1
|
Grossi A, Rosamilia F, Carestiato S, Salsano E, Ceccherini I, Bachetti T. A systematic review and meta-analysis of GFAP gene variants in Alexander disease. Sci Rep 2024; 14:24341. [PMID: 39420046 PMCID: PMC11487261 DOI: 10.1038/s41598-024-75383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Alexander disease (ALXDRD) is a rare neurodegenerative disorder of astrocytes resulting from pathogenic variants in the GFAP gene. The genotype-phenotype correlation remains elusive due to the variable expressivity of clinical manifestations. In an attempt to clarify the effects of GFAP variants in ALXDRD, numerous studies were collected and analyzed. In particular, we systematically searched for GFAP variants associated with ALXDRD and collected information on the location within the gene and protein, prediction of deleteriousness/pathogenicity, occurrence, sex and country of origin of patients, DNA source, genetic testing, and clinical signs. To identify possible associations, statistical analyses and meta-analyses were applied, thus revealing a higher than expected percentage of adult patients with ALXDRD. Furthermore, substitution of Arginine, the most frequently altered residue among the 550 predominantly missense causative GFAP variants collected, were mostly de novo and more prevalent in early-onset forms of ALXDRD. The effect of defective splicing in modifying the impact of GFAP variants on the age of onset of ALXDRD was also postulated after evaluating the distribution of the corresponding deleterious predictive values. In conclusion, not only previously unrecognized genotype-phenotype correlations were revealed in ALXDRD, but also subtle mechanisms could explain the variable manifestations of the ALXDRD clinical phenotype.
Collapse
Affiliation(s)
- Alice Grossi
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Francesca Rosamilia
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy
| | - Silvia Carestiato
- Department of Neurosciences, Rita Levi Montalcini University of Turin, Turin, 10126, Italy
| | - Ettore Salsano
- SC Malattie Neurologiche Rare, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, 16147, Italy.
- UOSD Laboratory of Genetics and Genomics of rare Diseases, IRCCS Istituto Giannina gaslini, Via G Gaslini, 5, Genova, 16148, Italy.
| | | |
Collapse
|
2
|
Pedroso JL, Vale TC, França Junior MC, Kauffman MA, Teive H, Barsottini OGP, Munhoz RP. A Diagnostic Approach to Spastic ataxia Syndromes. CEREBELLUM (LONDON, ENGLAND) 2022; 21:1073-1084. [PMID: 34782953 DOI: 10.1007/s12311-021-01345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Spastic ataxia is characterized by the combination of cerebellar ataxia with spasticity and other pyramidal features. It is the hallmark of some hereditary ataxias, but it can also occur in some spastic paraplegias and acquired conditions. It often presents with heterogenous clinical features with other neurologic and non-neurological symptoms, resulting in complex phenotypes. In this review, the differential diagnosis of spastic ataxias are discussed and classified in accordance with inheritance. Establishing an organized classification method based on mode inheritance is fundamental for the approach to patients with these syndromes. For each differential, the clinical features, neuroimaging and genetic aspects are reviewed. A diagnostic approach for spastic ataxias is then proposed.
Collapse
Affiliation(s)
- José Luiz Pedroso
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Thiago Cardoso Vale
- Department of Internal Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Marcelo A Kauffman
- Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Helio Teive
- Department of Neurology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | |
Collapse
|
3
|
Heshmatzad K, Naderi N, Masoumi T, Pouraliakbar H, Kalayinia S. Identification of a novel de novo pathogenic variant in GFAP in an Iranian family with Alexander disease by whole-exome sequencing. Eur J Med Res 2022; 27:174. [PMID: 36088400 PMCID: PMC9464415 DOI: 10.1186/s40001-022-00799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Alexander disease (AxD) is a rare leukodystrophy with an autosomal dominant inheritance mode. Variants in GFAP lead to this disorder and it is classified into three distinguishable subgroups: infantile, juvenile, and adult-onset types. Objective The aim of this study is to report a novel variant causing AxD and collect all the associated variants with juvenile and adult-onset as well. Methods We report a 2-year-old female with infantile AxD. All relevant clinical and genetic data were evaluated. Search strategy for all AxD types was performed on PubMed. The extracted data include total recruited patients, number of patients carrying a GFAP variant, nucleotide and protein change, zygosity and all the clinical symptoms. Results A novel de novo variant c.217A > G: p. Met73Val was found in our case by whole-exome sequencing. In silico analysis categorized this variant as pathogenic. Totally 377 patients clinically diagnosed with juvenile or adult-onset forms were recruited in these articles, among them 212 patients were affected with juvenile or adult-onset form carrier of an alteration in GFAP. A total of 98 variants were collected. Among these variants c.262C > T 11/212 (5.18%), c.1246C > T 9/212 (4.24%), c.827G > T 8/212 (3.77%), c.232G > A 6/212 (2.83%) account for the majority of reported variants. Conclusion This study highlighted the role of genetic in AxD diagnosing. It also helps to provide more information in order to expand the genetic spectrum of Iranian patients with AxD. Our literature review is beneficial in defining a better genotype–phenotype correlation of AxD disorder.
