1
|
Wong PL, Yang YR, Huang SF, Wang RY. Effects of DLPFC tDCS Followed by Treadmill Training on Dual-Task Gait and Cortical Excitability in Parkinson's Disease: A Randomized Controlled Trial. Neurorehabil Neural Repair 2024; 38:680-692. [PMID: 39104216 DOI: 10.1177/15459683241268583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
BACKGROUND Gait disturbances are exacerbated in people with Parkinson's disease (PD) during dual-task walking (DTW). Transcranial direct current stimulation (tDCS) has been shown to exert beneficial effects on gait performance and cortical excitability in PD; however, its combined effects with treadmill training (TT) remain undetermined. OBJECTIVE To investigate the effects of tDCS followed by TT on DTW performance and cortical excitability in individuals with PD. METHODS Thirty-four PD participants were randomized to dorsal lateral prefrontal cortex (DLPFC) tDCS and TT group (DLPFC tDCS + TT group) or sham tDCS and TT group (sham tDCS + TT group) for 50 minutes per session (20 minutes tDCS followed by 30 minutes TT), 12 sessions within 5 weeks (2-3 sessions each week). Outcome measures included cognitive dual-task walking (CDTW), motor dual-task walking (MDTW), usual walking performance, cortical excitability, functional mobility, cognitive function, and quality of life. RESULTS The DLPFC tDCS + TT group exerted significantly greater improvement in CDTW velocity (P = .046), cadence (P = .043), and stride time (P = .041) compared to sham tDCS + TT group. In addition, DLPFC tDCS + TT group demonstrated a significant increase in resting motor threshold of stimulated hemisphere compared with sham tDCS + TT group (P = .026). However, no significant differences between groups were found in MDTW performance and other outcomes. CONCLUSION Twelve-session DLPFC tDCS followed by TT significantly improved CDTW performance and decreased cortical excitability more than TT alone in individuals with PD. Applying DLPFC tDCS prior to TT could be suggested for gait rehabilitation in individuals with PD. CLINICAL TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry ACTRN12622000101785.
Collapse
Affiliation(s)
- Pei-Ling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shih-Fong Huang
- Division of Nerve Repair, Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
2
|
Lanza G, Cosentino FII, Lanuzza B, Tripodi M, Aricò D, Figorilli M, Puligheddu M, Fisicaro F, Bella R, Ferri R, Pennisi M. Reduced Intracortical Facilitation to TMS in Both Isolated REM Sleep Behavior Disorder (RBD) and Early Parkinson's Disease with RBD. J Clin Med 2022; 11:jcm11092291. [PMID: 35566417 PMCID: PMC9104430 DOI: 10.3390/jcm11092291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND a reduced intracortical facilitation (ICF), a transcranial magnetic stimulation (TMS) measure largely mediated by glutamatergic neurotransmission, was observed in subjects affected by isolated REM sleep behavior disorder (iRBD). However, direct comparison between iRBD and Parkinson's disease (PD) with RBD is currently lacking. METHODS resting motor threshold, contralateral cortical silent period, amplitude and latency of motor evoked potentials, short-interval intracortical inhibition, and intracortical facilitation (ICF) were recorded from 15 drug-naïve iRBD patients, 15 drug-naïve PD with RBD patients, and 15 healthy participants from the right First Dorsal Interosseous muscle. REM sleep atonia index (RAI), Mini Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and Epworth Sleepiness Scale (ESS) were assessed. RESULTS Groups were similar for sex, age, education, and patients for RBD duration and RAI. Neurological examination, MMSE, ESS, and GDS were normal in iRBD patients and controls; ESS scored worse in PD patients, but with no difference between groups at post hoc analysis. Compared to controls, both patient groups exhibited a significantly decreased ICF, without difference between them. CONCLUSIONS iRBD and PD with RBD shared a reduced ICF, thus suggesting the involvement of glutamatergic transmission both in subjects at risk for degeneration and in those with an overt α-synucleinopathy.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Filomena Irene Ilaria Cosentino
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Debora Aricò
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy; (M.F.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Monica Puligheddu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy; (M.F.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Via Santa Sofia 78, 95125 Catania, Italy;
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
3
|
Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci 2021. [PMID: 34942893 DOI: 10.3390/brainsci11121588.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
REM sleep without atonia (RSWA) is the polysomnographic (PSG) hallmark of rapid eye movement (REM) sleep behavior disorder (RBD), a feature essential for the diagnosis of this condition. Several additional neurophysiological aspects of this complex disorder have also recently been investigated in depth, which constitute the focus of this narrative review, together with RSWA. First, we describe the complex neural network underlying REM sleep and its muscle atonia, focusing on the disordered mechanisms leading to RSWA. RSWA is then described in terms of its polysomnographic features, and the methods (visual and automatic) currently available for its scoring and quantification are exposed and discussed. Subsequently, more recent and advanced neurophysiological features of RBD are described, such as electroencephalography during wakefulness and sleep, transcranial magnetic stimulation, and vestibular evoked myogenic potentials. The role of the assessment of neurophysiological features in the study of RBD is then carefully discussed, highlighting their usefulness and sensitivity in detecting neurodegeneration in the early or prodromal stages of RBD, as well as their relationship with other proposed biomarkers for the diagnosis, prognosis, and monitoring of this condition. Finally, a future research agenda is proposed to help clarify the many still unclear aspects of RBD.
