1
|
Ruiz de Sabando A, Ciosi M, Galbete A, Cumming SA, Monckton DG, Ramos-Arroyo MA. Somatic CAG repeat instability in intermediate alleles of the HTT gene and its potential association with a clinical phenotype. Eur J Hum Genet 2024; 32:770-778. [PMID: 38433266 PMCID: PMC11220145 DOI: 10.1038/s41431-024-01546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by ≥36 CAGs in the HTT gene. Intermediate alleles (IAs) (27-35 CAGs) are not considered HD-causing, but their potential association with neurocognitive symptoms remains controversial. As HTT somatic CAG expansion influences HD onset, we hypothesised that IAs are somatically unstable, and that somatic CAG expansion may drive phenotypic presentation in some IA carriers. We quantified HTT somatic CAG expansions by MiSeq sequencing in the blood DNA of 164 HD subjects and 191 IA (symptomatic and control) carriers, and in the brain DNA of a symptomatic 33 CAG carrier. We also performed genotype-phenotype analysis. The phenotype of symptomatic IA carriers was characterised by motor (85%), cognitive (27%) and/or behavioural (29%) signs, with a late (58.7 ± 18.6 years), but not CAG-dependent, age at onset. IAs displayed somatic expansion that were CAG and age-dependent in blood DNA, with 0.4% and 0.01% of DNA molecules expanding by CAG and year, respectively. Somatic expansions of +1 and +2 CAGs were detected in the brain of the individual with 33 CAGs, with the highest expansion frequency in the putamen (10.3%) and the lowest in the cerebellum (4.8%). Somatic expansion in blood DNA was not different in symptomatic vs. control IA carriers. In conclusion, we show that HTT IAs are somatically unstable, but we found no association with HD-like phenotypes. It is plausible, however, that some IAs, close to the HD pathological threshold and with a predisposing genetic background, could manifest with neurocognitive symptoms.
Collapse
Affiliation(s)
- Ainara Ruiz de Sabando
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, 31008, Pamplona, Spain
- Department of Health Sciences, Universidad Pública de Navarra, IdiSNA, 31008, Pamplona, Spain
- Fundación Miguel Servet-Navarrabiomed, IdiSNA, 31008, Pamplona, Spain
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Arkaitz Galbete
- Department of Statistics, Informatics and Mathematics, Universidad Pública de Navarra, IdiSNA, 31006, Pamplona, Spain
| | - Sarah A Cumming
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria A Ramos-Arroyo
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, 31008, Pamplona, Spain.
- Fundación Miguel Servet-Navarrabiomed, IdiSNA, 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Nikitina M, Bragina E, Nazarenko M, Alifirova V. The role of alleles with an intermediate number of trinucleotide repeats in Parkinson’s disease and other neurodegenerative disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:42-50. [DOI: 10.17116/jnevro202212207142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Capiluppi E, Romano L, Rebora P, Nanetti L, Castaldo A, Gellera C, Mariotti C, Macerollo A, Cislaghi MG. Late-onset Huntington's disease with 40-42 CAG expansion. Neurol Sci 2020; 41:869-876. [PMID: 31820322 PMCID: PMC7160095 DOI: 10.1007/s10072-019-04177-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/25/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a CAG expansion greater than 35 in the IT-15 gene. There is an inverse correlation between the number of pathological CAG and the age of onset. However, CAG repeats between 40 and 42 showed a wider onset variation. We aimed to investigate potential clinical differences between patients with age at onset ≥ 60 years (late onset-HD) and patients with age at onset between 30 and 59 years (common-onset HD) in a cohort of patients with the same CAG expansions (40-42). METHODS A retrospective analysis of 66 HD patients with 40-41-42 CAG expansion was performed. Patients were investigated with the Unified Huntington's Disease Rating Scale (subitems I-II-III and Total Functional Capacity, Functional Assessment and Stage of Disease). Data were analysed using χ2, Fisher's test, t test and Pearson's correlation coefficient. GENMOD analysis and Kaplan-Meier analysis were used to study the disease progression. RESULTS The age of onset ranged from 39 to 59 years in the CO subgroup, whereas the LO subgroup showed an age of onset from 60 to 73 years. No family history was reported in 31% of the late-onset in comparison with 20% in common-onset HD (p = 0.04). No difference emerged in symptoms of onset, in clinical manifestations and in progression of disease between the two groups. CONCLUSION There were no clinical differences between CO and LO subgroups with 40-42 CAG expansion. There is a need of further studies on environmental as well genetic variables modifying the age at onset.
