1
|
Du H, Wang Q, Zhang B, Liang Z, Huang C, Shi D, Li F, Ling D. Structural Defect-Enabled Magnetic Neutrality Nanoprobes for Ultra-High-Field Magnetic Resonance Imaging of Isolated Tumor Cells in Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401538. [PMID: 38738793 DOI: 10.1002/adma.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Indexed: 05/14/2024]
Abstract
The identification of metastasis "seeds," isolated tumor cells (ITCs), is of paramount importance for the prognosis and tailored treatment of metastatic diseases. The conventional approach to clinical ITCs diagnosis through invasive biopsies is encumbered by the inherent risks of overdiagnosis and overtreatment. This underscores the pressing need for noninvasive ITCs detection methods that provide histopathological-level insights. Recent advancements in ultra-high-field (UHF) magnetic resonance imaging (MRI) have ignited hope for the revelation of minute lesions, including the elusive ITCs. Nevertheless, currently available MRI contrast agents are susceptible to magnetization-induced strong T2-decaying effects under UHF conditions, which compromises T1 MRI capability and further impedes the precise imaging of small lesions. Herein, this study reports a structural defect-enabled magnetic neutrality nanoprobe (MNN) distinguished by its paramagnetic properties featuring an exceptionally low magnetic susceptibility through atomic modulation, rendering it almost nonmagnetic. This unique characteristic effectively mitigates T2-decaying effect while concurrently enhancing UHF T1 contrast. Under 9 T MRI, the MNN demonstrates an unprecedentedly low r2/r1 value (≈1.06), enabling noninvasive visualization of ITCs with an exceptional detection threshold of ≈0.16 mm. These high-performance MNNs unveil the domain of hitherto undetectable minute lesions, representing a significant advancement in UHF-MRI for diagnostic purposes and fostering comprehensive metastasis research.
Collapse
Affiliation(s)
- Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Canyu Huang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dao Shi
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Songjiang Research Institute, Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorder, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
2
|
Du H, Wang Q, Liang Z, Li Q, Li F, Ling D. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging. NANOSCALE 2022; 14:17483-17499. [PMID: 36413075 DOI: 10.1039/d2nr04979a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrahigh-field magnetic resonance imaging (UHF-MRI) has been attracting tremendous attention in biomedical imaging owing to its high signal-to-noise ratio, superior spatial resolution, and fast imaging speed. However, at UHF-MRI, there is a lack of proper imaging probes that can impart superior imaging sensitivity of disease lesions because conventional contrast agents generally produce pronounced susceptibility artifacts and induce very strong T2 decay effects, thus hindering satisfactory imaging performance. This review focused on the recent development of high-performance nanoprobes that can improve the sensitivity and specificity of UHF-MRI. Firstly, the contrast enhancement mechanism of nanoprobes at UHF-MRI has been elucidated. In particular, the strategies for modulating nanoprobe performance, including size effects, metal alloying and magnetic-dopant effects, surface effects, and stimuli-response regulation, have been comprehensively discussed. Furthermore, we illustrate the remarkable advances in the design of UHF-MRI nanoprobes for medical diagnosis, such as early-stage primary tumor and metastasis imaging, angiography, and dynamic monitoring of biosignaling factors in vivo. Finally, we provide a summary and outlook on the development of cutting-edge UHF-MRI nanoprobes for advanced biomedical imaging.
