1
|
Loeffler MA, Klocke P, Cebi I, Gharabaghi A, Weiss D. Levodopa / opicapone as a complement to STN-DBS in clinical practice. A retrospective single-centre analysis. eNeurologicalSci 2024; 37:100530. [PMID: 39429501 PMCID: PMC11488416 DOI: 10.1016/j.ensci.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a well-established treatment option in Parkinson's disease with motor and non-motor fluctuations allowing for postoperative reduction of dopaminergic medication. However, evidence is scarce on optimal medication adjustments following STN-DBS implantation. Opicapone allows for long-lasting inhibition of the catechol-O-methyltransferase (COMT) thereby enabling more constant dopaminergic stimulation compared to levodopa alone. However, especially COMT inhibitors are regularly discontinued after STN-DBS surgery. In this single-centre retrospective analysis, we aimed to analyse the clinical phenotype of patients selected for opicapone treatment following STN-DBS implantation and to define clinical determinants of patients requiring more intense dopamine-stabilising strategies after STN-DBS implantation. Methods A patient cohort treated with STN-DBS + levodopa + opicapone (n = 16) was compared to an age-matched control cohort without opicapone treatment at baseline before and ≥ 5 months post-surgery. As main outcomes we assessed the MDS-UPDRS III and IV scores and reduction of the cumulative dopaminergic medication quantified by the levodopa equivalent dosages (LED). Results Whilst the MDS-UPDRS III (median [min - max]) in patients with STN-DBS as well as anatomical electrode positions did not differ significantly between the opicapone 20 [4-40] and control cohort 14 [1-44], the patients selected for opicapone treatment showed a significantly higher degree of dyskinesias already preoperatively as reflected by a UPDRS-IV A subscore of 2 [0-4] compared to controls 0 [0-4]. Postoperatively, the opicapone cohort showed stronger motor fluctuations MDS-UPDRS IV 6 [0-14] compared to the controls 0 [0-10], albeit without statistical significance. Moreover, the opicapone cohort showed significantly less reduction of dopaminergic medication (-36.4 % vs. -46.2 % in the control cohort) following STN-DBS implantation independent from the intake of dopamine agonists. Conclusion These results indicate a clinical phenotype characterised by more motor fluctuations requiring a more stable dopamine replacement therapy to address the patients' disease biology. In these cases, levodopa + COMT inhibition by opicapone represents a therapeutic approach but determination of the potential clinical benefit requires further prospective studies.
Collapse
Affiliation(s)
- Moritz A. Loeffler
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Philipp Klocke
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Idil Cebi
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076 Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076 Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Demailly A, Moreau C, Devos D. Effectiveness of Continuous Dopaminergic Therapies in Parkinson's Disease: A Review of L-DOPA Pharmacokinetics/Pharmacodynamics. JOURNAL OF PARKINSON'S DISEASE 2024; 14:925-939. [PMID: 38848195 PMCID: PMC11307025 DOI: 10.3233/jpd-230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Background Parkinson's disease (PD) is characterized by striatal dopamine deficiency. Since dopamine cannot cross the digestive and blood-brain barriers, its precursor, levodopa (L-DOPA), remains the mainstay of treatment. However, the significant pharmacokinetic (Pk) and pharmacodynamic (Pd) limitations of L-DOPA, combined with the severity of PD, may trigger motor and non-motor complications, for which continuous dopaminergic delivery therapies have been developed. Objective The aim of this study was to review the literature on the Pk/Pd limitations of L-DOPA and how current treatments of continuous dopaminergic administration ameliorate these problems, in order to identify the need for new therapeutic avenues. Methods A comprehensive literature search was carried out using PubMed and 75 articles were initially extracted. Following independent screening by two reviewers and consideration of eligibility, 10 articles were chosen for further analysis. Information concerning the Pk/Pd of L-DOPA was classified for each article. Results Pk/Pd problems notably include: (i) restricted digestive and cerebral absorption; (ii) unnecessary peripheral distribution; (iii) short half-life; (iv) age- and PD-induced decline of central aromatic L-amino acid decarboxylase; (v) misdistribution in many cells; and (vii) pulsatile stimulation of dopaminergic receptors. Current treatments only slightly ameliorate some of these problems. Conclusions Many Pk/Pd constraints are not resolved by existing continuous dopaminergic delivery therapies. This highlights the significant gap between these treatments and the ideal of continuous dopaminergic stimulation.