Collapse
|
4
|
Figorilli M, Lanza G, Congiu P, Lecca R, Casaglia E, Mogavero MP, Puligheddu M, Ferri R. Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci 2021; 11:brainsci11121588. [PMID: 34942893 PMCID: PMC8699681 DOI: 10.3390/brainsci11121588] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
REM sleep without atonia (RSWA) is the polysomnographic (PSG) hallmark of rapid eye movement (REM) sleep behavior disorder (RBD), a feature essential for the diagnosis of this condition. Several additional neurophysiological aspects of this complex disorder have also recently been investigated in depth, which constitute the focus of this narrative review, together with RSWA. First, we describe the complex neural network underlying REM sleep and its muscle atonia, focusing on the disordered mechanisms leading to RSWA. RSWA is then described in terms of its polysomnographic features, and the methods (visual and automatic) currently available for its scoring and quantification are exposed and discussed. Subsequently, more recent and advanced neurophysiological features of RBD are described, such as electroencephalography during wakefulness and sleep, transcranial magnetic stimulation, and vestibular evoked myogenic potentials. The role of the assessment of neurophysiological features in the study of RBD is then carefully discussed, highlighting their usefulness and sensitivity in detecting neurodegeneration in the early or prodromal stages of RBD, as well as their relationship with other proposed biomarkers for the diagnosis, prognosis, and monitoring of this condition. Finally, a future research agenda is proposed to help clarify the many still unclear aspects of RBD.
Collapse
Affiliation(s)
- Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Patrizia Congiu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Rosamaria Lecca
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Elisa Casaglia
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Maria P. Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, 27100 Pavia, Italy;
| | - Monica Puligheddu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-0935-936111
| |
Collapse
|
5
|
Ammann C, Dileone M, Pagge C, Catanzaro V, Mata-Marín D, Hernández-Fernández F, Monje MHG, Sánchez-Ferro Á, Fernández-Rodríguez B, Gasca-Salas C, Máñez-Miró JU, Martínez-Fernández R, Vela-Desojo L, Alonso-Frech F, Oliviero A, Obeso JA, Foffani G. Cortical disinhibition in Parkinson's disease. Brain 2021; 143:3408-3421. [PMID: 33141146 DOI: 10.1093/brain/awaa274] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
In Parkinson's disease, striatal dopamine depletion produces profound alterations in the neural activity of the cortico-basal ganglia motor loop, leading to dysfunctional motor output and parkinsonism. A key regulator of motor output is the balance between excitation and inhibition in the primary motor cortex, which can be assessed in humans with transcranial magnetic stimulation techniques. Despite decades of research, the functional state of cortical inhibition in Parkinson's disease remains uncertain. Towards resolving this issue, we applied paired-pulse transcranial magnetic stimulation protocols in 166 patients with Parkinson's disease (57 levodopa-naïve, 50 non-dyskinetic, 59 dyskinetic) and 40 healthy controls (age-matched with the levodopa-naïve group). All patients were studied OFF medication. All analyses were performed with fully automatic procedures to avoid confirmation bias, and we systematically considered and excluded several potential confounding factors such as age, gender, resting motor threshold, EMG background activity and amplitude of the motor evoked potential elicited by the single-pulse test stimuli. Our results show that short-interval intracortical inhibition is decreased in Parkinson's disease compared to controls. This reduction of intracortical inhibition was obtained with relatively low-intensity conditioning stimuli (80% of the resting motor threshold) and was not associated with any significant increase in short-interval intracortical facilitation or intracortical facilitation with the same low-intensity conditioning stimuli, supporting the involvement of cortical inhibitory circuits. Short-interval intracortical inhibition was similarly reduced in levodopa-naïve, non-dyskinetic and dyskinetic patients. Importantly, intracortical inhibition was reduced compared to control subjects also on the less affected side (n = 145), even in de novo drug-naïve patients in whom the less affected side was minimally symptomatic (lateralized Unified Parkinson's Disease Rating Scale part III = 0 or 1, n = 23). These results suggest that cortical disinhibition is a very early, possibly prodromal feature of Parkinson's disease.
