1
|
Ren J, Xie H, Weng Y, Ge Y, Yao R, Jiang Z, Zhang J, Zhu Y, Fu X, Wang J, Liu Z, Zhang S, Zhang T, Chen G, Yang D. Longitudinal decline in DAT binding in Parkinson's disease: connections with sleep disturbances. BMC Med 2024; 22:550. [PMID: 39574091 PMCID: PMC11583529 DOI: 10.1186/s12916-024-03766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The nigrostriatal dopamine (DA) system plays a critical role in regulating the sleep-wake state. The relationship between baseline striatal DA transporter (DAT) specific binding ratios (SBR) and rapid eye movement sleep behavior disorder (RBD) has been established. This study aimed to investigate the association between the progression of striatal DA dysfunction and sleep disturbances, including excessive daytime sleepiness (EDS) and probable RBD (pRBD), in patients with Parkinson's disease (PD). METHODS Data were obtained from the Parkinson's Progression Markers Initiative (PPMI). Six hundred twenty-one newly diagnosed PD patients and followed up for 4 years were included in this longitudinal study. EDS and pRBD were defined using the Epworth Sleepiness Scale (ESS) and RBD Screening Questionnaire (RBDSQ). Striatal DAT SBR was evaluated by [123I] FP-CIT SPECT. RESULTS Using a linear mixed-effects model across all contemporaneous data points, we found a negative correlation between striatal DAT SBR and sleep disturbances (EDS/pRBD). The interaction between striatal DAT SBR and year was specific to RBDSQ score (β = - 0.102, 95% CI: - 0.187 to - 0.017, p = 0.019), with no evidence of a similar interaction for ESS score. Additionally, the association between the alpha-synuclein gene (SNCA) and sleep disturbances was mediated by the SBR (ESS score: total effect = - 2.717, p = 0.022; direct effect = - 3.222, p = 0.007; indirect effect = 0.505, p < 0.05; RBDSQ score: total effect = 1.402, p = 0.026; direct effect = 1.209, p = 0.057; indirect effect = 0.193, p < 0.05). CONCLUSIONS Our findings support the role of striatal DA dysfunction in sleep disturbances in early PD patients. Furthermore, we demonstrated that genetic variations in causative genes of PD contribute to the development of sleep disturbances. Striatal DAT imaging may be a useful risk indicator for sleep disturbances, providing early intervention strategies.
Collapse
Affiliation(s)
- Junli Ren
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haobo Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaoying Ge
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruotong Yao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihan Jiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinxiu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yusheng Zhu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotong Fu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junchao Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijia Liu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shishu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingxuan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, Wenzhou, Zhejiang, 325000, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou , Zhejiang, 310009, China.
| |
Collapse
|
2
|
Koros C, Bougea A, Simitsi AM, Papagiannakis N, Angelopoulou E, Pachi I, Antonelou R, Bozi M, Stamelou M, Stefanis L. The Landscape of Monogenic Parkinson's Disease in Populations of Non-European Ancestry: A Narrative Review. Genes (Basel) 2023; 14:2097. [PMID: 38003040 PMCID: PMC10671808 DOI: 10.3390/genes14112097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION There has been a bias in the existing literature on Parkinson's disease (PD) genetics as most studies involved patients of European ancestry, mostly in Europe and North America. Our target was to review published research data on the genetic profile of PD patients of non-European or mixed ancestry. METHODS We reviewed articles published during the 2000-2023 period, focusing on the genetic status of PD patients of non-European origin (Indian, East and Central Asian, Latin American, sub-Saharan African and Pacific islands). RESULTS There were substantial differences regarding monogenic PD forms between patients of European and non-European ancestry. The G2019S Leucine Rich Repeat Kinase 2 (LRRK2) mutation was rather scarce in non-European populations. In contrast, East Asian patients carried different mutations like p.I2020T, which is common in Japan. Parkin (PRKN) variants had a global distribution, being common in early-onset PD in Indians, in East Asians, and in early-onset Mexicans. Furthermore, they were occasionally present in Black African PD patients. PTEN-induced kinase 1 (PINK1) and PD protein 7 (DJ-1) variants were described in Indian, East Asian and Pacific Islands populations. Glucocerebrosidase gene variants (GBA1), which represent an important predisposing factor for PD, were found in East and Southeast Asian and Indian populations. Different GBA1 variants have been reported in Black African populations and Latin Americans. CONCLUSIONS Existing data reveal a pronounced heterogeneity in the genetic background of PD. A number of common variants in populations of European ancestry appeared to be absent or scarce in patients of diverse ethnic backgrounds. Large-scale studies that include genetic screening in African, Asian or Latin American populations are underway. The outcomes of such efforts will facilitate further clinical studies and will possibly contribute to the identification of either new pathogenic mutations in already described genes or novel PD-related genes.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Maria Bozi