Collapse
Affiliation(s)
| | - Luca Romano
- Department of Clinical Sciences "Luigi Sacco"- L. Sacco Hospital, University of Milan, Milan, Italy
| | - Paola Rebora
- Medical Statistics School, University of Milano-Bicocca, Milan, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Castaldo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonella Macerollo
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK.
- School of Psychology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
| | - M Giuliana Cislaghi
- Department of Clinical Sciences "Luigi Sacco"- L. Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Savitt D, Jankovic J. Clinical phenotype in carriers of intermediate alleles in the huntingtin gene. J Neurol Sci 2019; 402:57-61. [DOI: 10.1016/j.jns.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
|
5
|
Testa CM, Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. J Neurol Sci 2019; 396:52-68. [DOI: 10.1016/j.jns.2018.09.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
6
|
Abstract
Accumulating evidence suggests that many classes of DNA repeats exhibit attributes that distinguish them from other genetic variants, including the fact that they are more liable to mutation; this enables them to mediate genetic plasticity. The expansion of tandem repeats, particularly of short tandem repeats, can cause a range of disorders (including Huntington disease, various ataxias, motor neuron disease, frontotemporal dementia, fragile X syndrome and other neurological disorders), and emerging data suggest that tandem repeat polymorphisms (TRPs) can also regulate gene expression in healthy individuals. TRPs in human genomes may also contribute to the missing heritability of polygenic disorders. A better understanding of tandem repeats and their associated repeatome, as well as their capacity for genetic plasticity via both germline and somatic mutations, is needed to transform our understanding of the role of TRPs in health and disease.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Downing NR, Lourens S, De Soriano I, Long JD, Paulsen JS. Phenotype Characterization of HD Intermediate Alleles in PREDICT-HD. J Huntingtons Dis 2017; 5:357-368. [PMID: 27983559 DOI: 10.3233/jhd-160185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Huntington disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion on chromosome 4. Pathology is associated with CAG repeat length. Prior studies examining people in the intermediate allele (IA) range found subtle differences in motor, cognitive, and behavioral domains compared to controls. OBJECTIVE The purpose of this study was to examine baseline and longitudinal differences in motor, cognitive, behavioral, functional, and imaging outcomes between persons with CAG repeats in three ranges: normal (≤26), intermediate (27-35), and reduced penetrance (36-39). METHODS We examined longitudinal data from 389 participants in three allele groups: 280 normal controls (NC), 21 intermediate allele [IA], and 88 reduced penetrance [RP]. We used linear mixed models to identify differences in baseline and longitudinal outcomes between groups. Three models were tested: 1) no baseline or longitudinal differences; 2) baseline differences but no longitudinal differences; and 3) baseline and longitudinal differences. RESULTS Model 1 was the best fitting model for most outcome variables. Models 2 and 3 were best fitting for some of the variables. We found baseline and longitudinal trends of declining performance across increasing CAG repeat length groups, but no significant differences between the NC and IA groups. CONCLUSION We did not find evidence to support differences in the IA group compared to the NC group. These findings are limited by a small IA sample size.
Collapse
Affiliation(s)
| | - Spencer Lourens
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Isabella De Soriano
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Jane S Paulsen
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Neurology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.,Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
8
|
Cui SS, Ren RJ, Wang Y, Wang G, Chen SD. Tics as an initial manifestation of juvenile Huntington's disease: case report and literature review. BMC Neurol 2017; 17:152. [PMID: 28789621 PMCID: PMC5549341 DOI: 10.1186/s12883-017-0923-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant disorder, typically characterized by chorea due to a trinucleotide repeat expansion in the HTT gene, although the clinical manifestations of patients with juvenile HD (JHD) are atypical. CASE PRESENTATION A 17-year-old boy with initial presentation of tics attended our clinic and his DNA analysis demonstrated mutation in the HTT gene (49 CAG repeats). After treatment, his symptoms improved. Furthermore, we performed literature review through searching the databases and summarized clinical features in 33 JHD patients. CONCLUSION The most prevalent symptoms are ataxia, and two cases reported that tics as initial and prominent manifestation in JHD. Among them, 88% patients carried CAG repeats beyond 60 and most of them have family history. This case here illustrates the variable range of clinical symptoms of JHD and the necessity of testing for the HD mutation in young patients with tics with symptoms unable to be explained by Tourette's syndrome (TS).