Collapse
Affiliation(s)
- Claudia Ammann
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Michele Dileone
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - Cristina Pagge
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - Valentina Catanzaro
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - David Mata-Marín
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - Frida Hernández-Fernández
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain.,Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Nursing, Villaviciosa de Odón, Madrid, Spain
| | - Mariana H G Monje
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - Álvaro Sánchez-Ferro
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | | | - Carmen Gasca-Salas
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - Jorge U Máñez-Miró
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - Raul Martínez-Fernández
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - Lydia Vela-Desojo
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain.,Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Fernando Alonso-Frech
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain.,Hospital Clínico San Carlos, Madrid, Spain
| | | | - José A Obeso
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
6
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Transcranial magnetic stimulation and gait disturbances in Parkinson's disease: A systematic review. Neurophysiol Clin 2020; 50:213-225. [DOI: 10.1016/j.neucli.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
|
8
|
Lee YY, Li MH, Tai CH, Luh JJ. Corticomotor Excitability Changes Associated With Freezing of Gait in People With Parkinson Disease. Front Hum Neurosci 2020; 14:190. [PMID: 32508609 PMCID: PMC7253638 DOI: 10.3389/fnhum.2020.00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Freezing of gait (FOG) is a debilitating gait disorder in people with Parkinson’s disease (PD). While various neuroimaging techniques have been used to investigate the pathophysiology of FOG, changes in corticomotor excitability associated with FOG have yet to be determined. Research to date has not concluded if changes in corticomotor excitability are associated with gait disturbances in this patient population. This study aimed to use transcranial magnetic stimulation (TMS) to investigate corticomotor excitability changes associated with FOG. Furthermore, the relationship between corticomotor excitability and gait performances would be determined. Methods Eighteen participants with PD and FOG (PD + FOG), 15 without FOG (PD − FOG), and 15 non-disabled adults (Control) were recruited for this study. Single and paired-pulse TMS paradigms were used to assess corticospinal and intracortical excitability, respectively. Gait performance was measured by the 10-Meter-Walk test. Correlation analysis was performed to evaluate relationships between TMS outcomes and gait parameters. Results Compared with the Control group, the PD + FOG group showed a significantly lower resting motor threshold and reduced short intracortical inhibition (SICI). Correlation analysis revealed a relationship between resting motor evoked potential and step length, and between SICI and walking velocity in the Control group. While the silent period correlated with step length in the PD − FOG group, no significant relationship was observed in the PD + FOG group. Discussion and Conclusion Compared to the Control group, the PD + FOG group exhibited reduced corticomotor inhibition. Distinct correlations observed among the three groups suggest that the function of the corticomotor system plays an important role in mediating walking ability in non-disabled adults and people with PD − FOG, while people with PD + FOG may rely on neural networks other than the corticomotor system to control gait.
