1
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Swinnen BE, de Bie RM, Hallett M, Helmich RC, Buijink AW. Reconstructing Re-emergent Tremor. Mov Disord Clin Pract 2023; 10:1293-1296. [PMID: 37772284 PMCID: PMC10525057 DOI: 10.1002/mdc3.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 09/30/2023] Open
Affiliation(s)
- Bart E.K.S. Swinnen
- Department of Neurology and Clinical NeurophysiologyAmsterdam University Medical Centers, Amsterdam Neuroscience, University of AmsterdamAmsterdamThe Netherlands
| | - Rob M.A. de Bie
- Department of Neurology and Clinical NeurophysiologyAmsterdam University Medical Centers, Amsterdam Neuroscience, University of AmsterdamAmsterdamThe Netherlands
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Rick C. Helmich
- Department of Neurology, Centre of Expertise for Parkinson and Movement DisordersRadboud University Medical CentreNijmegenThe Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Arthur W.G. Buijink
- Department of Neurology and Clinical NeurophysiologyAmsterdam University Medical Centers, Amsterdam Neuroscience, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Sriram N, Holla VV, Kumari R, Kamble N, Saini J, Mahale R, Netravathi M, Padmanabha H, Gowda VK, Battu R, Pandey A, Yadav R, Muthusamy B, Pal PK. Clinical, imaging and genetic profile of twenty-four patients with pantothenate kinase-associated neurodegeneration (PKAN)- A single centre study from India. Parkinsonism Relat Disord 2023; 111:105409. [PMID: 37121191 DOI: 10.1016/j.parkreldis.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Pantothenate kinase-associated neurodegeneration (PKAN) is the most common "Neurodegeneration with Brain Iron Accumulation" disorder. This study aimed to study the clinical, radiological and genetic profiling of a large cohort of patients with PKAN. METHODS This is an ambispective hospital-based single centre study conducted at a tertiary care centre from India. After tabulating the clinical details, appropriate rating scales were applied followed by magnetic resonance imaging brain and exome sequencing. The segregation of the causal variants in the families were analysed using Sanger sequencing. RESULTS Twenty-four patients (14 males) with a median age at initial examination of 13 years (range: 4-54 years) and age at onset of 8 years (range: 0.5-40 years) were identified. Almost two-thirds (62%) had onset before 10 years. Difficulty walking was the most common presenting symptom (41.6%) and dystonia was the most common extrapyramidal phenomenology (100%) followed by parkinsonism (54.2%). Retinitis pigmentosa was present in 37.5% patients. MRI showed hypo intensity on T2 and SWI sequences in globus pallidus (100%), substantia nigra (70.8%) and red nucleus (12.5%). Eye-of-the-tiger sign was present in 95.8%. Biallelic variants in PANK2 gene was identified in all 20 patients who underwent genetic testing. Among the 18 unique variants identified in these 20 patients 10 were novel. Sanger sequencing confirmed the segregation of the mutation in the available family members. CONCLUSIONS Wide range of age at onset was noted. Dystonia at presentation, pathognomonic eye-of-tiger sign, and disease-causing variants in PANK2 gene were identified in nearly all patients. Ten novel variants were identified expanding the genotypic spectrum of PKAN.
Collapse
Affiliation(s)
- Neeharika Sriram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Riyanka Kumari
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Jitender Saini
- Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, 560029, India
| | - Rohan Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Manjunath Netravathi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Vykuntaraju K Gowda
- Department of Paediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, 560029, India
| | - Rajani Battu
- Centre for Eye Genetics and Research, Bangalore, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| |
Collapse
|
4
|
Bhardwaj NK, Gowda VK, Saini J, Sardesai AV, Santhoshkumar R, Mahadevan A. Neurodegeneration with brain iron accumulation: Characterization of clinical, radiological, and genetic features of pediatric patients from Southern India. Brain Dev 2021; 43:1013-1022. [PMID: 34272103 DOI: 10.1016/j.braindev.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) is a group of rare inherited neurodegenerative disorders. Ten types of NBIA are known. Studies reporting various NBIA subtypes together are few. This study was aimed at describing clinical features, neuroimaging findings, and genetic mutations of different NBIA group disorders. METHODS Clinical, radiological, and genetic data of patients diagnosed with NBIA in a tertiary care centre in Southern India from 2014 to 2020 was retrospectively collected and analysed. RESULTS In our cohort of 27 cases, PLA2G6-associated neurodegeneration (PLAN) was most common (n = 13) followed by Pantothenate kinase-associated neurodegeneration (PKAN) (n = 9). We had 2 cases each of Mitochondrial membrane-associated neurodegeneration (MPAN) and Beta-propeller protein- associated neurodegeneration (BPAN) and 1 case of Kufor-Rakeb Syndrome (KRS). Walking difficulty was the presenting complaint in all PKAN cases, whereas the presentation in PLAN was that of development regression with onset at a mean age of 2 years. Overall, 50% patients of them presented with development regression and one-third had epilepsy. Presence of pyramidal signs was most common examination feature (89%) followed by one or more eye findings (81%) and movement disorders (50%). Neuroimaging was abnormal in 24/27 cases and cerebellar atrophy was the commonest finding (52%) followed by globus pallidus hypointensities (44%). CONCLUSIONS One should have a high index of clinical suspicion for the diagnosis of NBIA in children presenting with neuroregression and vision abnormalities in presence of pyramidal signs or movement disorders. Neuroimaging and ophthalmological evaluation provide important clues to diagnosis in NBIA syndromes.
