1
|
Cheng F, Zheng W, Liu C, Barbuti PA, Yu-Taeger L, Casadei N, Huebener-Schmid J, Admard J, Boldt K, Junger K, Ueffing M, Houlden H, Sharma M, Kruger R, Grundmann-Hauser K, Ott T, Riess O. Intronic enhancers of the human SNCA gene predominantly regulate its expression in brain in vivo. SCIENCE ADVANCES 2022; 8:eabq6324. [PMID: 36417521 PMCID: PMC9683720 DOI: 10.1126/sciadv.abq6324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Evidence from patients with Parkinson's disease (PD) and our previously reported α-synuclein (SNCA) transgenic rat model support the idea that increased SNCA protein is a substantial risk factor of PD pathogenesis. However, little is known about the transcription control of the human SNCA gene in the brain in vivo. Here, we identified that the DYT6 gene product THAP1 (THAP domain-containing apoptosis-associated protein 1) and its interaction partner CTCF (CCCTC-binding factor) act as transcription regulators of SNCA. THAP1 controls SNCA intronic enhancers' activities, while CTCF regulates its enhancer-promoter loop formation. The SNCA intronic enhancers present neurodevelopment-dependent activities and form enhancer clusters similar to "super-enhancers" in the brain, in which the PD-associated single-nucleotide polymorphisms are enriched. Deletion of the SNCA intronic enhancer clusters prevents the release of paused RNA polymerase II from its promoter and subsequently reduces its expression drastically in the brain, which may provide new therapeutic approaches to prevent its accumulation and thus related neurodegenerative diseases defined as synucleinopathies.
Collapse
Affiliation(s)
- Fubo Cheng
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Centre for Rare Diseases, University Tuebingen, Tuebingen, Germany
| | - Wenxu Zheng
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Peter Antony Barbuti
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Jeannette Huebener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, University Tuebingen, Tuebingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Katrin Junger
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tuebingen, Tuebingen, Germany
| | - Rejko Kruger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Kathrin Grundmann-Hauser
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, University Tuebingen, Tuebingen, Germany
| | - Thomas Ott
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- IZKF-Core Facility Transgenic Animals, University Clinics Tuebingen, Tuebingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Centre for Rare Diseases, University Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Geminiani A, Mockevičius A, D’Angelo E, Casellato C. Cerebellum Involvement in Dystonia During Associative Motor Learning: Insights From a Data-Driven Spiking Network Model. Front Syst Neurosci 2022; 16:919761. [PMID: 35782305 PMCID: PMC9243665 DOI: 10.3389/fnsys.2022.919761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive movements, postures, or both. Although dystonia is traditionally associated with basal ganglia dysfunction, recent evidence has been pointing to a role of the cerebellum, a brain area involved in motor control and learning. Cerebellar abnormalities have been correlated with dystonia but their potential causative role remains elusive. Here, we simulated the cerebellar input-output relationship with high-resolution computational modeling. We used a data-driven cerebellar Spiking Neural Network and simulated a cerebellum-driven associative learning task, Eye-Blink Classical Conditioning (EBCC), which is characteristically altered in relation to cerebellar lesions in several pathologies. In control simulations, input stimuli entrained characteristic network dynamics and induced synaptic plasticity along task repetitions, causing a progressive spike suppression in Purkinje cells with consequent facilitation of deep cerebellar nuclei cells. These neuronal processes caused a progressive acquisition of eyelid Conditioned Responses (CRs). Then, we modified structural or functional local neural features in the network reproducing alterations reported in dystonic mice. Either reduced olivocerebellar input or aberrant Purkinje cell burst-firing resulted in abnormal learning curves imitating the dysfunctional EBCC motor responses (in terms of CR amount and timing) of dystonic mice. These behavioral deficits might be due to altered temporal processing of sensorimotor information and uncoordinated control of muscle contractions. Conversely, an imbalance of excitatory and inhibitory synaptic densities on Purkinje cells did not reflect into significant EBCC deficit. The present work suggests that only certain types of alterations, including reduced olivocerebellar input and aberrant PC burst-firing, are compatible with the EBCC changes observed in dystonia, indicating that some cerebellar lesions can have a causative role in the pathogenesis of symptoms.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Aurimas Mockevičius
