1
|
Dong Y, Zheng M, Ding W, Guan H, Xiao J, Li F. Nrf2 activators for the treatment of rare iron overload diseases: From bench to bedside. Redox Biol 2025; 81:103551. [PMID: 39965404 DOI: 10.1016/j.redox.2025.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Iron overload and related oxidative damage are seen in many rare diseases, due to mutation of iron homeostasis-related genes. As a core regulator on cellular antioxidant reaction, Nrf2 can also decrease systemic and cellular iron levels by regulating iron-related genes and pathways, making Nrf2 activators very good candidates for the treatment of iron overload disorders. Successful examples include the clinical use of omaveloxolone for Friedreich's Ataxia and dimethyl fumarate for relapsing-remitting multiple sclerosis. Despite these uses, the therapeutic potentials of Nrf2 activators for iron overload disorders may be overlooked in clinical practice. Therefore, this study talks about the potential use, possible mechanisms, and precautions of Nrf2 activators in treating rare iron overload diseases. In addition, a combination therapy with Nrf2 activators and iron chelators is proposed for clinical reference, aiming to facilitate the clinical use of Nrf2 activators for more iron overload disorders.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zheng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
3
|
Lynch DR, Schadt K, Kichula E, McCormack S, Lin KY. Friedreich Ataxia: Multidisciplinary Clinical Care. J Multidiscip Healthc 2021; 14:1645-1658. [PMID: 34234452 PMCID: PMC8253929 DOI: 10.2147/jmdh.s292945] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Friedreich ataxia (FRDA) is a multisystem disorder affecting 1 in 50,000-100,000 person in the United States. Traditionally viewed as a neurodegenerative disease, FRDA patients also develop cardiomyopathy, scoliosis, diabetes and other manifestation. Although it usually presents in childhood, it continues throughout life, thus requiring expertise from both pediatric and adult subspecialist in order to provide optimal management. The phenotype of FRDA is unique, giving rise to specific loss of neuronal pathways, a unique form of cardiomyopathy with early hypertrophy and later fibrosis, and diabetes incorporating components of both type I and type II disease. Vision loss, hearing loss, urinary dysfunction and depression also occur in FRDA. Many agents are reaching Phase III trials; if successful, these will provide a variety of new treatments for FRDA that will require many specialists who are not familiar with FRDA to provide clinical therapy. This review provides a summary of the diverse manifestation of FRDA, existing symptomatic therapies, and approaches for integrative care for future therapy in FRDA.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kim Schadt
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Elizabeth Kichula
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shana McCormack
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Kim Y, Connor JR. The roles of iron and HFE genotype in neurological diseases. Mol Aspects Med 2020; 75:100867. [PMID: 32654761 DOI: 10.1016/j.mam.2020.100867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Iron accumulation is a recurring pathological phenomenon in many neurological diseases including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and others. Iron is essential for normal development and functions of the brain; however, excess redox-active iron can also lead to oxidative damage and cell death. Especially for terminally differentiated cells like neurons, regulation of reactive oxygen species is critical for cell viability. As a result, cellular iron level is tightly regulated. Although iron accumulation related to neurological diseases has been well documented, the pathoetiological contributions of the homeostatic iron regulator (HFE), which controls cellular iron uptake, is less understood. Furthermore, a common HFE variant, H63D HFE, has been identified as a modifier of multiple neurological diseases. This review will discuss the roles of iron and HFE in the brain as well as their impact on various disease processes.
Collapse
Affiliation(s)
- Yunsung Kim
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA
| | - James R Connor
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA.
| |
Collapse
|
5
|
Delatycki MB, Bidichandani SI. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol Dis 2019; 132:104606. [PMID: 31494282 DOI: 10.1016/j.nbd.2019.104606] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Friedreich ataxia is the most common of the hereditary ataxias. It is due to homozygous/compound heterozygous mutations in FXN. This gene encodes frataxin, a protein largely localized to mitochondria. In about 96% of affected individuals there is homozygosity for a GAA repeat expansion in intron 1 of the FXN gene. Studies of people with Friedreich ataxia and of animal and cell models, have provided much insight into the pathogenesis of this disorder. The expanded GAA repeat leads to transcriptional deficiency of the FXN gene. The consequent deficiency of frataxin protein leads to reduced iron-sulfur cluster biogenesis and mitochondrial ATP production, elevated mitochondrial iron, and oxidative stress. More recently, a role for inflammation has emerged as being important in the pathogenesis of Friedreich ataxia. These findings have led to a number of potential therapies that have been subjected to clinical trials or are being developed toward human studies. Therapies that have been proposed include pharmaceuticals that increase frataxin levels, protein and gene replacement therapies, antioxidants, iron chelators and modulators of inflammation. Whilst no therapies have yet been approved for Friedreich ataxia, there is much optimism that the advances in the understanding of the pathogenesis of this disorder since the discovery its genetic basis, will result in approved disease modifying therapies in the near future.