Collapse
Affiliation(s)
- Naveen Kumar Bhardwaj
- Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Vykuntaraju K Gowda
- Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India.
| | - Jitendra Saini
- Neuroradiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ashwin Vivek Sardesai
- Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Rashmi Santhoshkumar
- Electron Microscope Laboratory, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
5
|
Magrinelli F, Latorre A, Balint B, Mackenzie M, Mulroy E, Stamelou M, Tinazzi M, Bhatia KP. Isolated and combined genetic tremor syndromes: a critical appraisal based on the 2018 MDS criteria. Parkinsonism Relat Disord 2020; 77:121-140. [PMID: 32818815 DOI: 10.1016/j.parkreldis.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The 2018 consensus statement on the classification of tremors proposes a two-axis categorization scheme based on clinical features and etiology. It also defines "isolated" and "combined" tremor syndromes depending on whether tremor is the sole clinical manifestation or is associated with other neurological or systemic signs. This syndromic approach provides a guide to investigate the underlying etiology of tremors, either genetic or acquired. Several genetic defects have been proven to cause tremor disorders, including autosomal dominant and recessive, X-linked, and mitochondrial diseases, as well as chromosomal abnormalities. Furthermore, some tremor syndromes are recognized in individuals with a positive family history, but their genetic confirmation is pending. Although most genetic tremor disorders show a combined clinical picture, there are some distinctive conditions in which tremor may precede the appearance of other neurological signs by years or remain the prominent manifestation throughout the disease course, previously leading to misdiagnosis as essential tremor (ET). Advances in the knowledge of genetically determined tremors may have been hampered by the inclusion of heterogeneous entities in previous studies on ET. The recent classification of tremors therefore aims to provide more consistent clinical data for deconstructing the genetic basis of tremor syndromes in the next-generation and long-read sequencing era. This review outlines the wide spectrum of tremor disorders with defined or presumed genetic etiology, both isolated and combined, unraveling diagnostic clues of these conditions and focusing mainly on ET-like phenotypes. Furthermore, we suggest a phenotype-to-genotype algorithm to support clinicians in identifying tremor syndromes and guiding genetic investigations.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Melissa Mackenzie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Maria Stamelou
- Department of Neurology, Attikon University Hospital, Athens, Greece.
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
6
|
Liu H, Yao Y, Liu H, Peng Y, Ren J, Wu X, Mao R, Zhao J, Zhu Y, Niu Z, Yang T, Sun X, Jiang P, Zhang C, Fang Y. Lack of Association Between PLA2G6 Genetic Variation and Parkinson's Disease: A Systematic Review. Neuropsychiatr Dis Treat 2020; 16:1755-1763. [PMID: 32801710 PMCID: PMC7399463 DOI: 10.2147/ndt.s254065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/06/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The phospholipase A2 Group 6 (PLA2G6, also known as PLA2, PARK14, and iPLA2) gene encodes a group VIA calcium-independent phospholipase A2. Genetic polymorphism of PLA2G6 has been indicated to be involved in conferring susceptibility for Parkinson's disease (PD), whereas conclusive results have not been obtained. Thus, we intended to conduct a systematic review to determine if PLA2G6 genetic variation confers a greater susceptibility to PD. METHODS All case-control studies that investigated the association of the PLA2G6 polymorphisms with the risk of PD published before 15 July 2018 were included. The literature was comprehensively searched and identified in five English databases (EBSCO, Pubmed, OVID, EMBASE and ISI Web of Knowledge) and four Chinese databases (Wanfang database, Chinese Biomedical Literature Database, China Academic Journals Database and VIP database). We performed analyses of study characteristics, heterogeneity, and forest plot in analyses analogous to dominant, codominant and additive models with the pooled odds ratio (OR) in fixed- or random-effects models as the measure of association. RESULTS A total of 664 potentially relevant studies were retrieved with the initial search, of which eight studies fulfilled the inclusion criteria, and included 2,779 PD patients and 3,291 control participants,. Among all the reported 27 genetic variants, 15 single nucleotide polymorphisms (SNPs) were present only in patients, and only five available SNPs (rs2267369, rs140758033, c.1959T>A (Gly653Gly), rs76718524, rs199935023) were pooled in the meta-analysis. However, there was no evidence for a significant association between the five SNPs and PD risk in dominant, codominant and allele models, suggesting a lack of association between PLA2G6 genetic variation and PD susceptibility. CONCLUSION The present study assessed the association of PLA2G6 genetic polymorphism with the risk PD, and the result strongly demonstrates that PLA2G6 polymorphism is not associated with PD susceptibility.