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Monozygotic twins with DYT-TOR1A showing jerking movements and levodopa responsiveness. Brain Dev 2021; 43:783-788. [PMID: 33832800 DOI: 10.1016/j.braindev.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND DYT-TOR1A is caused by a GAG deletion in the TOR1A gene. While it usually manifests as early-onset dystonia, its phenotype is extremely diverse, even within one family. Recent reports have revealed that some DYT-TOR1A cases have novel mutations in the TOR1A gene while others have mutations in both TOR1A and another DYT gene (THAP1 or SGCE). Our understanding of the correlation between genotype and phenotype is becoming increasingly complicated. CASE PRESENTATIONS Here, we report on monozygotic twins who developed dystonia in childhood. The two children had different presentations in terms of onset age and dominant disturbances, but both exhibited marked diurnal fluctuation and jerking movements of the limbs as well as levodopa/levodopa-carbidopa responsiveness. These features are commonly associated with DYT/PARK-GCH1 and DYT-SGCE, yet these twins had no mutations in the GCH1 or SGCE genes. Whole exome sequencing eventually revealed a single GAG deletion in the TOR1A gene. CONCLUSION Monozygotic twins whose only mutation was a GAG deletion in TOR1A exhibited DYT/PARK-GCH1-asssociated features and jerking movements reminiscent of myoclonus. This finding may expand the spectrum of phenotypes associated with DYT-TOR1A, and suggests that levodopa has potential as a treatment for DYT-TOR1A with DYT/PARK-GCH1-associated features.
Collapse
|
4
|
Zhu F, Zhang F, Hu L, Liu H, Li Y. Integrated Genome and Transcriptome Sequencing to Solve a Neuromuscular Puzzle: Miyoshi Muscular Dystrophy and Early Onset Primary Dystonia in Siblings of the Same Family. Front Genet 2021; 12:672906. [PMID: 34276779 PMCID: PMC8283672 DOI: 10.3389/fgene.2021.672906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neuromuscular disorders (NMD), many of which are hereditary, affect muscular function. Due to advances in high-throughput sequencing technologies, the diagnosis of hereditary NMDs has dramatically improved in recent years. METHODS AND RESULTS In this study, we report an family with two siblings exhibiting two different NMD, Miyoshi muscular dystrophy (MMD) and early onset primary dystonia (EOPD). Whole exome sequencing (WES) identified a novel monoallelic frameshift deletion mutation (dysferlin: c.4404delC/p.I1469Sfs∗17) in the Dysferlin gene in the index patient who suffered from MMD. This deletion was inherited from his unaffected father and was carried by his younger sister with EOPD. However, immunostaining staining revealed an absence of dysferlin expression in the proband's muscle tissue and thus suggested the presence of the second underlying mutant allele in dysferlin. Using integrated RNA sequencing (RNA-seq) and whole genome sequencing (WGS) of muscle tissue, a novel deep intronic mutation in dysferlin (dysferlin: c.5341-415A > G) was discovered in the index patient. This mutation caused aberrant mRNA splicing and inclusion of an additional pseudoexon (PE) which we termed PE48.1. This PE was inherited from his unaffected mother. PE48.1 inclusion altered the Dysferlin sequence, causing premature termination of translation. CONCLUSION Using integrated genome and transcriptome sequencing, we discovered hereditary MMD and EOPD affecting two siblings of same family. Our results added further weight to the combined use of RNA-seq and WGS as an important method for detection of deep intronic gene mutations, and suggest that integrated sequencing assays are an effective strategy for the diagnosis of hereditary NMDs.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haowen Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yahua Li
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Liu Y, Xing H, Yokoi F, Vaillancourt DE, Li Y. Investigating the role of striatal dopamine receptor 2 in motor coordination and balance: Insights into the pathogenesis of DYT1 dystonia. Behav Brain Res 2021; 403:113137. [PMID: 33476687 DOI: 10.1016/j.bbr.2021.113137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset, generalized dystonia. Most DYT1 dystonia patients have a heterozygous trinucleotide GAG deletion in DYT1 or TOR1A gene, with a loss of a glutamic acid residue of the protein torsinA. DYT1 dystonia patients show reduced striatal dopamine D2 receptor (D2R) binding activity. We previously reported reduced striatal D2R proteins and impaired corticostriatal plasticity in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice. It remains unclear how the D2R