Collapse
Affiliation(s)
| | - Caroline Moreau
- Université Lille, Lille, France
- Neurology Department & Parkinson’s Disease Centre of Excellence, INSERM, CHU Lille, U1172 - Degenerative & Vascular Cognitive Disorders, LilNCog, Lille Neuroscience & Cognition, LICEND, NS-Park Network, Lille, France
| | - David Devos
- Université Lille, Lille, France
- Neurology Department & Parkinson’s Disease Centre of Excellence, INSERM, CHU Lille, U1172 - Degenerative & Vascular Cognitive Disorders, LilNCog, Lille Neuroscience & Cognition, LICEND, NS-Park Network, Lille, France
- Medical Pharmacology Department, CHU Lille, Lille, France
| |
Collapse
|
3
|
di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-Induced Dyskinesias in Parkinson's Disease: An Overview on Pathophysiology, Clinical Manifestations, Therapy Management Strategies and Future Directions. J Clin Med 2023; 12:4427. [PMID: 37445461 DOI: 10.3390/jcm12134427] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Since its first introduction, levodopa has become the cornerstone for the treatment of Parkinson's disease and remains the leading therapeutic choice for motor control therapy so far. Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskinesias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical phenomenology and the temporal relationship during a levodopa regimen, less is clear about the pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism, in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia onset. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on pathophysiology, clinical manifestations, therapy management strategies and future directions.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Letizia Caminiti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
4
|
LeWitt P, Ellenbogen A, Burdick D, Gunzler S, Gil R, Dhall R, Banisadr G, D'Souza R. Improving levodopa delivery: IPX203, a novel extended-release carbidopa-levodopa formulation. Clin Park Relat Disord 2023; 8:100197. [PMID: 37181100 PMCID: PMC10172697 DOI: 10.1016/j.prdoa.2023.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction IPX203 is a novel oral extended-release (ER) formulation of carbidopa (CD) and levodopa (LD) developed to address the short half-life and limited area for absorption of LD in the gastrointestinal tract. This paper presents the formulation strategy of IPX203 and its relationship to the pharmacokinetics (PK) and pharmacodynamic profile of IPX203 in Parkinson's disease (PD) patients. Methods IPX203 was developed with an innovative technology containing immediate-release (IR) granules and ER beads that provides rapid LD absorption to achieve desired plasma concentration and maintaining it within the therapeutic range for longer than can be achieved with current oral LD formulations. The PK and pharmacodynamics of IPX203 were compared with IR CD-LD in a Phase 2, open-label, rater-blinded, multicenter, crossover study in patients with advanced PD. Results Pharmacokinetic data showed that on Day 15, LD concentrations were sustained above 50% of peak for 6.2 h with IPX203 vs. 3.9 h with IR CD-LD (P = 0.0002). Pharmacodynamic analysis demonstrated that mean MDS-UPDRS Part III scores prior to administration of the first daily dose were significantly lower among patients receiving IPX203 than IR CD-LD (LS mean difference -8.1 [25.0], P = 0.0255). In a study conducted in healthy volunteers, a high-fat, high-calorie meal delayed plasma LD Tmax by 2 h, and increased Cmax and AUCtau by approximately 20% compared with a fasted state. Sprinkling capsule contents on applesauce did not affect PK parameters. Conclusion These data confirm that the unique design of IPX203 addresses some of the limitations of oral LD delivery.