Collapse
Affiliation(s)
- Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Qilong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, PR China
| |
Collapse
|
3
|
Zhao XJ, Niu XY, You HY, Zhou M, Ji XB, Liu Y, Wu L, Ding XL. Signal Alteration of Substantia Nigra on 3.0T Susceptibility-weighted Imaging in Parkinson's Disease and Vascular Parkinsonism. Curr Med Sci 2019; 39:831-835. [PMID: 31612404 DOI: 10.1007/s11596-019-2113-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Recent researches have found that 7 Tesla SWI can detect the alteration of substantia nigra hyperintensity in Parkinson's disease (PD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). The aim of this study was to investigate whether 3 Tesla SWI (3T SWI) can visualize anatomical alterations occurring in a hyperintense structure of the substantia nigra in PD and vascular parkinsonism (VP), and whether the evaluation of abnormal signal can be used as a factor in the differential diagnosis of PD and VP. Using 3 Tesla MRI, we evaluated 38 healthy subjects, 33 patients with PD and 34 patients with VP. Two blinded readers independently assessed the images. We found that the dorsolateral nigral hyperintensity was absent in 31 of 33 patients with PD and 15 of 34 patients with VP. The dorsolateral nigral hyperintensity was present in 19 of 34 patients with VP and 35 of 38 healthy controls. Group comparisons of absence of dorsolateral nigral hyperintensity revealed significant differences between the patients with PD and those with VP (P<0.001). The sensitivity of SWI for PD was 93.9% and the specificity was 92.1%. Visual assessment of dorsolateral nigral hyperintensity on high-field SWI scans may serve as a new simple diagnostic imaging marker for PD. And our study results indicate that 3T SWI can be used as a tool to identify PD and VP.
Collapse
Affiliation(s)
- Xue-Jun Zhao
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xi-Yuan Niu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - He-Yang You
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xue-Bing Ji
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ying Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Lei Wu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xiao-Ling Ding
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
4
|
Pandya S, Zeighami Y, Freeze B, Dadar M, Collins DL, Dagher A, Raj A. Predictive model of spread of Parkinson's pathology using network diffusion. Neuroimage 2019; 192:178-194. [PMID: 30851444 PMCID: PMC7180066 DOI: 10.1016/j.neuroimage.2019.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/20/2019] [Accepted: 03/01/2019] [Indexed: 02/03/2023] Open
Abstract
Growing evidence suggests that a "prion-like" mechanism underlies the pathogenesis of many neurodegenerative disorders, including Parkinson's disease (PD). We extend and tailor previously developed quantitative and predictive network diffusion model (NDM) to PD, by specifically modeling the trans-neuronal spread of alpha-synuclein outward from the substantia nigra (SN). The model demonstrated the spatial and temporal patterns of PD from neuropathological and neuroimaging studies and was statistically validated using MRI deformation of 232 Parkinson's patients. After repeated seeding simulations, the SN was found to be the most likely seed region, supporting its unique lynchpin role in Parkinson's pathology spread. Other alternative spread models were also evaluated for comparison, specifically, random spread and distance-based spread; the latter tests for Braak's original caudorostral transmission theory. We showed that the distance-based spread model is not as well supported as the connectivity-based model. Intriguingly, the temporal sequencing of affected regions predicted by the model was in close agreement with Braak stages III-VI, providing what we consider a "computational Braak" staging system. Finally, we investigated whether the regional expression patterns of implicated genes contribute to regional atrophy. Despite robust evidence for genetic factors in PD pathogenesis, NDM outperformed regional genetic expression predictors, suggesting that network processes are far stronger mediators of regional vulnerability than innate or cell-autonomous factors. This is the first finding yet of the ramification of prion-like pathology propagation in Parkinson's, as gleaned from in vivo human imaging data. The NDM is potentially a promising robust and clinically useful tool for diagnosis, prognosis and staging of PD.
Collapse
Affiliation(s)
- S Pandya
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
| | - Y Zeighami
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - B Freeze
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - M Dadar
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - D L Collins
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - A Dagher
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - A Raj
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA; Department of Radiology, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
5
|
Tuite P. Magnetic resonance imaging as a potential biomarker for Parkinson's disease. Transl Res 2016; 175:4-16. [PMID: 26763585 DOI: 10.1016/j.trsl.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023]
Abstract
Although a magnetic resonance imaging (MRI) biomarker for Parkinson's disease (PD) remains an unfulfilled objective, there have been numerous developments in MRI methodology and some of these have shown promise for PD. With funding from the National Institutes of Health and the Michael J Fox Foundation there will be further validation of structural, diffusion-based, and iron-focused MRI methods as possible biomarkers for PD. In this review, these methods and other strategies such as neurochemical and metabolic MRI have been covered. One of the challenges in establishing a biomarker is in the selection of individuals as PD is a heterogeneous disease with varying clinical features, different etiologies, and a range of pathologic changes. Additionally, longitudinal studies are needed of individuals with clinically diagnosed PD and cohorts of individuals who are at great risk for developing PD to validate methods. Ultimately an MRI biomarker will be useful in the diagnosis of PD, predicting the course of PD, providing a means to track its course, and provide an approach to select and monitor treatments.