Collapse
Affiliation(s)
- Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Min-Hao Li
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jer-Junn Luh
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Education, Fu-Jen Catholic University, Taipei, Taiwan
| |
Collapse
|
9
|
Lanza G, Aricò D, Lanuzza B, Cosentino FII, Tripodi M, Giardina F, Bella R, Puligheddu M, Pennisi G, Ferri R, Pennisi M. Facilitatory/inhibitory intracortical imbalance in REM sleep behavior disorder: early electrophysiological marker of neurodegeneration? Sleep 2020; 43:5584903. [PMID: 31599326 DOI: 10.1093/sleep/zsz242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVES Previous studies found an early impairment of the short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) to transcranial magnetic stimulation (TMS) in Parkinson's disease. However, very little is known on the TMS correlates of rapid eye movement (REM) sleep behavior disorder (RBD), which can precede the onset of a α-synucleinopathy. METHODS The following TMS measures were obtained from 14 de novo patients with isolated RBD and 14 age-matched healthy controls: resting motor threshold, cortical silent period, latency and amplitude of the motor evoked potentials, SICI, and ICF. A cognitive screening and a quantification of subjective sleepiness (Epworth Sleepiness Scale [ESS]) and depressive symptoms were also performed. RESULTS Neurological examination, global cognitive functioning, and mood status were normal in all participants. ESS score was higher in patients, although not suggestive of diurnal sleepiness. Compared to controls, patients exhibited a significant decrease of ICF (median 0.8, range 0.5-1.4 vs. 1.9, range 1.4-2.3; p < 0.01) and a clear trend, though not significant, towards a reduction of SICI (median 0.55, range 0.1-1.4 vs. 0.25, range 0.1-0.3), with a large effect size (Cohen's d: -0.848). REM Sleep Atonia Index significantly correlated with SICI. CONCLUSIONS In still asymptomatic patients for a parkinsonian syndrome or neurodegenerative disorder, changes of ICF and, to a lesser extent, SICI (which are largely mediated by glutamatergic and GABAergic transmission, respectively) might precede the onset of a future neurodegeneration. SICI was correlated with the muscle tone alteration, possibly supporting the proposed RBD model of retrograde influence on the cortex from the brainstem.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Debora Aricò
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Bartolo Lanuzza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | | | - Mariangela Tripodi
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Floriana Giardina
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Catania, Italy
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Jackson N, Greenhouse I. VETA: An Open-Source Matlab-Based Toolbox for the Collection and Analysis of Electromyography Combined With Transcranial Magnetic Stimulation. Front Neurosci 2019; 13:975. [PMID: 31572120 PMCID: PMC6753167 DOI: 10.3389/fnins.2019.00975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
The combination of electromyography (EMG) and transcranial magnetic stimulation (TMS) offers a powerful non-invasive approach for investigating corticospinal excitability in both humans and animals. Acquiring and analyzing the data produced with this combination of tools requires overcoming multiple technical hurdles. Due in part to these technical hurdles, the field lacks standard routines for EMG data collection and analysis. This poses a problem for study replication and direct comparisons. Although software toolboxes already exist that perform either online EMG data visualization or offline analysis, there currently are no openly available toolboxes that flexibly perform both and also interface directly with peripheral EMG and TMS equipment. Here, we introduce Visualize EMG TMS Analyze (VETA), a MATLAB-based toolbox that supports simultaneous EMG data collection and visualization as well as automated offline processing and is specially tailored for use with motor TMS. The VETA toolbox enables the simultaneous recording of EMG, timed administration of TMS, and presentation of behavioral stimuli from a single computer. These tools also provide a streamlined analysis pipeline with interactive data visualization. Finally, VETA offers a standard EMG data format to facilitate data sharing and open science.