Collapse
Affiliation(s)
- Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Pathak D, Srivastava AK, Gulati S, Rajeswari MR. Assessment of cell-free levels of iron and copper in patients with Friedreich's ataxia. Biometals 2019; 32:307-315. [PMID: 30874991 DOI: 10.1007/s10534-019-00186-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/07/2019] [Indexed: 02/05/2023]
Abstract
Friedreich's ataxia (FRDA), a progressive neurodegenerative disorder caused by trinucleotide (GAA) repeat expansion in frataxin (fxn) gene which results in decreased levels of frataxin protein. Insufficient frataxin levels leads to iron and copper deposits in the brain and cardiac cells. A total of hundred and twenty patients, suspected of FRDA were screened for the (GAA) repeats in the fxn gene and only confirmed patients (n = 25) were recruited in the study. The total Iron and total copper concentrations were measured in blood plasma using Nitro PAPS and Dibrom PAESA method, respectively both in patients and age, sex matched healthy controls. The iron levels mean ± SD (6.2 ± 3.8) in plasma of FRDA patients were found to be significantly decreased as compared to healthy controls mean ± SD (15.2 ± 4.2). A similar trend was observed in case of plasma copper levels in FRDA patient (8.15 ± 4.6) as compared to controls (17.5 ± 3.40). Present results clearly prove abnormal distribution of extra-cellular iron in FRDA patients, which is in accordance with the well established fact of intracellular iron overload, which is the key feature of the pathogenesis of this disease. This can be of importance in understanding the pathophysiology of the disease in association with frataxin/iron. It appears that intracellular sequestration of trace metals in FRDA patients (due to low frataxin) results in their sub-optimal levels in blood plasma (extra-cellular) an observation that can find prognostic application in clinical trials.
Collapse
Affiliation(s)
- Deepti Pathak
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Sheffali Gulati
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
7
|
Long A, Napierala JS, Polak U, Hauser L, Koeppen AH, Lynch DR, Napierala M. Somatic instability of the expanded GAA repeats in Friedreich's ataxia. PLoS One 2017; 12:e0189990. [PMID: 29261783 PMCID: PMC5736210 DOI: 10.1371/journal.pone.0189990] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a genetic neurodegenerative disorder caused by transcriptional silencing of the frataxin gene (FXN) due to expansions of GAA repeats in intron 1. FRDA manifests with multiple symptoms, which may include ataxia, cardiomyopathy and diabetes mellitus. Expanded GAA tracts are genetically unstable, exhibiting both expansions and contractions. GAA length correlates with severity of FRDA symptoms and inversely with age of onset. Thus, tissue-specific somatic instability of long GAA repeats may be implicated in the development of symptoms and disease progression. Herein, we determined the extent of somatic instability of the GAA repeats in heart, cerebral cortex, spinal cord, cerebellar cortex, and pancreatic tissues from 15 FRDA patients. Results demonstrate differences in the lengths of the expanded GAAs among different tissues, with significantly longer GAA tracts detected in heart and pancreas than in other tissues. The expansion bias detected in heart and pancreas may contribute to disease onset and progression, making the mechanism of somatic instability an important target for therapy. Additionally, we detected significant differences in GAA tract lengths between lymphocytes and fibroblast pairs derived from 16 FRDA patients, with longer GAA tracts present in the lymphocytes. This result urges caution in direct comparisons of data obtained in these frequently used FRDA models. Furthermore, we conducted a longitudinal analysis of the GAA repeat length in lymphocytes collected over a span of 7-9 years and demonstrated progressive expansions of the GAAs with maximum gain of approximately 9 repeats per year. Continuous GAA expansions throughout the patient's lifespan, as observed in FRDA lymphocytes, should be considered in clinical trial designs and data interpretation.