Collapse
Affiliation(s)
- Paul Tuite
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
6
|
Lizio R, Del Percio C, Marzano N, Soricelli A, Yener GG, Başar E, Mundi C, De Rosa S, Triggiani AI, Ferri R, Arnaldi D, Nobili FM, Cordone S, Lopez S, Carducci F, Santi G, Gesualdo L, Rossini PM, Cavedo E, Mauri M, Frisoni G, Babiloni C. Neurophysiological Assessment of Alzheimer’s Disease Individuals by a Single Electroencephalographic Marker. J Alzheimers Dis 2015; 49:159-77. [DOI: 10.3233/jad-143042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roberta Lizio
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Physiology and Pharmacology, University of Rome “La Sapienza”, Rome, Italy
| | | | | | - Andrea Soricelli
- IRCCS SDN, Naples, Italy
- Department of Studies of Institutions and Territorial Systems, University of Naples Parthenope, Naples, Italy
| | - Görsev G. Yener
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul, Turkey
- Department of Neurosciences, Brain Dynamics Multidisciplinary Research Center, Department of Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul, Turkey
| | - Ciro Mundi
- Department of Neurology, Ospedali Riuniti, Foggia, Italy
| | | | | | | | - Dario Arnaldi
- Service of Clinical Neurophysiology (DiNOGMI; DipTeC), IRCCS AOU S Martino-IST, Genoa, Italy
| | - Flavio Mariano Nobili
- Service of Clinical Neurophysiology (DiNOGMI; DipTeC), IRCCS AOU S Martino-IST, Genoa, Italy
| | - Susanna Cordone
- Department of Physiology and Pharmacology, University of Rome “La Sapienza”, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology, University of Rome “La Sapienza”, Rome, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology, University of Rome “La Sapienza”, Rome, Italy
| | - Giulia Santi
- Department of Physiology and Pharmacology, University of Rome “La Sapienza”, Rome, Italy
| | - Loreto Gesualdo
- Dipartimento Emergenza e Trapianti d’Organi (D.E.T.O), University of Bari, Bari, Italy
| | - Paolo M. Rossini
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Geriatrics, Neuroscience & Orthopedics, Institute of Neurology, Catholic University, Rome, Italy
| | - Enrica Cavedo
- LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro “S. Giovanni di Dio-F.B.F.”, Brescia, Italy
| | - Margherita Mauri
- LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro “S. Giovanni di Dio-F.B.F.”, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Giovanni B. Frisoni
- LENITEM (Laboratory of Epidemiology, Neuroimaging and Telemedicine), IRCCS Centro “S. Giovanni di Dio-F.B.F.”, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Babiloni
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Physiology and Pharmacology, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
7
|
Gizewski ER, Mönninghoff C, Forsting M. Perspectives of Ultra-High-Field MRI in Neuroradiology. Clin Neuroradiol 2015; 25 Suppl 2:267-73. [PMID: 26184503 DOI: 10.1007/s00062-015-0437-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE Magnetic resonance imaging (MRI) is one of the most important methods for the diagnosis and therapy monitoring of various diseases. Today, magnets up to 3 T are standard. This review will give an overview of the clinical perspectives of ultra-high field MRI, meaning mainly 7 T. METHODS Literature review with focus on clinical applications of 7 T imaging in neuroscience combined with examples of own studies and perspectives. RESULTS This high-resolution technique offers the potential to improve certain tissue contrasts and signal in functional (fMRI) and metabolic (MRS) imaging. This overview demonstrates already existing potentials and advantages of the ultra-high magnetic field for central nervous system (CNS) diseases. CONCLUSIONS Although there are still some technical challenges for brain and spine imaging at 7 T, the method has clear benefit in selected structural, functional, and metabolic imaging.