reduction contributes to the pathogenesis of DYT1 dystonia. Recent knockout studies indicate that D2R on cholinergic interneurons (Chls) has a significant role in corticostriatal plasticity, while D2R on medium spiny neurons (MSNs) plays a minor role. To determine how reduced D2Rs on ChIs and MSNs affect motor performance, we generated ChI- or MSN-specific D2R conditional knockout mice (Drd2 ChKO or Drd2 sKO). The striatal ChIs in the Drd2 ChKO mice showed an increased firing frequency and impaired quinpirole-induced inhibition, suggesting a reduced D2R function on the ChIs. Drd2 ChKO mice had an age-dependent deficient performance on the beam-walking test similar to the Dyt1 KI mice. The Drd2 sKO mice, conversely, had a deficit on the rotarod but not the beam-walking test. Our findings suggest that D2Rs on Chls and MSNs have critical roles in motor control and balance. The similarity of the beam-walking deficit between the Drd2 ChKO and Dyt1 KI mice supports our earlier notion that D2R reduction on striatal ChIs contributes to the pathophysiology and the motor symptoms of DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
6
|
Combined occurrence of deleterious TOR1A and ANO3 variants in isolated generalized dystonia. Parkinsonism Relat Disord 2020; 73:55-56. [DOI: 10.1016/j.parkreldis.2020.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
|
7
|
The Role of Torsin AAA+ Proteins in Preserving Nuclear Envelope Integrity and Safeguarding Against Disease. Biomolecules 2020; 10:biom10030468. [PMID: 32204310 PMCID: PMC7175109 DOI: 10.3390/biom10030468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Torsin ATPases are members of the AAA+ (ATPases associated with various cellular activities) superfamily of proteins, which participate in essential cellular processes. While AAA+ proteins are ubiquitously expressed and demonstrate distinct subcellular localizations, Torsins are the only AAA+ to reside within the nuclear envelope (NE) and endoplasmic reticulum (ER) network. Moreover, due to the absence of integral catalytic features, Torsins require the NE- and ER-specific regulatory cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain like LAP1 (LULL1), to efficiently trigger their atypical mode of ATP hydrolysis. Despite their implication in an ever-growing list of diverse processes, the specific contributions of Torsin/cofactor assemblies in maintaining normal cellular physiology remain largely enigmatic. Resolving gaps in the functional and mechanistic principles of Torsins and their cofactors are of considerable medical importance, as aberrant Torsin behavior is the principal cause of the movement disorder DYT1 early-onset dystonia. In this review, we examine recent findings regarding the phenotypic consequences of compromised Torsin and cofactor activities. In particular, we focus on the molecular features underlying NE defects and the contributions of Torsins to nuclear pore complex biogenesis, as well as the growing implications of Torsins in cellular lipid metabolism. Additionally, we discuss how understanding Torsins may facilitate the study of essential but poorly understood processes at the NE and ER, and aid in the development of therapeutic strategies for dystonia.
Collapse
|
8
|
Unraveling Molecular Mechanisms of THAP1 Missense Mutations in DYT6 Dystonia. J Mol Neurosci 2020; 70:999-1008. [PMID: 32112337 PMCID: PMC7334247 DOI: 10.1007/s12031-020-01490-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations in THAP1 (THAP domain-containing apoptosis-associated protein 1) are responsible for DYT6 dystonia. Until now, more than eighty different mutations in THAP1 gene have been found in patients with primary dystonia, and two third of them are missense mutations. The potential pathogeneses of these missense mutations in human are largely elusive. In the present study, we generated stable transfected human neuronal cell lines expressing wild-type or mutated THAP1 proteins found in DYT6 patients. Transcriptional profiling using microarrays revealed a set of 28 common genes dysregulated in two mutated THAP1 (S21T and F81L) overexpression cell lines suggesting a common mechanism of these mutations. ChIP-seq showed that THAP1 can bind to the promoter of one of these genes, superoxide dismutase 2 (SOD2). Overexpression of THAP1 in SK-N-AS cells resulted in increased SOD2 protein expression, whereas fibroblasts from THAP1 patients have less SOD2 expression, which indicates that SOD2 is a direct target gene of THAP1. In addition, we show that some THAP1 mutations (C54Y and F81L) decrease the protein stability which might also be responsible for altered transcription regulation due to dosage insufficiency. Taking together, the current study showed different potential pathogenic mechanisms of THAP1 mutations which lead to the same consequence of DYT6 dystonia.