Collapse
Affiliation(s)
- Hongmei Liu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yamin Yao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hongbo Liu
- Department of Blood Transfusion, Loudi Center Hospital, Loudi, People's Republic of China
| | - Yanmin Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Juanjuan Ren
- Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaohui Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ruizhi Mao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuncheng Zhu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiang Niu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Yang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiujia Sun
- Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ping Jiang
- Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Laboratory of Biochemistry and Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Brezavar D, Bonnen PE. Incidence of PKAN determined by bioinformatic and population-based analysis of ~140,000 humans. Mol Genet Metab 2019; 128:463-469. [PMID: 31540697 PMCID: PMC8610229 DOI: 10.1016/j.ymgme.2019.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Panthothenate kinase-associated neurodegeneration (PKAN, OMIM 234200), is an inborn is an autosomal recessive inborn error of metabolism caused by pathogenic variants in PANK2. PANK2 encodes the enzyme pantothenate kinase 2 (EC 2.7.1.33), an essential regulatory enzyme in CoA biosynthesis. Clinical presentation includes dystonia, rigidity, bradykinesia, dysarthria, pigmentary retinopathy and dementia with variable age of onset ranging from childhood to adulthood. In order to provide an accurate incidence estimate of PKAN, we conducted a systematic review of the literature and databases for pathogenic mutations and constructed a bioinformatic profile for pathogenic missense variants in PANK2. We then studied the gnomAD cohort of ~140,000 unrelated adults from global populations to determine the allele frequency of the variants in PANK2 reported pathogenic for PKAN and for those additional variants identified in gnomAD that met bioinformatics criteria for being potentially pathogenic. Incidence was estimated based on three different models using the allele frequencies of pathogenic PKAN variants with or without those bioinformatically determined to be potentially pathogenic. Disease incidence calculations showed PKAN incidence ranging from 1:396,006 in Europeans, 1:1,526,982 in Africans, 1:480,826 in Latino, 1:523,551 in East Asians and 1:531,118 in South Asians. These results indicate PKAN is expected to occur in approximately 2 of every 1 million live births globally outside of Africa, and has a much lower incidence 1 in 1.5 million live births in the African population.
Collapse
Affiliation(s)
- Daniel Brezavar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Wang ZB, Liu JY, Xu XJ, Mao XY, Zhang W, Zhou HH, Liu ZQ. Neurodegeneration with brain iron accumulation: Insights into the mitochondria dysregulation. Biomed Pharmacother 2019; 118:109068. [PMID: 31404774 DOI: 10.1016/j.biopha.2019.109068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
NBIA (Neurodegeneration with brain iron accumulation) is a group of inherited neurologic disorders characterized by marked genetic heterogeneity, in which iron atypical accumulates in basal ganglia resulting in brain magnetic resonance imaging changes, histopathological abnormalities, and neuropsychiatric clinical symptoms. With the rapid development of high-throughput sequencing technologies, ten candidate genes have been identified, including PANK2, PLA2G6, C19orf12, WDR45, FA2H, ATP13A2, FTL, CP, C2orf37, and COASY. They are involved in seemingly unrelated cellular pathways, such as iron homeostasis (FTL, CP), lipid metabolism (PLA2G6, C19orf12, FA2H), Coenzyme A synthesis (PANK2, COASY), and autophagy (WDR45, ATP13A2). In particular, PANK2, COASY, PLA2G6, and C19orf12 are located on mitochondria, which associate with certain subtypes of NBIA showing mitochondria dysregulation. However, the relationships among those four genes are still unclear. Therefore, this review is specifically focused on dysregulation of mitochondria in NBIA and afore-mentioned four genes, with summaries of both pathological and clinical findings.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jun-Yan Liu
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang 421001, PR China
| | - Xiao-Jing Xu
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Xiao-Yuan Mao
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Wei Zhang
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Departments of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.
| |
Collapse
|
9
|
Abstract
The term NBIA encompasses a heterogeneous group of inherited disorders characterized clinically by progressive extra pyramidal syndrome and pathologically by excessive iron deposition in brain, primarily affecting the basal ganglia (globus pallidus mainly). The hallmark of this syndrome is the age specific phenotypic presentation and intraphenotypic heterogeneity. NBIAs at present include ten subtypes with genes identified in nine subtypes. They form an important differential diagnosis for the phenotype of global developmental delay in infancy/childhood to dystonia-parkinsonism or isolated parkinsonism at all ages and also for the isolated craniocervical dystonia of adult onset. There needs to be a high index of clinical suspicion for this syndrome and the evaluation includes MRI brain T2* weighted imaging which reveal symmetrical iron deposition in bilateral globus pallidi and other basal ganglia. The T2 * imaging pattern of iron deposition varies amongst the different subtypes and the combination of clinical phenotype and MRI signature makes it easier to confidently make a diagnosis of NBIA and to recommend genetic testing. The treatment to date is mostly symptomatic with targeted therapies on the horizon.