Collapse
Affiliation(s)
- E R Gizewski
- Dept. of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria. .,Universitätsklinik für Neuroradiologie, Medizinische Universität Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria.
| | - C Mönninghoff
- Dept. of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - M Forsting
- Dept. of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Reiter E, Mueller C, Pinter B, Krismer F, Scherfler C, Esterhammer R, Kremser C, Schocke M, Wenning GK, Poewe W, Seppi K. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord 2015; 30:1068-76. [PMID: 25773707 DOI: 10.1002/mds.26171] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Absence of a hyperintense, ovoid area within the dorsolateral border of the otherwise hypointense pars compacta of the substantia nigra (referred to as dorsolateral nigral hyperintensity) on iron-sensitive high-field magnetic resonance imaging sequences seems to be a typical finding for patients with Parkinson's disease (PD). OBJECTIVE This study was undertaken to evaluate the diagnostic value of the dorsolateral nigral hyperintensity in a cohort of patients with neurodegenerative parkinsonism including PD, multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) as well as healthy controls using high-field susceptibility-weighted imaging (SWI) at 3.0 Tesla (T). METHODS Absence of dorsolateral nigral hyperintensity was assessed on visual inspection of anonymized 3.0T SWI scans in a case-control study including 148 patients with neurodegenerative parkinsonism (PD: n = 104; MSA: n = 22; PSP: n = 22) and 42 healthy controls. RESULTS Dorsolateral nigral hyperintensity was absent unilaterally in all patients with MSA or PSP, in 83 of 90 patients with PD, but only in one of the healthy controls resulting in an overall correct classification of 95.2% in discriminating neurodegenerative parkinsonism from controls in the per-protocol analysis. Overall correct classification was 93.2% in the intent-to-diagnose analysis, including also SWI scans with poor quality (12.1% of all scans) for nigral evaluation. CONCLUSION Visual assessment of dorsolateral nigral hyperintensity on high-field SWI scans may serve as a new simple diagnostic imaging marker for neurodegenerative parkinsonian disorders.
Collapse
Affiliation(s)
- Eva Reiter
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Christoph Mueller
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Bernadette Pinter
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Christoph Scherfler
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.,Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| | - Regina Esterhammer
- Department of Radiology I, Innsbruck Medical University, Innsbruck, Austria.,Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Kremser
- Department of Radiology I, Innsbruck Medical University, Innsbruck, Austria.,Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Schocke
- Department of Radiology I, Innsbruck Medical University, Innsbruck, Austria.,Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.,Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.,Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
9
|
Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 2015; 21:92-105. [PMID: 25667951 DOI: 10.1016/j.mito.2015.02.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Synthesis of the iron-containing prosthetic groups-heme and iron-sulfur clusters-occurs in mitochondria. The mitochondrion is also an important producer of reactive oxygen species (ROS), which are derived from electrons leaking from the electron transport chain. The coexistence of both ROS and iron in the secluded space of the mitochondrion makes this organelle particularly prone to oxidative damage. Here, we review the elements that configure mitochondrial iron homeostasis and discuss the principles of iron-mediated ROS generation in mitochondria. We also review the evidence for mitochondrial dysfunction and iron accumulation in Alzheimer's disease, Huntington Disease, Friedreich's ataxia, and in particular Parkinson's disease. We postulate that a positive feedback loop of mitochondrial dysfunction, iron accumulation, and ROS production accounts for the process of cell death in various neurodegenerative diseases in which these features are present.