Collapse
Affiliation(s)
- Peter LeWitt
- Departments of Neurology, Wayne State University School of Medicine and Henry Ford Hospital, Sastry Foundation Endowed Chair in Neurology, 4201 St. Antoine, Detroit, MI 48201, United States
| | - Aaron Ellenbogen
- Michigan Institute for Neurological Disorders and Quest Research Institute, 28595 Orchard Lake Road, #200, Farmington Hills, MI 48334, United States
| | - Daniel Burdick
- Booth Gardner Parkinson’s Care Center, EvergreenHealth Medical Center, 12039 NE 128th Street #300, Kirkland, WA 98034, United States
| | - Steven Gunzler
- Parkinson’s and Movement Disorders Center, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, United States
| | - Ramon Gil
- Parkinson’s Disease Treatment Center of Southwest Florida, 4235 Kings Highway, #102, Port Charlotte, FL 33980, United States
| | - Rohit Dhall
- University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, United States
| | - Ghazal Banisadr
- Amneal Pharmaceuticals, LLC, 400 Crossing Boulevard, Bridgewater, NJ 08807, United States
- Corresponding author at: Amneal Pharmaceuticals, 400 Crossing Boulevard, 3rd Floor, Bridgewater, NJ 08807, United States.
| | - Richard D'Souza
- Amneal Pharmaceuticals, LLC, 400 Crossing Boulevard, Bridgewater, NJ 08807, United States
| |
Collapse
|
5
|
Weiss D, Volkmann J, Fasano A, Kühn A, Krack P, Deuschl G. Changing Gears - DBS For Dopaminergic Desensitization in Parkinson's Disease? Ann Neurol 2021; 90:699-710. [PMID: 34235776 DOI: 10.1002/ana.26164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
In Parkinson's disease, both motor and neuropsychiatric complications unfold as a consequence of both incremental striatal dopaminergic denervation and intensifying long-term dopaminergic treatment. Together, this leads to 'dopaminergic sensitization' steadily increasing motor and behavioral responses to dopaminergic medication that result in the detrimental sequalae of long-term dopaminergic treatment. We review the clinical presentations of 'dopaminergic sensitization', including rebound off and dyskinesia in the motor domain, and neuropsychiatric fluctuations and behavioral addictions with impulse control disorders and dopamine dysregulation syndrome in the neuropsychiatric domain. We summarize state-of-the-art deep brain stimulation, and show that STN-DBS allows dopaminergic medication to be tapered, thus supporting dopaminergic desensitization. In this framework, we develop our integrated debatable viewpoint of "changing gears", that is we suggest rethinking earlier use of subthalamic nucleus deep brain stimulation, when the first clinical signs of dopaminergic motor or neuropsychiatric complications emerge over the steadily progressive disease course. In this sense, subthalamic deep brain stimulation may help reduce longitudinal motor and neuropsychiatric symptom expression - importantly, not by neuroprotection but by supporting dopaminergic desensitization through postoperative medication reduction. Therefore, we suggest considering STN-DBS early enough before patients encounter potentially irreversible psychosocial consequences of dopaminergic complications, but importantly not before a patient shows first clinical signs of dopaminergic complications. We propose to consider neuropsychiatric dopaminergic complications as a new inclusion criterion in addition to established motor criteria, but this concept will require validation in future clinical trials. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, Würzburg, Germany
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada.,Division of Neurology, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, ON, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andrea Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig Holstein (UKSH), Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
6
|
Biondetti E, Santin MD, Valabrègue R, Mangone G, Gaurav R, Pyatigorskaya N, Hutchison M, Yahia-Cherif L, Villain N, Habert MO, Arnulf I, Leu-Semenescu S, Dodet P, Vila M, Corvol JC, Vidailhet M, Lehéricy S. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease. Brain 2021; 144:3114-3125. [PMID: 33978742 PMCID: PMC8634084 DOI: 10.1093/brain/awab191] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
In Parkinson's disease, there is a progressive reduction in striatal dopaminergic function, and loss of neuromelanin-containing dopaminergic neurons and increased iron deposition in the substantia nigra. We tested the hypothesis of a relationship between impairment of the dopaminergic system and changes in the iron metabolism. Based on imaging data of patients with prodromal and early clinical Parkinson's disease, we assessed the spatiotemporal ordering of such changes and relationships in the sensorimotor, associative and limbic territories of the nigrostriatal system. Patients with Parkinson's disease (disease duration < 4 years) or idiopathic REM sleep behaviour disorder (a prodromal form of Parkinson's disease) and healthy controls underwent longitudinal examination (baseline and 2-year follow-up). Neuromelanin and iron sensitive MRI and dopamine transporter single-photon emission tomography were performed to assess nigrostriatal levels of neuromelanin, iron, and dopamine. For all three functional territories of the nigrostriatal system, in the clinically most and least affected hemispheres separately, the following was performed: cross-sectional and longitudinal inter-group difference analysis of striatal dopamine and iron, and nigral neuromelanin and iron; in Parkinson's disease patients, exponential fitting analysis to assess the duration of the prodromal phase and the temporal ordering of changes in dopamine, neuromelanin or iron relative to controls; voxel-wise correlation analysis to investigate concomitant spatial changes in dopamine-iron, dopamine-neuromelanin and neuromelanin-iron in the substantia nigra pars compacta. The temporal ordering of dopaminergic changes followed the known spatial pattern of progression involving first the sensorimotor, then the associative and limbic striatal and nigral regions. Striatal dopaminergic denervation occurred first followed by abnormal iron metabolism and finally neuromelanin changes in the substantia nigra pars compacta, which followed the same spatial and temporal gradient observed in the striatum but shifted in time. In conclusion, dopaminergic striatal dysfunction and cell loss in the substantia nigra pars compacta are interrelated with increased nigral iron content.