Collapse
|
4
|
Cao LX, Yang M, Liu Y, Long WY, Zhao GH. Chinese patient with cerebrotendinous xanthomatosis confirmed by genetic testing: A case report and literature review. World J Clin Cases 2020; 8:5446-5456. [PMID: 33269283 PMCID: PMC7674721 DOI: 10.12998/wjcc.v8.i21.5446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cerebrotendinous xanthomatosis (CTX) is a treatable autosomal recessive inherited metabolic disorder. It results from a deficiency of sterol 27-hydroxylase (CYP27A1), which is a mitochondrial cytochrome P450 enzyme that catalyzes the hydroxylation of cholesterol and modulates cholesterol homeostasis. Patients with CYP27A1 deficiency show symptoms related to excessive accumulation of cholesterol and cholestanol in lipophilic tissues such as the brain, eyes, tendons, and vessels, resulting in juvenile cataracts, tendon xanthoma, chronic diarrhea, cognitive impairment, ataxia, spastic paraplegia, and peripheral neuropathy. CTX is underdiagnosed as knowledge of the disorder is mainly based on case reports.
CASE SUMMARY A Chinese family with CTX consisting of one patient and four heterozygous carriers was studied. The patient is a 47-year-old male, who mainly had psychiatric signs but without some cardinal features of CTX such as cataracts, cerebellar ataxia, pyramidal signs and chronic diarrhea. There was a significant increase in the concentration of free fatty acid compared to normal range. Doppler ultrasound of the urinary system showed multiple left kidney stones, a right kidney cyst, and a hypoechoic area in the bladder, which could move with body position. Sagittal and axial magnetic resonance imaging (MRI) of the right ankle joint showed apparent enlargement of the right Achilles tendon and upper medial malleolus flexor tendon, abnormal thickening of the plantar fat, and a small amount of exudation around the fascia in front of the Achilles tendon. Cerebral MRI suggested white matter (WM) demyelination and slight cerebral atrophy. The diagnosis was confirmed by targeted sequencing, which identified compound heterozygous mutations in exon 2 and intron 7 of the CYP27A1 gene (c.435G>T, c.1263+1G>A). Treatment for 3 wk with a combination of lipid-lowering and antipsychotic therapy improved his psychiatric symptoms and normalized the levels of serum free fatty acid. Sediments in the bladder disappeared after therapy.
CONCLUSION CYP27A1 genetic analysis should be the definitive method for CTX diagnosis. This case suggests that urinary system diseases may be neglected in CTX patients. The clinical, biological, radiological, and genetic characteristics of CTX are summarized to promote early diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Lan-Xiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Mi Yang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Ying Liu
- Central Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Wen-Ying Long
- Central Laboratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Guo-Hua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
5
|
Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L, Mercimek-Mahmutoglu S, Ebrahimi-Fakhari D, Warner TT, Durr A, Assmann B, Lohmann K, Kostic V, Klein C. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord 2016; 31:436-57. [PMID: 27079681 DOI: 10.1002/mds.26527] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/21/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
The system of assigning locus symbols to specify chromosomal regions that are associated with a familial disorder has a number of problems when used as a reference list of genetically determined disorders,including (I) erroneously assigned loci, (II) duplicated loci, (III) missing symbols or loci, (IV) unconfirmed loci and genes, (V) a combination of causative genes and risk factor genes in the same list, and (VI) discordance between phenotype and list assignment. In this article, we report on the recommendations of the International Parkinson and Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders and present a system for naming genetically determined movement disorders that addresses these problems. We demonstrate how the system would be applied to currently known genetically determined parkinsonism, dystonia, dominantly inherited ataxia, spastic paraparesis, chorea, paroxysmal movement disorders, neurodegeneration with brain iron accumulation, and primary familial brain calcifications. This system provides a resource for clinicians and researchers that, unlike the previous system, can be considered an accurate and criterion-based list of confirmed genetically determined movement disorders at the time it was last updated.