Collapse
Affiliation(s)
- Amit Batla
- Honorary Consultant Neurologist, National Hospital for Neurology and Neurosurgery, Queen Square, Luton, United Kingdom.,Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Luton, United Kingdom.,Consultant Neurologist, Luton and Dunstable University Hospital, NHS Foundation Trust, Luton, United Kingdom
| | - Chandana Gaddipati
- Consultant Neurologist, St Joseph's Hospital, Andhra Pradesh, India.,Consultant Neurologist, Vanita Vaidysala, Guntur, Andhra Pradesh, India
| |
Collapse
|
10
|
Rohani M, Shahidi G, Alavi A, Lang AE, Yousefi N, Razme S, Fasano A. Tremor-Dominant Pantothenate Kinase-associated Neurodegeneration. Mov Disord Clin Pract 2017; 4:772-774. [PMID: 30838286 DOI: 10.1002/mdc3.12512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 11/07/2022] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) includes a rare and heterogeneous group of disorders characterized by iron deposition in the basal ganglia. Pantothenate kinase-associated neurodegeneration (PKAN) is the most common NBIA and has 2 main presentations: typical and atypical, the latter rarely presents with tremor. Our reported patients underwent full neurologic examination, standard brain magnetic imaging, and genetic testing for PKAN. Three patients who had "tremor-dominant" PKAN with a relatively benign course were reported, including 1 with dystonic tremor and 2 with parkinsonian tremor. All 3 patients had homozygous mutations in the PANK2 gene and typical eye of the tiger sign on brain imaging. PKAN (and NBIA in general) may be a potential cause of tremor, thus emphasizing the need to consider this diagnosis even in patients with a clinical diagnosis of essential, dystonic, or parkinsonian tremor.
Collapse
Affiliation(s)
- Mohammad Rohani
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Toronto Western Hospital and Division of Neurology University of Toronto Toronto Ontario Canada.,Department of Neurology Hazrat Rasool Hospital Iran University of Medical Sciences Tehran Iran
| | - Gholamali Shahidi
- Department of Neurology Hazrat Rasool Hospital Iran University of Medical Sciences Tehran Iran
| | - Afagh Alavi
- Genetics Research Center University of Social Welfare and Rehabilitation Sciences Tehran Iran
| | - Anthony E Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Toronto Western Hospital and Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Research Institute Toronto Ontario Canada
| | - Niloufar Yousefi
- School of Biology College of Science University of Tehran Tehran Iran
| | - Said Razme
- Department of Neurology Hazrat Rasool Hospital Iran University of Medical Sciences Tehran Iran
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Toronto Western Hospital and Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Research Institute Toronto Ontario Canada
| |
Collapse
|
11
|
Atypical pantothenate kinase-associated neurodegeneration: Clinical description of two brothers and a review of the literature. Rev Neurol (Paris) 2017. [PMID: 28629633 DOI: 10.1016/j.neurol.2017.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two clinical forms of pantothenate kinase-associated neurodegeneration (PKAN) have been described: typical PKAN and atypical PKAN. Atypical PKAN has later onset and a slower course of disease. This report describes two siblings with the atypical form of PKAN, combining dystonia, irritability and a dysmorphia syndrome. In addition, a review of the literature was carried out for all published cases of atypical PKAN to gather descriptions of its various clinical presentations, age of onset and MRI findings, and to highlight the different treatments used for PKAN patients.
Collapse
|
12
|
Evolution and novel radiological changes of neurodegeneration associated with mutations in C19orf12. Parkinsonism Relat Disord 2017; 39:71-76. [DOI: 10.1016/j.parkreldis.2017.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 11/21/2022]
|
13
|
Udani V, Das S, Chhabria R. Panthotenate Kinase-Associated Neurodegeneration Has a Founder Mutation (c.215_216insa) in Indian Agrawal Patients. Mov Disord Clin Pract 2017; 4:96-99. [PMID: 30713952 PMCID: PMC6353435 DOI: 10.1002/mdc3.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/30/2015] [Accepted: 01/09/2016] [Indexed: 11/10/2022] Open
Abstract
The early-onset classic form of panthotenate kinase-associated neurodegeneration (PKAN) is a rare genetic disorder of brain iron deposition associated with mutations in the pantothenate kinase 2 gene. Genetic testing was performed in 17 patients with early-onset classic PKAN and 2 atypical patients identified from a clinic database. Seventeen patients with early-onset classic disease exhibited pathogenic mutations in the panthotenate kinase 2 (PANK2) gene. One atypical patient had an indeterminate result and the other atypical case was later confirmed to have late-onset GM1 gangliosidosis. Of the 17, 13 belonged to the Agrawal community, with a common truncating mutation, c.215_216insA, in the homozygous state in all, which is highly suggestive of a founder effect. Of the remaining 4 patients, 2 had novel mutations. PKAN is the third neurological disease after megelencephalic leukoencephalopathy with subcortical cysts and calpainopathy with founder mutations in the Agrawal community.