Collapse
Affiliation(s)
- Emma Biondetti
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France
| | - Mathieu D Santin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Romain Valabrègue
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Graziella Mangone
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Rahul Gaurav
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France
| | - Nadya Pyatigorskaya
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology, 75013 Paris, France
| | | | - Lydia Yahia-Cherif
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France
| | - Nicolas Villain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Marie-Odile Habert
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, 75013 Paris, France.,Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale - LIB, 75006 Paris, France
| | - Isabelle Arnulf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Smaranda Leu-Semenescu
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Pauline Dodet
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sleep Disorder Unit, 75013 Paris, France
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)-Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB)-Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Centre d'Investigation Clinique Neurosciences, 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Marie Vidailhet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, 75013 Paris, France
| | - Stéphane Lehéricy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France.,ICM, Centre de NeuroImagerie de Recherche - CENIR, 75013 Paris, France.,ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), 75013 Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology, 75013 Paris, France
| |
Collapse
|
7
|
Frey KA, Bohnen NILJ. Molecular Imaging of Neurodegenerative Parkinsonism. PET Clin 2021; 16:261-272. [PMID: 33589385 DOI: 10.1016/j.cpet.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Advances in molecular PET imaging of neurodegenerative parkinsonism are reviewed with focus on neuropharmacologic radiotracers depicting terminals of selectively vulnerable neurons in these conditions. Degeneration and losses of dopamine, norepinephrine, serotonin, and acetylcholine imaging markers thus far do not differentiate among the parkinsonian conditions. Recent studies performed with [18F]fluorodeoxyglucose PET are limited by the need for automated image analysis tools and by lack of routine coverage for this imaging indication in the United States. Ongoing research engages use of novel molecular modeling and in silico methods for design of imaging ligands targeting these specific proteinopathies.
Collapse
Affiliation(s)
- Kirk A Frey
- Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028, USA; Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028, USA.
| | - Nicolaas I L J Bohnen
- Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105, USA; Department of Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105, USA; Ann Arbor Veterans Administration Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Molecular Imaging of the Dopamine Transporter. Cells 2019; 8:cells8080872. [PMID: 31405186 PMCID: PMC6721747 DOI: 10.3390/cells8080872] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Dopamine transporter (DAT) single-photon emission tomography (SPECT) with (123)Ioflupane is a widely used diagnostic tool for patients with suspected parkinsonian syndromes, as it assists with differentiating between Parkinson’s disease (PD) or atypical parkinsonisms and conditions without a presynaptic dopaminergic deficit such as essential tremor, vascular and drug-induced parkinsonisms. Recent evidence supports its utility as in vivo proof of degenerative parkinsonisms, and DAT imaging has been proposed as a potential surrogate marker for dopaminergic nigrostriatal neurons. However, the interpretation of DAT-SPECT imaging may be challenged by several factors including the loss of DAT receptor density with age and the effect of certain drugs on dopamine uptake. Furthermore, a clear, direct relationship between nigral loss and DAT decrease has been controversial so far. Striatal DAT uptake could reflect nigral neuronal loss once the loss exceeds 50%. Indeed, reduction of DAT binding seems to be already present in the prodromal stage of PD, suggesting both an early synaptic dysfunction and the activation of compensatory changes to delay the onset of symptoms. Despite a weak correlation with PD severity and progression, quantitative measurements of DAT binding at baseline could be used to predict the emergence of late-disease motor fluctuations and dyskinesias. This review addresses the possibilities and limitations of DAT-SPECT in PD and, focusing specifically on regulatory changes of DAT in surviving DA neurons, we investigate its role in diagnosis and its prognostic value for motor complications as disease progresses.
