolica, Rome, Italy
| | - Antonella Conte
- Department of Neurology and Psychiatry, Sapienza, University of Rome and IRCCS INM Neuromed, Pozzilli, Italy
| | | | - Carla Arbasino
- Division of Neurology, Ospedale di Voghera, Voghera, Italy
| | - Giovanni Defazio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Mirta Fiorio
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, Sapienza, University of Rome and IRCCS INM Neuromed, Pozzilli, Italy
| |
Collapse
|
50
|
Ganos C, Edwards MJ, Bhatia KP. The Phenomenology of Functional (Psychogenic) Dystonia. Mov Disord Clin Pract 2014; 1:36-44. [PMID: 30363921 PMCID: PMC6183180 DOI: 10.1002/mdc3.12013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 12/29/2022] Open
Abstract
From the very first descriptions of dystonia, there has been a lack of agreement on the differentiation of organic from functional (psychogenic) dystonia. This lack of agreement has had a significant effect on patients over the years, most particularly in the lack of access to appropriate management, whether for those with organic dystonia diagnosed as having a functional cause or vice versa. However, clinico-genetic advances have led to greater certainty about the phenomenology of organic dystonia and therefore recognition of atypical forms. The diagnosis of functional dystonia rests on recognition of its phenomenology and should not be, as far as possible, a diagnosis of exclusion. Here, we present an overview of the phenomenology of functional dystonia, concentrating on the three main phenotypic presentations: functional cranial dystonia; functional fixed dystonia; and functional paroxysmal dystonia. We hope that this review of phenomenology will aid in the positive diagnosis of functional dystonia and, through this, will lead to more rapid access to appropriate management.
Collapse
Affiliation(s)
- Christos Ganos
- Sobell Department of Motor Neuroscience and Movement DisordersUCL Institute of NeurologyUniversity College LondonLondonUnited Kingdom
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Pediatric and Adult Movement Disorders and NeuropsychiatryInstitute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Mark J. Edwards
- Sobell Department of Motor Neuroscience and Movement DisordersUCL Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Kailash P. Bhatia
- Sobell Department of Motor Neuroscience and Movement DisordersUCL Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|