Collapse
Affiliation(s)
- Vrajesh Udani
- Department of Pediatrics and NeurologyP.D. Hinduja National Hospital & Medical Research CentreMumbaiIndia
| | - Soma Das
- Department of Human GeneticsUniversity of ChicagoChicagoILUSA
| | - Rahul Chhabria
- Department of CardiologyJaslok Hospital & Medical Research CenterMumbaiIndia
| |
Collapse
|
14
|
Abstract
Neurodegeneration with brain iron accumulation (NBIA) describes a heterogeneous group of inherited rare clinical and genetic entities. Clinical core symptoms comprise a combination of early-onset dystonia, pyramidal and extrapyramidal signs with ataxia, cognitive decline, behavioral abnormalities, and retinal and axonal neuropathy variably accompanying these core features. Increased nonphysiologic, nonaging-associated brain iron, most pronounced in the basal ganglia, is often termed the unifying characteristic of these clinically variable disorders, though occurrence and extent can be fluctuating or even absent. Neuropathologically, NBIA disorders usually are associated with widespread axonal spheroids and local iron accumulation in the basal ganglia. Postmortem, Lewy body, TDP-43, or tau pathology has been observed. Genetics have fostered ongoing progress in elucidating underlying pathophysiologic mechanisms of NBIA disorders. Ten associated genes have been established, with many more being suggested as new technologies and data emerge. Clinically, certain symptom combinations can suggest a specific genetic defect. Genetic tests, combined with postmortem neuropathology, usually make for the final disease confirmation. Despite these advances, treatment to date remains mainly symptomatic. This chapter reviews the established genetic defects leading to different NBIA subtypes, highlights phenotypic presentations to direct genetic testing, and briefly discusses the scarce available treatment options and upcoming challenges and future hopes of the field.
Collapse
Affiliation(s)
- Sarah Wiethoff
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany.
| | - Henry Houlden
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
15
|
|
16
|
Ankala A, Tamhankar PM, Valencia CA, Rayam KK, Kumar MM, Hegde MR. Clinical Applications and Implications of Common and Founder Mutations in Indian Subpopulations. Hum Mutat 2014; 36:1-10. [DOI: 10.1002/humu.22704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Arunkanth Ankala
- Department of Human Genetics; Emory University School of Medicine; Atlanta Georgia
| | - Parag M. Tamhankar
- ICMR Genetic Research Center; National Institute for Research in Reproductive Health; Mumbai Maharashtra India
| | - C. Alexander Valencia
- Division of Human Genetics; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
- Department of Pediatrics; University of Cincinnati Medical School; Cincinnati Ohio
| | - Krishna K. Rayam
- Department of Biosciences; CMR Institute of Management Studies; Bangalore Karnataka India
| | - Manisha M. Kumar
- Department of Biosciences; CMR Institute of Management Studies; Bangalore Karnataka India
| | - Madhuri R. Hegde
- Department of Human Genetics; Emory University School of Medicine; Atlanta Georgia
| |
Collapse
|
17
|
Dusek P, Tovar Martinez EM, Madai VI, Jech R, Sobesky J, Paul F, Niendorf T, Wuerfel J, Schneider SA. 7-Tesla Magnetic Resonance Imaging for Brain Iron Quantification in Homozygous and Heterozygous PANK2 Mutation Carriers. Mov Disord Clin Pract 2014; 1:329-335. [PMID: 30363918 DOI: 10.1002/mdc3.12080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023] Open
Abstract
Pantothenate-kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder characterized by iron deposits in basal ganglia. The aim of this study was to quantify iron concentrations of deep gray matter structures in heterozygous PANK2 mutation carriers and in PKAN patients using quantitative susceptibility mapping MRI. By determining iron concentration, we intended to find mutation-specific brain parenchymal stigmata in heterozygous PANK2 mutation carriers in comparison to age-matched healthy volunteers. We studied 11 heterozygous PANK2 gene mutation carriers (mean age: 43.4 years; standard deviation [SD]: 10.5), who were found to be clinically asymptomatic by neurological examination. These carriers were compared to 2 clinically affected PKAN patients 21 and 32 years of age and to 13 age-matched, healthy controls (mean age: 39.7; SD, 13.6). Scanning was performed on a 7.0-Tesla whole-body scanner applying three-dimensional susceptibility-weighted gradient echo acquisitions. Susceptibility maps were calculated by threshold-based k-space division with single-orientation acquisition. Magnetic susceptibility values, relative to the occipital white matter, were determined for the following regions of interest (ROI): globus pallidus (GP), thalamus, putamen, internal capsule (IC), caudate nucleus, substantia nigra (SN), and red nucleus. Heterozygous PANK2 mutation carriers did not show increased brain iron concentrations, compared to healthy controls (P > 0.05), in any of the examined ROIs. In PKAN patients, more than 3 times higher concentrations of iron were found in the GP, SN, and IC. Our results suggest that heterozygous mutations in PANK2 gene do not cause brain iron accumulation nor do they cause movement disorders.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience Charles University in Prague First Faculty of Medicine and General University Hospital in Prague Prague Czech Republic.,Institute of Neuroradiology University Medicine Goettingen Goettingen Germany
| | | | - Vince Istvan Madai