Collapse
|
9
|
Diverse Mechanisms Lead to Common Dysfunction of Striatal Cholinergic Interneurons in Distinct Genetic Mouse Models of Dystonia. J Neurosci 2019; 39:7195-7205. [PMID: 31320448 DOI: 10.1523/jneurosci.0407-19.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022] Open
Abstract
Clinical and experimental data indicate striatal cholinergic dysfunction in dystonia, a movement disorder typically resulting in twisted postures via abnormal muscle contraction. Three forms of isolated human dystonia result from mutations in the TOR1A (DYT1), THAP1 (DYT6), and GNAL (DYT25) genes. Experimental models carrying these mutations facilitate identification of possible shared cellular mechanisms. Recently, we reported elevated extracellular striatal acetylcholine by in vivo microdialysis and paradoxical excitation of cholinergic interneurons (ChIs) by dopamine D2 receptor (D2R) agonism using ex vivo slice electrophysiology in Dyt1 ΔGAG/+ mice. The paradoxical excitation was caused by overactive muscarinic receptors (mAChRs), leading to a switch in D2R coupling from canonical Gi/o to noncanonical β-arrestin signaling. We sought to determine whether these mechanisms in Dyt1 ΔGAG/+ mice are shared with Thap1 C54Y/+ knock-in and Gnal +/- knock-out dystonia models and to determine the impact of sex. We found Thap1 C54Y/+ mice of both sexes have elevated extracellular striatal acetylcholine and D2R-induced paradoxical ChI excitation, which was reversed by mAChR inhibition. Elevated extracellular acetylcholine was absent in male and female Gnal +/- mice, but the paradoxical D2R-mediated ChI excitation was retained and only reversed by inhibition of adenosine A2ARs. The Gi/o-preferring D2R agonist failed to increase ChI excitability, suggesting a possible switch in coupling of D2Rs to β-arrestin, as seen previously in a DYT1 model. These data show that, whereas elevated extracellular acetylcholine levels are not always detected across these genetic models of human dystonia, the D2R-mediated paradoxical excitation of ChIs is shared and is caused by altered function of distinct G-protein-coupled receptors.SIGNIFICANCE STATEMENT Dystonia is a common and often disabling movement disorder. The usual medical treatment of dystonia is pharmacotherapy with nonselective antagonists of muscarinic acetylcholine receptors, which have many undesirable side effects. Development of new therapeutics is a top priority for dystonia research. The current findings, considered in context with our previous investigations, establish a role for cholinergic dysfunction across three mouse models of human genetic dystonia: DYT1, DYT6, and DYT25. The commonality of cholinergic dysfunction in these models arising from diverse molecular etiologies points the way to new approaches for cholinergic modulation that may be broadly applicable in dystonia.
Collapse
|
10
|
Kariminejad A, Dahl-Halvarsson M, Ravenscroft G, Afroozan F, Keshavarz E, Goullée H, Davis MR, Faraji Zonooz M, Najmabadi H, Laing NG, Tajsharghi H. TOR1A variants cause a severe arthrogryposis with developmental delay, strabismus and tremor. Brain 2019; 140:2851-2859. [PMID: 29053766 DOI: 10.1093/brain/awx230] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
See Ginevrino and Valente (doi:10.1093/brain/awx260) for a scientific commentary on this article.