Collapse
Affiliation(s)
- Ashlee Long
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jill S. Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Urszula Polak
- Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Lauren Hauser
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | | | - David R. Lynch
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
8
|
Singh I, Shakya S, Singh RK, Ahmad I, Goyal V, Shukla G, Srivastava MVP, Faruq M, Srivastava AK. Iron related hemochromatosis (HFE) gene mutations in Friedreich Ataxia patients. Parkinsonism Relat Disord 2016; 34:71-72. [PMID: 27814974 DOI: 10.1016/j.parkreldis.2016.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/26/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Inder Singh
- Neuroscience Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sunil Shakya
- Neuroscience Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Kumar Singh
- Neuroscience Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Istaq Ahmad
- Neuroscience Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vinay Goyal
- Neuroscience Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Garima Shukla
- Neuroscience Centre, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Mohammed Faruq
- CSIR-Institutes of Genomics and Integrative Biology, New Delhi 110007, India.
| | | |
Collapse
|
9
|
The impact of H63D HFE gene carriage on hemoglobin and iron status in children. Ann Hematol 2016; 95:2043-2048. [PMID: 27553379 PMCID: PMC5093215 DOI: 10.1007/s00277-016-2792-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Abstract
The molecular mechanism that regulates iron homeostasis is based on a network of signals, which reflect on the iron requirements of the body. Hereditary hemochromatosis is a heterogenic metabolic syndrome which is due to unchecked transfer of iron into the bloodstream and its toxic effects on parenchymatous organs. It is caused by the mutation of genes that encode proteins that help hepcidin to monitor serum iron. These proteins include the human hemochromatosis protein -HFE, transferrin-receptor 2, hemojuvelin in rare instances, and ferroportin. HFE-related hemochromatosis is the most frequent form of the disease. Interestingly, the low penetrance of polymorphic HFE genes results in rare clinical presentation of the disease, predominantly in middle-aged males. Taking into account the wide dispersion of HFE mutation in our population and also its unknown role in heterozygotes, we analyzed the impact of H63D HFE carriage in the developmental age, with respect to gender, on the iron status and hemoglobin concentration of carriers in comparison to those of wild-type HFE gene (12.7 ± 3.07 years, 42 boys and 41 girls). H63D carriers presented higher blood iron, transferrin saturation, and ferritin concentration than wild-type probands (p < 0.05.) Interestingly, male H63D carriers showed higher hemoglobin concentration than the unburdened children. Moreover, in the H63D carrier group, a positive correlation between iron and hemoglobin was noted. In conclusion, this study demonstrates that changes in iron metabolism occur at a young age in HFE heterozygotes.
Collapse
|
10
|
Singh I, Faruq M, Padma MV, Goyal V, Behari M, Grover A, Mukerji M, Srivastava AK. Investigation of mitochondrial DNA variations among Indian Friedreich's ataxia (FRDA) patients. Mitochondrion 2015; 25:1-5. [PMID: 26321457 DOI: 10.1016/j.mito.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/12/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The loss of function mutations (biallelic) in frataxin (FXN) has primarily been implicated in Friedreich's ataxia (FRDA), an autosomal recessive cerebellar ataxia. The protein product of FXN is a nuclear-encoded mitochondrial protein required for the biogenesis of iron- clusters (Fe-S). FRDA is characterized by neurological and non-neurological features which show variable expression in affected individuals. An inverse relationship has been demonstrated between GAA repeat size and age at onset and explains 50% variability of the age at onset. MtDNA variations and haplogroups could be one of the contributory factors to explain the remaining heterogeneity in FRDA, since mitochondrial oxidative stress is thought to be involved in the pathogenesis of FRDA. METHODS In our study, targeted resequencing of the D-loop and coding region of mitochondrial genes (ND1-6 and ATP) was conducted in 30 genetically confirmed FRDA patients and 62 ethnicity-matched unrelated healthy controls to identify the functionally important mtDNA variations and to trace the mitochondrial lineage of Indian FRDA patients. Cumulative mitochondrial SNP scores were computed for the identified variations in the functional region and haplogroups were determined by Haplogrep. RESULTS A significantly higher load of overall mitochondrial variations (with a trend toward the coding region) per individual was noted among FRDA cases rather than controls (p-value<0.03). A non-synonymous variation (p. L237M) in ND2 was over-represented among FRDA cases (p-value 0.04). This variation has a reported association with longevity and myocardial infarction. We also observed over-representation of H haplogroup (Caucasian mitochondrial haplogroup) among FRDA patients. We have not observed the influence of mitochondrial variations and haplogroup upon age at onset of FRDA. CONCLUSIONS Overall, our study identifies the functionally important variations and mitochondrial lineage of Indian FRDA cases and, that underscores the importance of studying the role of mitochondrial genome variations in FRDA.
Collapse
Affiliation(s)
- Inder Singh
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India.
| | - Madakasira Vasantha Padma
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Vinay Goyal
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Madhuri Behari
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashoo Grover
- Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Mitali Mukerji
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India
| | - Achal K Srivastava
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|