- Department of Neurology and Center for Stroke Research Berlin Charité-Universitaetsmedizin Berlin Germany
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience Charles University in Prague First Faculty of Medicine and General University Hospital in Prague Prague Czech Republic
| | - Jan Sobesky
- Department of Neurology and Center for Stroke Research Berlin Charité-Universitaetsmedizin Berlin Germany.,Experimental and Clinical Research Center Charité-Universitaetsmedizin and Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center Charité University Medicine Berlin Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility Max-Delbrueck Center for Molecular Medicine Berlin Germany.,Experimental and Clinical Research Center Charité-Universitaetsmedizin and Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Jens Wuerfel
- Institute of Neuroradiology University Medicine Goettingen Goettingen Germany.,Berlin Ultrahigh Field Facility Max-Delbrueck Center for Molecular Medicine Berlin Germany.,Experimental and Clinical Research Center Charité-Universitaetsmedizin and Max Delbrueck Center for Molecular Medicine Berlin Germany.,NeuroCure Clinical Research Center Charité University Medicine Berlin Berlin Germany
| | | |
Collapse
|
18
|
|
19
|
Tanteles GA, Spanou-Aristidou E, Antoniou C, Christophidou-Anastasiadou V, Kleopa KA. Novel homozygous PANK2 mutation causing atypical pantothenate kinase-associated neurodegeneration (PKAN) in a Cypriot family. J Neurol Sci 2014; 340:233-6. [DOI: 10.1016/j.jns.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 12/14/2022]
|
20
|
Schneider SA, Zorzi G, Nardocci N. Pathophysiology and treatment of neurodegeneration with brain iron accumulation in the pediatric population. Curr Treat Options Neurol 2013; 15:652-67. [PMID: 23888388 DOI: 10.1007/s11940-013-0254-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OPINION STATEMENT Syndromes of neurodegeneration with brain iron accumulation (NBIA) are characterized by increased iron deposition in the basal ganglia leading to complex progressive neurological symptoms. Several genetically distinct subforms have been recognized. In addition to pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), further genetic causes continue to be identified. Most of these present in childhood and are inherited following an autosomal recessive trait. However, the clinical and pathological spectrum has broadened and new age-dependent presentations have been described and there is overlap between the different NBIA disorders and with other diseases (such as spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis). Thus, additional clinical information (e.g., radiological findings such as precise patters of deposition of iron or co-occurrence of white matter lesions) may be useful when prioritizing genetic screening. Neuropathological work-up demonstrated variable involvement of iron deposition, but also Lewy bodies, neurofibrillary tangles and spheroid bodies. Treatment remains symptomatic. Here we review characteristic features of NBIA syndromes with a focus on pediatric cases.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, University of Kiel, Arnold Heller Str 3, 24105, Kiel, Germany,
| | | | | |
Collapse
|
21
|
Stamelou M, Lai SC, Aggarwal A, Schneider SA, Houlden H, Yeh TH, Batla A, Lu CS, Bhatt M, Bhatia KP. Dystonic opisthotonus: a "red flag" for neurodegeneration with brain iron accumulation syndromes? Mov Disord 2013; 28:1325-9. [PMID: 23736975 PMCID: PMC4208296 DOI: 10.1002/mds.25490] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/11/2013] [Accepted: 04/01/2013] [Indexed: 01/06/2023] Open
Abstract
Back arching was reported in one of the very first patients with neurodegeneration with brain iron accumulation syndrome (NBIAs) published in 1936. However, recent reports have mainly focused on the genetic and imaging aspects of these disorders, and the phenotypic characterization of the dystonia has been lost. In evaluating patients with NBIAs in our centers, we have observed that action-induced dystonic opisthotonus is a common and characteristic feature of NBIAs. Here, we present a case series of patients with NBIAs presenting this feature demonstrated by videos. We suggest that dystonic opisthotonus could be a useful “red flag” for clinicians to suspect NBIAs, and we discuss the differential diagnosis of this feature. This would be particularly useful in identifying patients with NBIAs and no iron accumulation as yet on brain imaging (for example, as in phospholipase A2, group IV (cytosolic, calcium-independent) [PLA2G6]-related disorders), and it has management implications. © 2013 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maria Stamelou
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ankala A, Kohn JN, Dastur R, Gaitonde P, Khadilkar SV, Hegde MR. Ancestral founder mutations in calpain-3 in the Indian Agarwal community: historical, clinical, and molecular perspective. Muscle Nerve 2013; 47:931-7. [PMID: 23666804 DOI: 10.1002/mus.23763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Clinical heterogeneity of limb-girdle muscular dystrophies (LGMDs, 24 known subtypes), which includes overlapping phenotypes and varying ages of onset and morbidity, adds complexity to clinical and molecular diagnoses. METHODS To diagnose LGMD subtype, protein analysis, using immunohistochemistry (IHC) and immunoblotting, was followed by gene sequencing through a panel approach (simultaneous sequencing of known LGMD genes) in 9 patients from unrelated families of the Indian Agarwal community. Haplotype studies were performed by targeted SNP genotyping to establish mutation segregation. RESULTS We identified 2 founder mutations in CAPN3, a missense (c.2338G>C; p.D780H) and a splice-site (c.2099-1G>T) mutation, on 2 different haplotype backgrounds. The patients were either heterozygous for both or homozygous for either of these mutations. CONCLUSIONS Founder mutations have immediate clinical application, at least in selected population groups. Clinically available gene panels may provide a definitive molecular diagnosis for heterogeneous disorders such as LGMD.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