Autosomal dominant torsion dystonia-1 is a disease with incomplete penetrance most often caused by an in-frame GAG deletion (p.Glu303del) in the endoplasmic reticulum luminal protein torsinA encoded by TOR1A. We report an association of the homozygous dominant disease-causing TOR1A p.Glu303del mutation, and a novel homozygous missense variant (p.Gly318Ser) with a severe arthrogryposis phenotype with developmental delay, strabismus and tremor in three unrelated Iranian families. All parents who were carriers of the TOR1A variant showed no evidence of neurological symptoms or signs, indicating decreased penetrance similar to families with autosomal dominant torsion dystonia-1. The results from cell assays demonstrate that the p.Gly318Ser substitution causes a redistribution of torsinA from the endoplasmic reticulum to the nuclear envelope, similar to the hallmark of the p.Glu303del mutation. Our study highlights that TOR1A mutations should be considered in patients with severe arthrogryposis and further expands the phenotypic spectrum associated with TOR1A mutations.
Collapse
Affiliation(s)
| | - Martin Dahl-Halvarsson
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Fariba Afroozan
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Elham Keshavarz
- Department of Radiology, Mahdieh Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hayley Goullée
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Homa Tajsharghi
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia.,School of Health and Education, Division Biomedicine and Public Health, University of Skovde, SE-541 28, Skovde, Sweden
| |
Collapse
|
11
|
Cascalho A, Jacquemyn J, Goodchild RE. Membrane defects and genetic redundancy: Are we at a turning point for DYT1 dystonia? Mov Disord 2016; 32:371-381. [PMID: 27911022 DOI: 10.1002/mds.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Cascalho
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Julie Jacquemyn
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Rose E Goodchild
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|
12
|
Systematic TOR1A non-c.907_909delGAG variant analysis in isolated dystonia and controls. Parkinsonism Relat Disord 2016; 31:119-123. [PMID: 27477622 DOI: 10.1016/j.parkreldis.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/10/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND An increasing number of rare, functionally relevant non-c.907_909delGAG (non-ΔGAG) variants in TOR1A have been recognized, associated with phenotypic expressions different from classic DYT1 childhood-onset generalized dystonia. Only recently, DYT1 genotype-phenotype correlations have been proposed, awaiting further elucidation in independent cohorts. METHODS We screened the entire coding sequence and the 5'-UTR region of TOR1A for rare non-ΔGAG sequence variants in a large series of 940 individuals with various forms of isolated dystonia as well as in 376 ancestry-matched controls. The frequency of rare, predicted deleterious non-ΔGAG TOR1A variants was assessed in the European sample of the Exome Aggregation Consortium (ExAC) dataset. RESULTS In the case cohort, we identified a rare 5'-UTR variant (c.-39G > T), a rare splice-region variant (c.445-8T > C), as well as one novel (p.Ile231Asn) and two rare (p.Ala163Val, p.Thr321Met) missense variants, each in a single patient with adult-onset focal/segmental isolated dystonia. Of these variants, only p.Thr321Met qualified as possibly disease-related according to variant interpretation criteria. One novel, predicted deleterious missense substitution (p.Asn208Ser) was detected in the control cohort. Among European ExAC individuals, the carrier rate of rare, predicted deleterious non-ΔGAG variants was 0.4%. CONCLUSIONS Our study does not allow the establishment of genotype-specific clinical correlations for DYT1. Further large-scale genetic screening accompanied by comprehensive segregation and functional studies is required to conclusively define the contribution of TOR1A whole-gene variation to the pathogenesis of isolated dystonia.
Collapse
|
13
|
Torsin ATPases: structural insights and functional perspectives. Curr Opin Cell Biol 2016; 40:1-7. [PMID: 26803745 DOI: 10.1016/j.ceb.2016.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/22/2015] [Accepted: 01/02/2016] [Indexed: 12/29/2022]
Abstract
Torsin ATPases are the only members of the AAA+ ATPase family that localize to the endoplasmic reticulum and contiguous perinuclear space. Accordingly, they are well positioned to perform essential work in these compartments, but their precise functions remain elusive. Recent studies have deciphered an unusual ATPase activation mechanism relying on Torsin-associated transmembrane cofactors, LAP1 or LULL1. These findings profoundly change our molecular view of the Torsin machinery and rationalize several human mutations in TorsinA or LAP1 leading to congenital disorders, symptoms of which have recently been recapitulated in mouse models. Here, we review these recent advances in the Torsin field and discuss the most pressing questions in relation to nuclear envelope dynamics.