Collapse
Affiliation(s)
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
11
|
Fernández-Lago H, Bello O, Salgado AV, Fernandez-del-Olmo M. Acute kinematic and neurophysiological effects of treadmill and overground walking in Parkinson’s disease. NeuroRehabilitation 2019; 44:433-443. [DOI: 10.3233/nre-182638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Helena Fernández-Lago
- Faculty of Nursing and Physical Therapy, University of Lleida, Lleida, Spain
- Research Group of Health Care (GRECS), IRBLleida, Spain
| | - Olalla Bello
- Department of Physical Therapy, Faculty of Physical Therapy, University of A Coruña, A Coruña, Spain
| | - Antía Vidal Salgado
- Department of Physical Education, Faculty of Sciences of Sport and Physical Education, University of A Coruña, A Coruña, Spain
| | - Miguel Fernandez-del-Olmo
- Department of Physical Education, Faculty of Sciences of Sport and Physical Education, University of A Coruña, A Coruña, Spain
- Physical Education and Sports Area, University of Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
12
|
Allali G, Blumen HM, Devanne H, Pirondini E, Delval A, Van De Ville D. Brain imaging of locomotion in neurological conditions. Neurophysiol Clin 2018; 48:337-359. [PMID: 30487063 PMCID: PMC6563601 DOI: 10.1016/j.neucli.2018.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
Abstract
Impaired locomotion is a frequent and major source of disability in patients with neurological conditions. Different neuroimaging methods have been used to understand the brain substrates of locomotion in various neurological diseases (mainly in Parkinson's disease) during actual walking, and while resting (using mental imagery of gait, or brain-behavior correlation analyses). These studies, using structural (i.e., MRI) or functional (i.e., functional MRI or functional near infra-red spectroscopy) brain imaging, electrophysiology (i.e., EEG), non-invasive brain stimulation (i.e., transcranial magnetic stimulation, or transcranial direct current stimulation) or molecular imaging methods (i.e., PET, or SPECT) reveal extended brain networks involving both grey and white matters in key cortical (i.e., prefrontal cortex) and subcortical (basal ganglia and cerebellum) regions associated with locomotion. However, the specific roles of the various pathophysiological mechanisms encountered in each neurological condition on the phenotype of gait disorders still remains unclear. After reviewing the results of individual brain imaging techniques across the common neurological conditions, such as Parkinson's disease, dementia, stroke, or multiple sclerosis, we will discuss how the development of new imaging techniques and computational analyses that integrate multivariate correlations in "large enough datasets" might help to understand how individual pathophysiological mechanisms express clinically as an abnormal gait. Finally, we will explore how these new analytic methods could drive our rehabilitative strategies.
Collapse
Affiliation(s)
- Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; EA 7369, URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université du Littoral Côte d'Opale, Calais, France
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Delval
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; Unité Inserm 1171, Faculté de Médecine, Université de Lille, Lille, France
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Treadmill Walking Combined With Anodal Transcranial Direct Current Stimulation in Parkinson Disease. Am J Phys Med Rehabil 2017; 96:801-808. [DOI: 10.1097/phm.0000000000000751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Costa-Ribeiro A, Maux A, Bosford T, Aoki Y, Castro R, Baltar A, Shirahige L, Moura Filho A, Nitsche MA, Monte-Silva K. Transcranial direct current stimulation associated with gait training in Parkinson's disease: A pilot randomized clinical trial. Dev Neurorehabil 2017; 20:121-128. [PMID: 26864140 DOI: 10.3109/17518423.2015.1131755] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the effects of transcranial direct current stimulation (tDCS) combined with cueing gait training (CGT) on functional mobility in patients with Parkinson´s disease (PD). METHODS A pilot double-blind controlled, randomized clinical trial was conducted with 22 patients with PD assigned to the experimental (anodal tDCS plus CGT) and control group (sham tDCS plus CGT). The primary outcome (functional mobility) was assessed by 10-m walk test, cadence, stride length, and Timed Up and Go test. Motor impairment, bradykinesia, balance, and quality of life were analyzed as secondary outcomes. Minimal clinically important differences (MCIDs) were observed when assessing outcome data. RESULTS Both groups demonstrated similar gains in all outcome measures, except for the stride length. The number of participants who showed MCID was similar between groups. CONCLUSION The CGT provided many benefits to functional mobility, motor impairment, bradykinesia, balance, and quality of life. However, these effect magnitudes were not influenced by stimulation, but tDCS seems to prolong the effects of cueing therapy on functional mobility.