23
|
Late onset atypical pantothenate-kinase-associated neurodegeneration. Case Rep Neurol Med 2013; 2013:860201. [PMID: 23634310 PMCID: PMC3619544 DOI: 10.1155/2013/860201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 12/14/2022] Open
Abstract
Introduction. Pantothenate-kinase-associated neurodegeneration (PKAN) is a rare genetic disease and a form of neurodegeneration with brain iron accumulation (NBIA). It most commonly begins in the first two decades of life but should be considered in the differential diagnosis of patients at any age with an atypical progressive extrapyramidal disorder and cognitive impairment. Few late-adult cases have been reported. Case Report. A 50-year-old woman presented with a history of progressive dysarthria and dysphagia secondary to orolingual dystonia. Initial work-up was normal. There was no family history. Her initial symptoms were followed by the onset of blepharospasm, cervical dystonia, Parkinsonism, and cognitive impairment. Follow-up MRI four years after presentation revealed the diagnostic “eye-of-the-tiger” sign. Genetic testing confirmed a homozygous missense mutation consistent with the diagnosis of PKAN. Conclusion. Although PKAN is a rare genetic disorder most commonly seen in childhood, it should be considered in adult patients with a history of progressive focal dystonia or atypical Parkinsonism. As the radiographic findings are quite characteristic, genetic testing should be performed if the MRI shows evidence of iron accumulation. Optimal treatment strategies are not known, and at the current time therapies should be directed at the specific manifestations of the disease.
Collapse
|
24
|
Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP. Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Curr Neuropharmacol 2013; 11:59-79. [PMID: 23814539 PMCID: PMC3580793 DOI: 10.2174/157015913804999469] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/06/2012] [Accepted: 07/03/2012] [Indexed: 01/19/2023] Open
Abstract
Our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. In addition to the core syndromes of pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). In parallel, the clinical and pathological spectrum has broadened and new age-dependent presentations are being described. There is also growing recognition of overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis which makes a diagnosis solely based on clinical findings challenging. Autopsy examination of genetically-confirmed cases demonstrates Lewy bodies, neurofibrillary tangles, and other hallmarks of apparently distinct neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease. Until we disentangle the various NBIA genes and their related pathways and move towards pathogenesis-targeted therapies, the treatment remains symptomatic. Our aim here is to provide an overview of historical developments of research into iron metabolism and its relevance in neurodegenerative disorders. We then focus on clinical features and investigational findings in NBIA and summarize therapeutic results reviewing reports of iron chelation therapy and deep brain stimulation. We also discuss genetic and molecular underpinnings of the NBIA syndromes.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology; University of Kiel, 24105 Kiel, Germany
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, England
| | - Ana Westenberger
- Schilling Section of Clinical and Molecular Neurogenetics at the Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
25
|
Schneider SA, Bhatia KP. Excess iron harms the brain: the syndromes of neurodegeneration with brain iron accumulation (NBIA). J Neural Transm (Vienna) 2012; 120:695-703. [PMID: 23212724 DOI: 10.1007/s00702-012-0922-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/11/2012] [Indexed: 12/14/2022]
Abstract
Regulation of iron metabolism is crucial: both iron deficiency and iron overload can cause disease. In recent years, our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. These are characterized by excessive iron deposition in the brain, mainly the basal ganglia. Pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2) are the core syndromes, but several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). These conditions show a wide clinical and pathological spectrum, with clinical overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies, and neuronal ceroid lipofuscinosis. Lewy body pathology was confirmed in some clinical subtypes (C19orf12-associated neurodegeneration and PLAN). Research aims at disentangling the various NBIA genes and their related pathways to move towards pathogenesis-targeted therapies. Until then treatment remains symptomatic. Here we will introduce the group of NBIA syndromes and review the main clinical features and investigational findings.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, University Kiel, Arnold Heller Str. 3, 24105, Kiel, Germany.