Collapse
Affiliation(s)
- Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Anthony Lang
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital and Kolling Institute of Medical Research, University of Sydney, St. Leonards, New South Wales, Australia
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
- School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Darius Ebrahimi-Fakhari
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Department of Neurology & F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, Department of Molecular Neurosciences, UCL Institute of Neurology, London, UK
| | - Alexandra Durr
- Sorbonne Université, UPMC, Inserm and Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | - Birgit Assmann
- Division of Pediatric Neurology, Department of Pediatrics I, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vladimir Kostic
- Institute of Neurology, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Prust M, Wang J, Morizono H, Messing A, Brenner M, Gordon E, Hartka T, Sokohl A, Schiffmann R, Gordish-Dressman H, Albin R, Amartino H, Brockman K, Dinopoulos A, Dotti MT, Fain D, Fernandez R, Ferreira J, Fleming J, Gill D, Griebel M, Heilstedt H, Kaplan P, Lewis D, Nakagawa M, Pedersen R, Reddy A, Sawaishi Y, Schneider M, Sherr E, Takiyama Y, Wakabayashi K, Gorospe JR, Vanderver A. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology 2011; 77:1287-94. [PMID: 21917775 PMCID: PMC3179649 DOI: 10.1212/wnl.0b013e3182309f72] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 06/14/2011] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To characterize Alexander disease (AxD) phenotypes and determine correlations with age at onset (AAO) and genetic mutation. AxD is an astrogliopathy usually characterized on MRI by leukodystrophy and caused by glial fibrillary acidic protein (GFAP) mutations. METHODS We present 30 new cases of AxD and reviewed 185 previously reported cases. We conducted Wilcoxon rank sum tests to identify variables scaling with AAO, survival analysis to identify predictors of mortality, and χ(2) tests to assess the effects of common GFAP mutations. Finally, we performed latent class analysis (LCA) to statistically define AxD subtypes. RESULTS LCA identified 2 classes of AxD. Type I is characterized by early onset, seizures, macrocephaly, motor delay, encephalopathy, failure to thrive, paroxysmal deterioration, and typical MRI features. Type II is characterized by later onset, autonomic dysfunction, ocular movement abnormalities, bulbar symptoms, and atypical MRI features. Survival analysis predicted a nearly 2-fold increase in mortality among patients with type I AxD relative to those with type II. R79 and R239 GFAP mutations were most common (16.6% and 20.3% of all cases, respectively). These common mutations predicted distinct clinical outcomes, with R239 predicting the most aggressive course. CONCLUSIONS AAO and the GFAP mutation site are important clinical predictors in AxD, with clear correlations to defined patterns of phenotypic expression. We propose revised AxD subtypes, type I and type II, based on analysis of statistically defined patient groups.
Collapse
Affiliation(s)
- M Prust
- Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The ocular motor features of adult-onset alexander disease: a case and review of the literature. J Neuroophthalmol 2011; 31:155-9. [PMID: 21403579 DOI: 10.1097/wno.0b013e31820ecb28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 51-year-old Chinese man presented with gaze-evoked nystagmus, impaired smooth pursuit and vestibular ocular reflex cancellation, and saccadic dysmetria, along with a family history suggestive of late-onset autosomal dominant parkinsonism. MRI revealed abnormalities of the medulla and cervical spinal cord typical of adult-onset Alexander disease, and genetic testing showed homozygosity for the p.D295N polymorphic allele in the gene encoding the glial fibrillary acidic protein. A review of the literature shows that ocular signs are frequent in adult-onset Alexander disease, most commonly gaze-evoked nystagmus, pendular nystagmus, and/or oculopalatal myoclonus, and less commonly ptosis, miosis, and saccadic dysmetria. These signs are consistent with the propensity of adult-onset Alexander disease to cause medullary abnormalities on neuroimaging.