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sheng-Di Chen
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
9
|
|
10
|
Sun YM, Zhang YB, Wu ZY. Huntington's Disease: Relationship Between Phenotype and Genotype. Mol Neurobiol 2016; 54:342-348. [PMID: 26742514 DOI: 10.1007/s12035-015-9662-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease with the typical manifestations of involuntary movements, psychiatric and behavior disorders, and cognitive impairment. It is caused by the dynamic mutation in CAG triplet repeat number in exon 1 of huntingtin (HTT) gene. The symptoms of HD especially the age at onset are related to the genetic characteristics, both the CAG triplet repeat and the modified factors. Here, we reviewed the recent advancement on the genotype-phenotype relationship of HD, mainly focus on the characteristics of different expanded CAG repeat number, genetic modifiers, and CCG repeat number in the 3' end of CAG triplet repeat and their effects on the phenotype. We also reviewed the special forms of HD (juvenile HD, atypical onset HD, and homozygous HD) and their phenotype-genotype correlations. The review will aid clinicians to predict the onset age and disease course of HD, give the genetic counseling, and accelerate research into the HD mechanism.
Collapse
Affiliation(s)
- Yi-Min Sun
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan-Bin Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Oosterloo M, Van Belzen MJ, Bijlsma EK, Roos RA. Is There Convincing Evidence that Intermediate Repeats in the HTT Gene Cause Huntington’s Disease? J Huntingtons Dis 2015; 4:141-8. [DOI: 10.3233/jhd-140120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine J. Van Belzen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilia K. Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymund A.C. Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Genetics of Huntington Disease (HD), HD-Like Disorders, and Other Choreiform Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Semaka A, Hayden M. Evidence-based genetic counselling implications for Huntington disease intermediate allele predictive test results. Clin Genet 2014; 85:303-11. [DOI: 10.1111/cge.12324] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- A. Semaka
- Centre for Molecular Medicine and Therapeutics; University of British Columbia; Vancouver British Columbia Canada
| | - M.R. Hayden
- Centre for Molecular Medicine and Therapeutics; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
14
|
Semaka A, Kay C, Doty CN, Collins JA, Tam N, Hayden MR. High frequency of intermediate alleles on Huntington disease-associated haplotypes in British Columbia's general population. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:864-71. [PMID: 24038799 DOI: 10.1002/ajmg.b.32193] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 07/11/2013] [Indexed: 11/08/2022]
Abstract
Intermediate alleles (27-35 CAG, IAs) for Huntington disease (HD) usually do not confer the disease phenotype but are prone to CAG repeat instability. Consequently, offspring are at-risk of inheriting an expanded allele in the HD range (≥36 CAG). IAs that expand into a new mutation have been hypothesized to be more susceptible to instability compared to IAs identified on the non-HD side of a family from the general population. Frequency estimates for IAs are limited and have largely been determined using clinical samples of HD or related disorders, which may result in an ascertainment bias. This study aimed to establish the frequency of IAs in a sample of a British Columbia's (B.C.) general population with no known association to HD and examine the haplotype of new mutation and general population IAs. CAG sizing was performed on 1,600 DNA samples from B.C.'s general population. Haplotypes were determined using 22 tagging SNPs across the HTT gene. 5.8% of individuals were found to have an IA, of which 60% were on HD-associated haplotypes. There was no difference in the haplotype distribution of new mutation and general population IAs. These findings suggest that IAs are relatively frequent in the general population and are often found on haplotypes associated with expanded CAG lengths. There is likely no difference in the propensity of new mutation and general population IAs to expand into the disease range given that they are both found on disease-associated haplotypes. These findings have important implications for clinical practice.