Collapse
Affiliation(s)
- Adriana Costa-Ribeiro
- a Department of Physical Therapy, Applied Neuroscience Laboratory , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| | - Ariadne Maux
- a Department of Physical Therapy, Applied Neuroscience Laboratory , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| | - Thamyris Bosford
- a Department of Physical Therapy, Applied Neuroscience Laboratory , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| | - Yumi Aoki
- a Department of Physical Therapy, Applied Neuroscience Laboratory , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| | - Rebeca Castro
- a Department of Physical Therapy, Applied Neuroscience Laboratory , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| | - Adriana Baltar
- a Department of Physical Therapy, Applied Neuroscience Laboratory , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| | - Lívia Shirahige
- a Department of Physical Therapy, Applied Neuroscience Laboratory , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| | - Alberto Moura Filho
- b Department of Physical Therapy, Laboratory of Kinesiology and Functional Assessment , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| | - Michael A Nitsche
- c Department of Clinical Neurophysiology , Georg August University , Goettingen , Germany.,d Leibniz Research Centre for Working Environment and Human Resources , Dortmund , Germany.,e Department of Neurology , University Medical Hospital Bergmannsheil , Bochum , Germany
| | - Kátia Monte-Silva
- a Department of Physical Therapy, Applied Neuroscience Laboratory , Universidade Federal de Pernambuco-UFPE , Pernambuco , Brazil
| |
Collapse
|
15
|
Blindfolded Balance Training in Patients with Parkinson's Disease: A Sensory-Motor Strategy to Improve the Gait. PARKINSONS DISEASE 2016; 2016:7536862. [PMID: 26977334 PMCID: PMC4763005 DOI: 10.1155/2016/7536862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 11/17/2022]
Abstract
Aim. Recent evidence suggested that the use of treadmill training may improve gait parameters. Visual deprivation could engage alternative sensory strategies to control dynamic equilibrium and stabilize gait based on vestibulospinal reflexes (VSR). We aimed to investigate the efficacy of a blindfolded balance training (BBT) in the improvement of stride phase percentage reliable gait parameters in patients with Parkinson's Disease (PD) compared to patients treated with standard physical therapy (PT). Methods. Thirty PD patients were randomized in two groups of 15 patients, one group treated with BBT during two weeks and another group treated with standard PT during eight weeks. We evaluated gait parameters before and after BBT and PT interventions, in terms of double stance, swing, and stance phase percentage. Results. BBT induced an improvement of double stance phase as revealed (decreased percentage of double stance phase during the gait cycle) in comparison to PT. The other gait parameters swing and stance phase did not differ between the two groups. Discussion. These results support the introduction of complementary rehabilitative strategies based on sensory-motor stimulation in the traditional PD patient's rehabilitation. Further studies are needed to investigate the neurophysiological circuits and mechanism underlying clinical and motor modifications.
Collapse
|
16
|
Bembenek JP, Kurczych K, Członkowska A. TMS-induced motor evoked potentials in Wilson's disease: a systematic literature review. Bioelectromagnetics 2015; 36:255-66. [PMID: 25808411 DOI: 10.1002/bem.21909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/22/2015] [Indexed: 12/18/2022]
Abstract
Wilson's disease (WD) is a metabolic brain disease resulting from improper copper metabolism. Although pyramidal symptoms are rarely observed, subclinical injury is highly possible as copper accumulates in all brain structures. The usefulness of motor evoked potentials (MEPs) in pyramidal tracts damage evaluation still appears to be somehow equivocal. We searched for original papers assessing the value of transcranial magnetic stimulation elicited MEPs with respect to motor function of upper and lower extremity in WD. We searched PubMed for original papers evaluating use of MEPs in WD using key words: "motor evoked potentials Wilson's disease" and "transcranial magnetic stimulation Wilson's disease." We found six articles using the above key words. One additional article and one case report were found while viewing the references lists. Therefore, we included eight studies. Number of patients in studies was low and their clinical characteristic was variable. There were also differences in methodology. Abnormal MEPs were confirmed in 20-70% of study participants. MEPs were not recorded in 7.6-66.7% of patients. Four studies reported significantly increased cortical excitability (up to 70% of patients). Prolonged central motor conduction time was observed in four studies (30-100% of patients). One study reported absent or prolonged central motor latency in 66.7% of patients. Although MEPs may be abnormal in WD, this has not been thoroughly assessed. Hence, further studies are indispensable to evaluate MEPs' usefulness in assessing pyramidal tract damage in WD.