Collapse
|
9
|
Jourdain VA, Tang CC, Holtbernd F, Dresel C, Choi YY, Ma Y, Dhawan V, Eidelberg D. Flow-metabolism dissociation in the pathogenesis of levodopa-induced dyskinesia. JCI Insight 2016; 1:e86615. [PMID: 27699242 DOI: 10.1172/jci.insight.86615] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Levodopa-induced dyskinesia (LID) is the most common, disruptive complication of Parkinson's disease (PD) pharmacotherapy, yet despite decades of research, the changes in regional brain function underlying LID remain largely unknown. We previously found that the cerebral vasomotor and metabolic responses to levodopa are dissociated in PD subjects. Nonetheless, it is unclear whether levodopa-mediated dissociation is exaggerated in LID or distinguishes LID from non-LID subjects. To explore this possibility, we used dual-tracer positron emission tomography to quantify regional cerebral blood flow and metabolic activity in 28 PD subjects (14 LID, 14 non-LID), scanned before and during intravenous levodopa infusion. Levodopa-mediated dissociation was most prominent in the posterior putamen (P < 0.0001) and greater in LID than in non-LID and test-retest subjects. Strikingly, LID subjects also showed increased sensorimotor cortex (SMC) activity in the baseline, unmedicated state. Imaging data from an independent PD sample (106 subjects) linked these differences to loss of mesocortical dopamine terminals in advanced patients. In aggregate, the data suggest that LID results from an overactive vasomotor response to levodopa in the putamen on a background of disease-related increases in SMC activity. LID may thus be amenable to treatment that modulates the function of these 2 regions.
Collapse
|
10
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Advances in understanding genomic markers and pharmacogenetics of Parkinson's disease. Expert Opin Drug Metab Toxicol 2016; 12:433-48. [PMID: 26910127 DOI: 10.1517/17425255.2016.1158250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The inheritance pattern of Parkinson's disease (PD) is likely multifactorial (owing to the interplay of genetic predisposition and environmental factors). Many pharmacogenetic studies have tried to establish a possible role of candidate genes in PD risk. Several studies have focused on the influence of genes in the response to antiparkinsonian drugs and in the risk of developing side-effects of these drugs. AREAS COVERED This review presents an overview of current knowledge, with particular emphasis on the most recent advances, both in case-control association studies on the role of candidate genes in the risk for PD as well as pharmacogenetic studies on the role of genes in the development of side effects of antiparkinsonian drugs. The most reliable results should be derived from meta-analyses of case-control association studies on candidate genes involving large series of PD patients and controls, and from genome-wide association studies (GWAS). EXPERT OPINION Prospective studies of large samples involving several genes with a detailed history of exposure to environmental factors in the same cohort of subjects, should be useful to clarify the role of genes in the risk for PD. The results of studies on the role of genes in the development of side-effects of antiparkinsonian drugs should, at this stage, only be considered preliminary.
Collapse
Affiliation(s)
| | | | | | - José A G Agúndez
- b Department of Pharmacology , University of Extremadura , Cáceres , Spain
| |
Collapse
|
11
|
Optimizing diagnosis in Parkinson's disease: Radionuclide imaging. Parkinsonism Relat Disord 2016; 22 Suppl 1:S47-51. [DOI: 10.1016/j.parkreldis.2015.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
|
12
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
13
|
Fahn S, Poewe W. Levodopa: 50 years of a revolutionary drug for Parkinson disease. Mov Disord 2014; 30:1-3. [PMID: 25488146 DOI: 10.1002/mds.26122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 11/11/2022] Open
Affiliation(s)
- Stanley Fahn
- Columbia University College of Physicians and Surgeons, 710 West 168th Street, New York, NY, 10032, U.S.A
| | | |
Collapse
|