Collapse
|
14
|
Demircioglu FE, Sosa BA, Ingram J, Ploegh HL, Schwartz TU. Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. eLife 2016; 5:e17983. [PMID: 27490483 PMCID: PMC4999309 DOI: 10.7554/elife.17983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAΔE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.
Collapse
Affiliation(s)
- F Esra Demircioglu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jessica Ingram
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States,
| |
Collapse
|
15
|
Abstract
Torsin ATPases (Torsins) belong to the widespread AAA+ (ATPases associated with a variety of cellular activities) family of ATPases, which share structural similarity but have diverse cellular functions. Torsins are outliers in this family because they lack many characteristics of typical AAA+ proteins, and they are the only members of the AAA+ family located in the endoplasmic reticulum and contiguous perinuclear space. While it is clear that Torsins have essential roles in many, if not all metazoans, their precise cellular functions remain elusive. Studying Torsins has significant medical relevance since mutations in Torsins or Torsin-associated proteins result in a variety of congenital human disorders, the most frequent of which is early-onset torsion (DYT1) dystonia, a severe movement disorder. A better understanding of the Torsin system is needed to define the molecular etiology of these diseases, potentially enabling corrective therapy. Here, we provide a comprehensive overview of the Torsin system in metazoans, discuss functional clues obtained from various model systems and organisms and provide a phylogenetic and structural analysis of Torsins and their regulatory cofactors in relation to disease-causative mutations. Moreover, we review recent data that have led to a dramatically improved understanding of these machines at a molecular level, providing a foundation for investigating the molecular defects underlying the associated movement disorders. Lastly, we discuss our ideas on how recent progress may be utilized to inform future studies aimed at determining the cellular role(s) of these atypical molecular machines and their implications for dystonia treatment options.
Collapse
Affiliation(s)
- April E Rose
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Rebecca S H Brown
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Christian Schlieker
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and.,b Department of Cell Biology , Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
16
|
Dobričić V, Kresojević N, Žarković M, Tomić A, Marjanović A, Westenberger A, Cvetković D, Svetel M, Novaković I, Kostić VS. Phenotype of non-c.907_909delGAG mutations in TOR1A: DYT1 dystonia revisited. Parkinsonism Relat Disord 2015; 21:1256-9. [PMID: 26297380 DOI: 10.1016/j.parkreldis.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND In addition to the most frequent TOR1A/DYT1 mutation (c.907_909delGAG), a growing number of TOR1A sequence variants are found in dystonia patients. For most, functional characterization has demonstrated pathogenicity at different levels, implying that TOR1A genetic testing should not be limited to screening for c.907_909delGAG. METHODS We tested 461 Serbian patients with isolated or combined dystonia for changes in the TOR1A gene and performed a systematic literature review of the clinical characteristics of patients carrying TOR1A mutations other than c.907_909delGAG. RESULTS One likely pathogenic TOR1A mutation (c.385G>A, p.Val129Ile) was detected in an adult-onset cervical dystonia patient. This change is in proximity to the previously reported p.Glu121Lys mutation and predicted to decrease the stability of TOR1A-encoded protein TorsinA. CONCLUSIONS Our patient and three other reported carriers of non-c.907_909delGAG-mutations within the first three exons of TOR1A showed similar phenotypes of adult-onset focal or segmental cervical dystonia. This observation raises the possibility of genotype-phenotype correlations in DYT1 and indicates that the clinical spectrum of this type of dystonia might be broader then previous classic descriptions.
Collapse
Affiliation(s)
- Valerija Dobričić
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Kresojević
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milena Žarković
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Tomić
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Marjanović
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Westenberger
- Institute for Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Dragana Cvetković
- Department for Genetic and Evolution, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Svetel
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novaković
- Institute for Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic CCS, School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
17
|
Harata NC. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:260. [PMID: 25279252 PMCID: PMC4175402 DOI: 10.7916/d8js9nr2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/25/2014] [Indexed: 12/01/2022]
Abstract
Background An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. Methods We evaluated the literature regarding the subcellular localization of torsinA. Results Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. Discussion As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins.
Collapse
Affiliation(s)
- N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|