Collapse
|
8
|
Yoshida T, Sasaki M, Yoshida M, Namekawa M, Okamoto Y, Tsujino S, Sasayama H, Mizuta I, Nakagawa M. Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. J Neurol 2011; 258:1998-2008. [PMID: 21533827 DOI: 10.1007/s00415-011-6056-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 11/28/2022]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder characterized by white matter degeneration and formation of cytoplasmic inclusions. Glial fibrillary acidic protein (GFAP) mutations have been reported in various forms of AxD since 2001. However, a definitive diagnosis remains difficult because of uncertain prevalence, and different clinical features seen in infantile AxD and adult AxD may lead to confusion and misdiagnosis. Here we report an epidemiological study conducted in Japan. Two nationwide questionnaire-based surveys were conducted using tentative diagnostic criteria. We gathered information regarding prevalence, neurological findings, magnetic resonance imaging (MRI) findings, electrophysiological findings, genetic information, and the results of therapeutic interventions and home care. Prevalence of various forms of AxD was determined as 27.3% (infantile), 24.2% (juvenile), and 48.5% (adult). Prevalence of AxD in Japan was estimated to be approximately 1 case per 2.7 million individuals. The main characteristics of infantile and juvenile AxD include delayed psychomotor development or mental retardation, convulsions, macrocephaly, and predominant cerebral white matter abnormalities in the frontal lobe on brain MRI. The main characteristics of adult AxD include bulbar signs, muscle weakness with hyperreflexia, and signal abnormalities and/or atrophy of medulla oblongata and cervical spinal cord on MRI. To ensure correct diagnosis of AxD, the physician should understand the importance of the process of GFAP genetic testing, which provides definitive diagnosis. Therefore, we propose new clinical guidelines for diagnosing AxD based on simplified classifications: cerebral AxD (type 1), bulbospinal AxD (type 2), and intermediate form (type 3).
Collapse
Affiliation(s)
- Tomokatsu Yoshida
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kajii-chou 465, Kamigyo-ku, Kyoto 602-0841, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Namekawa M, Takiyama Y, Honda J, Shimazaki H, Sakoe K, Nakano I. Adult-onset Alexander disease with typical "tadpole" brainstem atrophy and unusual bilateral basal ganglia involvement: a case report and review of the literature. BMC Neurol 2010; 10:21. [PMID: 20359319 PMCID: PMC2873320 DOI: 10.1186/1471-2377-10-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 04/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alexander disease (ALX) is a rare neurological disorder characterized by white matter degeneration and cytoplasmic inclusions in astrocytes called Rosenthal fibers, labeled by antibodies against glial fibrillary acidic protein (GFAP). Three subtypes are distinguished according to age at onset: infantile (under age 2), juvenile (age 2 to 12) and adult (over age 12). Following the identification of heterozygous mutations in GFAP that cause this disease, cases of adult-onset ALX have been increasingly reported. CASE PRESENTATION We present a 60-year-old Japanese man with an unremarkable past and no family history of ALX. After head trauma in a traffic accident at the age of 46, his character changed, and dementia and dysarthria developed, but he remained independent. Spastic paresis and dysphagia were observed at age 57 and 59, respectively, and worsened progressively. Neurological examination at the age of 60 revealed dementia, pseudobulbar palsy, left-side predominant spastic tetraparesis, axial rigidity, bradykinesia and gaze-evoked nystagmus. Brain MRI showed tadpole-like atrophy of the brainstem, caused by marked atrophy of the medulla oblongata, cervical spinal cord and midbrain tegmentum, with an intact pontine base. Analysis of the GFAP gene revealed a heterozygous missense mutation, c.827G>T, p.R276L, which was already shown to be pathogenic in a case of pathologically proven hereditary adult-onset ALX. CONCLUSION The typical tadpole-like appearance of the brainstem is strongly suggestive of adult-onset ALX, and should lead to a genetic investigation of the GFAP gene. The unusual feature of this patient is the symmetrical involvement of the basal ganglia, which is rarely observed in the adult form of the disease. More patients must be examined to confirm, clinically and neuroradiologically, extrapyramidal involvement of the basal ganglia in adult-onset ALX.
Collapse
Affiliation(s)
- Michito Namekawa
- Department of Neurology, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Ishikawa M, Shimohata T, Ishihara T, Nakayama H, Tomita M, Nishizawa M. Sleep apnea associated with floppy epiglottis in adult-onset Alexander disease: A case report. Mov Disord 2010; 25:1098-100. [DOI: 10.1002/mds.23042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|