Collapse
Affiliation(s)
- Jan P Bembenek
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | |
Collapse
|
17
|
Leon-Sarmiento FE, Rizzo-Sierra CV, Leon-Ariza JS, Leon-Ariza DS, Sobota R, Prada DG. A new neurometric dissection of the area-under-curve-associated jiggle of the motor evoked potential induced by transcranial magnetic stimulation. Physiol Behav 2015; 141:111-9. [DOI: 10.1016/j.physbeh.2015.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
18
|
Inadequate modulation of excitability with voluntary dorsiflexion in Parkinson's disease. J Clin Neurophysiol 2014; 31:175-9. [PMID: 24691237 DOI: 10.1097/wnp.0000000000000037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Freezing phenomenon at onset of movement causes gait disturbance in Parkinson's disease (PD), but the pathophysiology is unclear. We studied motor property at onset of dorsiflexion in PD. METHODS In 9 patients with PD and 8 normal subjects, motor evoked potential was recorded from the tibialis anterior muscle under 3 conditions: at rest, during tonic contraction, and at onset of contraction. Motor threshold, size of motor evoked potential and the relationship between the intensity of transcranial magnetic stimulation, and the size of motor evoked potentials (recruitment gain) were examined. RESULTS Motor threshold decreased with voluntary contraction in both PD and normal subjects, but the threshold at rest and during tonic contraction was lower in Parkinson's disease. The size of motor evoked potential with maximal stimulus intensity increased with voluntary contraction in both groups; this tendency was more pronounced in normal subjects. The recruitment gain during contraction was steeper than at rest in normal subjects. However, there was no such increase in PD. CONCLUSIONS There was no increase in recruitment gain with voluntary contraction in PD, which was obvious in normal subjects, especially at onset of voluntary contraction. Modulation of motor excitability at onset of voluntary contraction was impaired in PD.
Collapse
|
19
|
Kačar A, Filipović S, Kresojević N, Milanović S, Ljubisavljević M, Kostić V, Rothwell J. History of exposure to dopaminergic medication does not affect motor cortex plasticity and excitability in Parkinson’s disease. Clin Neurophysiol 2013; 124:697-707. [DOI: 10.1016/j.clinph.2012.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
|
20
|
Novel Mechanisms Underlying Inhibitory and Facilitatory Transcranial Magnetic Stimulation Abnormalities in Parkinson's Disease. Arch Med Res 2013; 44:221-8. [DOI: 10.1016/j.arcmed.2013.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 03/05/2013] [Indexed: 12/31/2022]
|
21
|
Vonloh M, Chen R, Kluger B. Safety of transcranial magnetic stimulation in Parkinson's disease: a review of the literature. Parkinsonism Relat Disord 2013; 19:573-85. [PMID: 23473718 DOI: 10.1016/j.parkreldis.2013.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/18/2012] [Accepted: 01/13/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) has been used in both physiological studies and, more recently, the therapy of Parkinson's disease (PD). Prior TMS studies in healthy subjects and other patient populations demonstrate a slight risk of seizures and other adverse events. Our goal was to estimate these risks and document other safety concerns specific to PD patients. METHODS We performed an English-Language literature search through PudMed to review all TMS studies involving PD patients. We documented any seizures or other adverse events associated with these studies. Crude risks were calculated per subject and per session of TMS. RESULTS We identified 84 single pulse (spTMS) and/or paired-pulse (ppTMS) TMS studies involving 1091 patients and 77 repetitive TMS (rTMS) studies involving 1137 patients. Risk of adverse events was low in all protocols. spTMS and ppTMS risk per patient for any adverse event was 0.0018 (95% CI: 0.0002-0.0066) per patient and no seizures were encountered. Risk of an adverse event from rTMS was 0.040 (95% CI: 0.029-0.053) per patient and no seizures were reported. Other adverse events included transient headaches, scalp pain, tinnitus, nausea, increase in pre-existing pain, and muscle jerks. Transient worsening of Parkinsonian symptoms was noted in one study involving rTMS of the supplementary motor area (SMA). CONCLUSION We conclude that current TMS and rTMS protocols do not pose significant risks to PD patients. We would recommend that TMS users in this population follow the most recent safety guidelines but do not warrant additional precautions.