Collapse
Affiliation(s)
- Alicia Semaka
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Squitieri F, Jankovic J. Huntington's disease: how intermediate are intermediate repeat lengths? Mov Disord 2012; 27:1714-7. [PMID: 23008174 DOI: 10.1002/mds.25172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 07/31/2012] [Accepted: 08/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a devastating heredoneurodegenerative disorder associated with a wide variety of neurological and psychiatric symptoms caused by an expanded CAG repeat in the HTT gene. The expansion mutation in HTT is dominantly transmitted and codes for a protein named huntingtin (htt). HYPOTHESIS One hypothesis, according to a multistep mechanism, is that the intergenerational transmission of the normal repeat size causes small, progressive CAG stretch elongations in the general population from one generation to another, until a critical pathological CAG repeat threshold is reached. Mutations may originate in the offspring from paternally transmitted CAG repeats, falling within an intermediate alleles (IA) range of 27 to 35 in repeat length. CONCLUSIONS There has been emerging evidence that some individuals with IAs might develop an HD phenotype. This presents a challenge for genetic counseling, because these individuals are often reassured that they are "disease free." However, there are many unanswered questions related to the role of IAs in the development of the HD phenotype and in the pathogenesis of HD.
Collapse
|
16
|
|
17
|
Ha AD, Beck CA, Jankovic J. Intermediate CAG Repeats in Huntington's Disease: Analysis of COHORT. Tremor Other Hyperkinet Mov (N Y) 2012; 2:tre-02-64-287-4. [PMID: 23440000 PMCID: PMC3569951 DOI: 10.7916/d8ff3r2p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/20/2011] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There is emerging evidence that clinical and neuro-pathological manifestations of Huntington's disease (HD) may occur in individuals with intermediate length cytosine-adenine-guanine (CAG) repeats (27-35 CAG repeats) in the Huntingtin (HTT) gene. We aim to further define the clinical characteristics of individuals who possess CAG repeat lengths in this range. METHODS Data from the Cooperative Huntington's Observational Research Trial (COHORT) were analyzed. Participants were categorized according to the number of CAG repeats into normal (≤26), intermediate (27-35) and HD (≥36) groups. The motor, cognitive and behavioral scores on the Unified Huntington's Disease Rating Scale (UHDRS) were compared between the intermediate and normal groups. RESULTS Of 1985 individuals affected by HD or with a family history of HD who were genotyped, 50 (2.5%) had their larger CAG repeat in the intermediate range. There were statistically significant differences in scores of some motor, cognitive, and behavioral domains of UHDRS at baseline between normal and intermediate length CAG repeats. Furthermore, a significantly greater number of subjects with CAG repeats in the intermediate range reported at least one suicide attempt compared to the normal group. DISCUSSION Our findings of motor, cognitive and behavioral abnormalities in individuals with intermediate CAG repeats suggest the presence of subtle, but relevant, disease manifestations in patients with intermediate CAG repeats. These results have important implications for the pathogenesis of the disease and genetic counseling.
Collapse
Affiliation(s)
- Ainhi D. Ha
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christopher A. Beck
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
18
|
Ha AD, Jankovic J. Exploring the correlates of intermediate CAG repeats in Huntington disease. Postgrad Med 2011; 123:116-21. [PMID: 21904093 DOI: 10.3810/pgm.2011.09.2466] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To explore the clinical phenotype in individuals with huntingtin gene CAG repeat lengths between 27 and 35, a range that is termed "intermediate" and below one traditionally considered diagnostic of Huntington disease (HD). BACKGROUND The Prospective Huntington Disease At-Risk Observational Study (PHAROS) found that patients with intermediate CAG lengths overlapped with those diagnosed as HD (≥ 37 CAG repeats) on the Unified Huntington's Disease Rating Scale (UHDRS) behavioral measures. Furthermore, several patients with intermediate CAG repeats demonstrating clinical (and pathological) evidence of HD have been reported. METHODS We reviewed all cases with intermediate CAG repeats who have presented to our clinic, as well as those reported in the literature. RESULTS We describe 4 patients with intermediate repeats evaluated at our center whose clinical features were highly suggestive of HD. Investigations for HD phenocopies were negative. Anticipation was demonstrated in 1 case with supportive neuropathological evidence of HD. Additionally, we describe the clinical features of 5 other patients reported in the literature. CONCLUSION Individuals with huntingtin gene CAG repeats in the intermediate (27-35) range should be considered at risk for the development of HD, particularly if they have a family history of HD, whether they exhibit clinical features of the disease.
Collapse
Affiliation(s)
- Ainhi D Ha
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
19
|
Chromatin plasticity and the pathogenesis of Huntington disease. Proc Natl Acad Sci U S A 2011; 108:16867-8. [PMID: 21969556 DOI: 10.1073/pnas.1113321108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|