Collapse
Affiliation(s)
- Natalia P Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Fernanda Lourido
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Carlos M Carrasco
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Chen D, Zhou Y, Lyons KE, Pahwa R, Reddy MB. Green Tea Consumption Reduces Oxidative Stress in Parkinson’s Disease Patients. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.56020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Diffusion tensor imaging and correlations to Parkinson rating scales. J Neurol 2013; 260:2823-30. [DOI: 10.1007/s00415-013-7080-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/14/2013] [Indexed: 11/25/2022]
|
12
|
Babiloni C, Del Percio C, Lizio R, Marzano N, Infarinato F, Soricelli A, Salvatore E, Ferri R, Bonforte C, Tedeschi G, Montella P, Baglieri A, Rodriguez G, Famà F, Nobili F, Vernieri F, Ursini F, Mundi C, Frisoni GB, Rossini PM. Cortical sources of resting state electroencephalographic alpha rhythms deteriorate across time in subjects with amnesic mild cognitive impairment. Neurobiol Aging 2013; 35:130-42. [PMID: 23906617 DOI: 10.1016/j.neurobiolaging.2013.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 06/21/2013] [Accepted: 06/30/2013] [Indexed: 11/13/2022]
Abstract
Cortical sources of resting state electroencephalographic (EEG) rhythms are abnormal in subjects with mild cognitive impairment (MCI). Here, we tested the hypothesis that these sources in amnesic MCI subjects further deteriorate over 1 year. To this aim, the resting state eyes-closed EEG data were recorded in 54 MCI subjects at baseline (Mini Mental State Examination I = 26.9; standard error [SE], 0.2) and at approximately 1-year follow-up (13.8 months; SE, 0.5; Mini Mental State Examination II = 25.8; SE, 0.2). As a control, EEG recordings were also performed in 45 normal elderly and in 50 mild Alzheimer's disease subjects. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), and beta2 (20-30 Hz). Cortical EEG sources were estimated using low-resolution brain electromagnetic tomography. Compared with the normal elderly and mild Alzheimer's disease subjects, the MCI subjects were characterized by an intermediate power of posterior alpha1 sources. In the MCI subjects, the follow-up EEG recordings showed a decreased power of posterior alpha1 and alpha2 sources. These results suggest that the resting state EEG alpha sources were sensitive-at least at the group level-to the cognitive decline occurring in the amnesic MCI group over 1 year, and might represent cost-effective, noninvasive and widely available markers to follow amnesic MCI populations in large clinical trials.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gröger A, Berg D. Does structural neuroimaging reveal a disturbance of iron metabolism in Parkinson's disease? Implications from MRI and TCS studies. J Neural Transm (Vienna) 2012; 119:1523-8. [PMID: 22875636 DOI: 10.1007/s00702-012-0873-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/23/2012] [Indexed: 12/27/2022]
Abstract
A central role of iron in the pathogenesis of Parkinson's disease (PD) has been discussed for many years. Numerous studies using magnetic resonance imaging and transcranial sonography have been performed to detect alterations in tissue iron content of the substantia nigra. This manuscript reviews the findings of this still controversial issue and indicates that specific abnormalities that are suggested to be related to a disturbance of iron homeostasis may play an early role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Adriane Gröger
- Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, and German Center of Neurodegenerative Diseases (DZNE), University of Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany.
| | | |
Collapse
|
14
|
Correlation of subthalamic nuclei T2 relaxation times with neuropsychological symptoms in patients with Parkinson's disease. J Neurol Sci 2012; 315:96-9. [DOI: 10.1016/j.jns.2011.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/17/2011] [Accepted: 11/07/2011] [Indexed: 12/25/2022]
|
15
|
|
16
|
Fujioka S, Murray ME, Foroutan P, Schweitzer KJ, Dickson DW, Grant SC, Wszolek ZK. [Magnetic resonance imaging with 21.1 T and pathological correlations--diffuse Lewy body disease]. Rinsho Shinkeigaku 2011; 51:603-607. [PMID: 21878728 DOI: 10.5692/clinicalneurol.51.603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We investigated fixed basal ganglia specimens, including globus pallidus and putamen, with 21.1-Tesla MRI allowing us to achieve a microscopic level resolution from a patient with pathologically confirmed dementia with Lewy bodies (DLB) and a neurologically normal control case. We acquired T2 and T2 * weighted images that demonstrated diffuse and patchy lower intensities in the basal ganglia compared to control. There are several paramagnetic substances in brain tissue that could potentially reduce both T2 and T2 * relaxation times, including ferritin, iron (Fe3+), manganese, copper and others. Because iron is most abundant, low intensities on T2 and T2 * weighted images most likely reflect iron deposition. Iron, especially Fe3+, deposition was visible in the pathological specimens stained with Prussian blue after images were obtained. Although radiological-pathological comparisons are not straightforward with respect to either the MRI signal or relaxation quantification, there appears to be a correlation between the relative increase in iron as assessed by Prussian blue staining and the decrease in T2 * value between the DLB and control specimens. As such, this exceptionally high field MRI technique may provide details about the role that iron deposition plays either directly or indirectly as a biomarker in neurodegenerative processes.