Collapse
Affiliation(s)
- Matthew Vonloh
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
22
|
Effect of cued training on motor evoked potential and cortical silent period in people with Parkinson’s disease. Clin Neurophysiol 2013; 124:545-50. [DOI: 10.1016/j.clinph.2012.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022]
|
23
|
Crémers J, D'Ostilio K, Stamatakis J, Delvaux V, Garraux G. Brain activation pattern related to gait disturbances in Parkinson's disease. Mov Disord 2012; 27:1498-505. [PMID: 23008169 DOI: 10.1002/mds.25139] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 05/22/2012] [Accepted: 07/12/2012] [Indexed: 12/11/2022] Open
Abstract
Gait disturbances represent a therapeutic challenge in Parkinson's disease (PD). To further investigate their underlying pathophysiological mechanisms, we compared brain activation related to mental imagery of gait between 15 PD patients and 15 age-matched controls using a block-design functional MRI experiment. On average, patients showed altered locomotion relatively to controls, as assessed with a standardized gait test that evaluated the severity of PD-related gait disturbances on a 25-m path. The experiment was conducted in the subjects as they rehearsed themselves walking on the same path with a gait pattern similar as that during locomotor evaluation. Imagined walking times were measured on a trial-by-trial basis as a control of behavioral performance. In both groups, mean imagined walking time was not significantly different from that measured during real gait on the path used for evaluation. The between-group comparison of the mental gait activation pattern with reference to mental imagery of standing showed hypoactivations within parieto-occipital regions, along with the left hippocampus, midline/lateral cerebellum, and presumed pedunculopontine nucleus/mesencephalic locomotor area, in patients. More specifically, the activation level of the right posterior parietal cortex located within the impaired gait-related cognitive network decreased proportionally with the severity of gait disturbances scored on the path used for gait evaluation and mental imagery. These novel findings suggest that the right posterior parietal cortex dysfunction is strongly related to the severity of gait disturbances in PD. This region may represent a target for the development of therapeutic interventions for PD-related gait disturbances.
Collapse
Affiliation(s)
- Julien Crémers
- Movere Group, Cyclotron Research Center, University of Liège, Liège, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Leon-Sarmiento FE, Rizzo-Sierra CV, Bayona EA, Bayona-Prieto J, Bara-Jimenez W. WITHDRAWN: Mechanisms Underlying Inhibitory and Facilitatory Transcranial Magnetic Stimulation Abnormalities in a Large Sample of Patients with Parkinson's Disease. Arch Med Res 2012:S0188-4409(12)00158-0. [PMID: 22721866 DOI: 10.1016/j.arcmed.2012.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Fidias E Leon-Sarmiento
- Smell and Taste Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Unit of Parkinson and Movement Disorders, Mediciencias Research Group, Universidad Nacional/Ramon and Cajal Panamerican Health Foundation, Bogota, Colombia
| | | | | | | | | |
Collapse
|
25
|
Obeso I, Ray NJ, Antonelli F, Cho SS, Strafella AP. Combining functional imaging with brain stimulation in Parkinson's disease. Int Rev Psychiatry 2011; 23:467-75. [PMID: 22200136 DOI: 10.3109/09540261.2011.621414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brain stimulation techniques such as deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS) constitute promising clinical and research tools to investigate neural mechanisms underlying neurological and psychiatric diseases. They have enormous potential in modifying brain activity and subsequent function. However, it is still a matter of debate how either of these stimulation approaches operates to produce the clinical outcomes observed in patients. The combination of these techniques with functional neuroimaging is contributing significantly to disentangle the mechanisms through which brain stimulation affects neuronal activity and related networks. In the present review we outline the research done to date on the effects of DBS and TMS on motor, cognition and behaviour in Parkinson's disease (PD) with particular emphasis on neuroimaging.
Collapse
Affiliation(s)
- Ignacio Obeso
- Toronto Western Research Institute and Hospital, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
26
|
Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A. Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 2011; 22:233-51, ix. [PMID: 21435574 PMCID: PMC3547606 DOI: 10.1016/j.nec.2011.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Noninvasive brain stimulation is a valuable investigative tool and has potential therapeutic applications in cognitive neuroscience, neurophysiology, psychiatry, and neurology. Transcranial magnetic stimulation (TMS) is particularly useful to establish and map causal brain-behavior relations in motor and nonmotor cortical areas. Neuronavigated TMS is able to provide precise information related to the individual's functional anatomy that can be visualized and used during surgical interventions and critically aid in presurgical planning, reducing the need for riskier and more cumbersome intraoperative or invasive mapping procedures. This article reviews methodological aspects, clinical applications, and future directions of TMS-based mapping.
Collapse
Affiliation(s)
- Umer Najib
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shahid Bashir
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Dylan Edwards
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Non-Invasive Brain Stimulation and the Human Motor Control Laboratory, Burke Medical Research Institute, Inc, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Alexander Rotenberg
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Institut Guttman de Neurorehabilitació, Institut Universitari, Universitat Autonoma de Barcelona, Camí de Can Ruti s/n, 08916 Badalona, Spain
| |
Collapse
|