| | | |
Collapse
|
26
|
Schneider SA, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation. Semin Pediatr Neurol 2012; 19:57-66. [PMID: 22704258 DOI: 10.1016/j.spen.2012.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In parallel to recent developments of genetic techniques, understanding of the syndromes of neurodegeneration with brain iron accumulation has grown considerably. The acknowledged clinical spectrum continues to broaden, with age-dependent presentations being recognized. Postmortem brain examination of genetically confirmed cases has demonstrated Lewy bodies and/or tangles in some forms, bridging the gap to more common neurodegenerative disorders, including Parkinson disease. In this review, the major forms of neurodegeneration with brain iron accumulation (NBIA) are summarized, concentrating on clinical findings and molecular insights. In addition to pantothenate kinase-associated neurodegeneration (PKAN) and phospholipase A2-associated neurodegeneration (PLAN), fatty acid hydroxylase-associated neurodegeneration (FAHN) NBIA, mitochondrial protein-associated neurodegeneration, Kufor-Rakeb disease, aceruloplasminemia, neuroferritinopathy, and SENDA syndrome (static encephalopathy of childhood with neurodegeneration in adulthood) are discussed.
Collapse
Affiliation(s)
- Susanne A Schneider
- Schilling Section of Clinical and Molecular Neurogenetics, Department of Neurology, University of Lübeck, Lübeck, Germany.
| | | |
Collapse
|
27
|
Keogh MJ, Chinnery PF. Current concepts and controversies in neurodegeneration with brain iron accumulation. Semin Pediatr Neurol 2012; 19:51-6. [PMID: 22704257 DOI: 10.1016/j.spen.2012.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) encompasses at least 7 genetically distinct disorders, and additional causative genes likely await identification. Recent advances have included the characterization of new genes associated with new subtypes of NBIA and also highlighted the phenotypic heterogeneity of this class of disorders. Herein, we summarize current concepts of NBIA pathogenesis and discuss important gaps in current knowledge, outlining key questions in the field.
Collapse
Affiliation(s)
- Michael J Keogh
- Mitochondrial Research Group, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle Upon Tyne, UK
| | | |
Collapse
|
28
|
Iron dysregulation in movement disorders. Neurobiol Dis 2012; 46:1-18. [DOI: 10.1016/j.nbd.2011.12.054] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 01/04/2023] Open
|
29
|
Schneider SA, Hardy J, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation (NBIA): An update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord 2011; 27:42-53. [DOI: 10.1002/mds.23971] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 11/07/2022] Open
|
30
|
Abstract
The condition originally called Hallervorden-Spatz syndrome is a collection of related disorders involving abnormal iron accumulation in the basal ganglia, usually manifesting with a movement disorder. To date, mutations in the following genes have been associated with neurodegeneration with brain iron accumulation (NBIA) phenotypes: PANK2, PLA2G6, FA2H, ATP13A2, C2orf37, CP, and FTL. This collection, now classified under the umbrella term NBIA, continues to evolve as new genes and associated phenotypes are recognized. As this body of information continues to grow, better approaches to diagnosis and treatment have become available. Continued investigations of the underlying pathogenesis of disease, with a focus on lipid, iron, and energy metabolism, will lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Allison Gregory
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Mailcode L103, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
31
|
Brüggemann N, Wuerfel J, Petersen D, Klein C, Hagenah J, Schneider SA. Idiopathic NBIA - clinical spectrum and transcranial sonography findings. Eur J Neurol 2011; 18:e58-9. [DOI: 10.1111/j.1468-1331.2010.03298.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Abstract
The list of genetic causes of syndromes of dystonia parkinsonism grows constantly. As a consequence, the diagnosis becomes more and more challenging for the clinician. Here, we summarize the important causes of dystonia parkinsonism including autosomal-dominant, recessive, and x-linked forms. We cover dopa-responsive dystonia, Wilson's disease, Parkin-, PINK1-, and DJ-1-associated parkinsonism (PARK2, 6, and 7), x-linked dystonia-parkinsonism/Lubag (DYT3), rapid-onset dystonia-parkinsonism (DYT12) and DYT16 dystonia, the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) including pantothenate kinase (PANK2)- and PLA2G6 (PARK14)-associated neurodegeneration, neuroferritinopathy, Kufor-Rakeb disease (PARK9) and the recently described SENDA syndrome; FBXO7-associated neurodegeneration (PARK15), autosomal-recessive spastic paraplegia with a thin corpus callosum (SPG11), and dystonia parkinsonism due to mutations in the SLC6A3 gene encoding the dopamine transporter. They have in common that in all these syndromes there may be a combination of dystonic and parkinsonian features, which may be complicated by pyramidal tract involvement. The aim of this review is to familiarize the clinician with the phenotypes of these disorders.
Collapse
Affiliation(s)
- Susanne A Schneider
- Sobell Department for Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.
| | | |
Collapse
|
33
|
Mak CM, Sheng B, Lee HHC, Lau KK, Chan WT, Lam CW, Chan YW. Young-Onset Parkinsonism in a Hong Kong Chinese Man With Adult-Onset Hallervorden–Spatz Syndrome. Int J Neurosci 2011; 121:224-7. [DOI: 10.3109/00207454.2010.542843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|