Collapse
Affiliation(s)
- Shinsuke Fujioka
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Jin L, Wang J, Zhao L, Jin H, Fei G, Zhang Y, Zeng M, Zhong C. Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson's disease. ACTA ACUST UNITED AC 2010; 134:50-8. [PMID: 21109502 DOI: 10.1093/brain/awq319] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In vivo and post-mortem studies have demonstrated that increased nigral iron content in patients with Parkinson's disease is a prominent pathophysiological feature. However, the mechanism and risk factors associated with nigral iron deposition in patients with Parkinson's disease have not been identified and represent a key challenge in understanding its pathogenesis and for its diagnosis. In this study, we assessed iron levels in patients with Parkinson's disease and in age- and gender-matched control subjects by measuring phase values using magnetic resonance based susceptibility-weighted phase imaging in a 3T magnetic resonance system. Phase values were measured from brain regions including bilateral substantia nigra, globus pallidus, putamen, caudate, thalamus, red nucleus and frontal white matter of 45 patients with Parkinson's disease with decreased or normal serum ceruloplasmin levels, together with age- and gender-matched control subjects. Correlative analyses between phase values, serum ceruloplasmin levels and disease severity showed that the nigral bilateral average phase values in patients with Parkinson's disease were significantly lower than in control subjects and correlated with disease severity according to the Hoehn and Yahr Scale. The Unified Parkinson's Disease Rating Scale motor scores from the clinically most affected side were significantly correlated with the phase values of the contralateral substantia nigra. Furthermore, nigral bilateral average phase values correlated highly with the level of serum ceruloplasmin. Specifically, in the subset of patients with Parkinson's disease exhibiting reduced levels of serum ceruloplasmin, we found lowered nigral bilateral average phase values, suggesting increased nigral iron content, while those patients with normal levels of serum ceruloplasmin exhibited no changes as compared with control subjects. These findings suggest that decreased levels of serum ceruloplasmin may specifically exacerbate nigral iron deposition in patients with Parkinson's disease. Combining susceptibility-weighted phase imaging with serum ceruloplasmin determination is likely to be useful for the diagnosis and assessment of a subset of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Lirong Jin
- Department of Neurology, Zhongshan Hospital and Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Vernon AC, Ballard C, Modo M. Neuroimaging for Lewy body disease: is the in vivo molecular imaging of α-synuclein neuropathology required and feasible? ACTA ACUST UNITED AC 2010; 65:28-55. [PMID: 20685363 DOI: 10.1016/j.brainresrev.2010.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation is a neuropathological hallmark of many neurodegenerative diseases including Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), collectively termed the α-synucleinopathies. Substantial advances in clinical criteria and neuroimaging technology over the last 20 years have allowed great strides in the detection and differential diagnosis of these disorders. Nevertheless, it is clear that whilst the array of different imaging modalities in clinical use allow for a robust diagnosis of α-synucleinopathy in comparison to healthy subjects, there is no clear diagnostic imaging marker that affords a reliable differential diagnosis between the different forms of Lewy body disease (LBD) or that could facilitate tracking of disease progression. This has led to a call for a biomarker based on the pathological hallmarks of these diseases, namely α-synuclein-positive Lewy bodies (LBs). This potentially may be advantageous in terms of early disease detection, but may also be leveraged into a potential marker of disease progression. We here aim to firstly review the current status of neuroimaging biomarkers in PD and related synucleinopathies. Secondly, we outline the rationale behind α-synuclein imaging as a potential novel biomarker as well as the potential benefits and limitations of this approach. Thirdly, we attempt to illustrate the likely technical hurdles to be overcome to permit successful in vivo imaging of α-synuclein pathology in the diseased brain. Our overriding aim is to provide a framework for discussion of how to address this major unmet clinical need.
Collapse
Affiliation(s)
- Anthony C Vernon
- Kings College London, Institute of Psychiatry, Department of Neuroscience, Denmark Hill campus, London, UK
| | | | | |
Collapse
|