- Dafni Psychiatric Hospital, 12462 Athens, Greece;
- 2nd Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| |
Collapse
|
3
|
Dodet P. REM behavior disorder: When Parkinson's disease meets Morpheus. Rev Neurol (Paris) 2023; 179:667-674. [PMID: 37598085 DOI: 10.1016/j.neurol.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by the absence of normal muscle atonia during REM sleep, resulting in excessive motor activity while dreaming. RBD can be classified as isolated which is the strongest clinical marker of prodromal synucleinopathy, or secondary, associated with other neurological diseases, mainly Parkinson's disease (PD) and dementia with Lewy bodies. The diagnosis of RBD must be systematically documented by a video polysomnography in the case of isolated RBD. PD associated with RBD may represent a distinct phenotype compared to PD without RBD, indicating a more severe and widespread synucleinopathy. Clinically, it is associated with poorer motor and cognitive performance, more severe non-motor symptoms, and faster disease progression. Imaging studies have revealed broader brain damage and significant alterations in cerebral metabolism and neurotransmission in PD patients with RBD. The management of RBD involves safety precautions and pharmacotherapy. Safety measures aim to minimize the risk of injury during RBD episodes and include creating a safe sleeping environment and separating the patient from their bed partner if necessary. Pharmacotherapy options include clonazepam and melatonin. Clonazepam must be cautiously prescribed in older patients due to potential side effects.
Collapse
Affiliation(s)
- P Dodet
- Service des Pathologies du Sommeil, Centre de Référence National des Narcolepsies et Hypersomnies rares, Assistance publique-Hôpitaux de Paris-Sorbonne (AP-HP-Sorbonne), Hôpital la Pitié-Salpêtrière, Paris, France; Paris Brain Institute (ICM), Sorbonne University, Inserm U1227, CNRS 7225, Paris, France.
| |
Collapse
|
4
|
Thangaleela S, Sivamaruthi BS, Kesika P, Mariappan S, Rashmi S, Choeisoongnern T, Sittiprapaporn P, Chaiyasut C. Neurological Insights into Sleep Disorders in Parkinson's Disease. Brain Sci 2023; 13:1202. [PMID: 37626558 PMCID: PMC10452387 DOI: 10.3390/brainsci13081202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a common multidimensional neurological disorder characterized by motor and non-motor features and is more prevalent in the elderly. Sleep disorders and cognitive disturbances are also significant characteristics of PD. Sleep is an important physiological process for normal human cognition and physical functioning. Sleep deprivation negatively impacts human physical, mental, and behavioral functions. Sleep disturbances include problems falling asleep, disturbances occurring during sleep, abnormal movements during sleep, insufficient sleep, and excessive sleep. The most recognizable and known sleep disorders, such as rapid-eye-movement behavior disorder (RBD), insomnia, excessive daytime sleepiness (EDS), restless legs syndrome (RLS), sleep-related breathing disorders (SRBDs), and circadian-rhythm-related sleep-wake disorders (CRSWDs), have been associated with PD. RBD and associated emotional disorders are common non-motor symptoms of PD. In individuals, sleep disorders and cognitive impairment are important prognostic factors for predicting progressing neurodegeneration and developing dementia conditions in PD. Studies have focused on RBD and its associated neurological changes and functional deficits in PD patients. Other risks, such as cognitive decline, anxiety, and depression, are related to RBD. Sleep-disorder diagnosis is challenging, especially in identifying the essential factors that disturb the sleep-wake cycle and the co-existence of other concomitant sleep issues, motor symptoms, and breathing disorders. Focusing on sleep patterns and their disturbances, including genetic and other neurochemical changes, helps us to better understand the central causes of sleep alterations and cognitive functions in PD patients. Relations between α-synuclein aggregation in the brain and gender differences in sleep disorders have been reported. The existing correlation between sleep disorders and levels of α-synuclein in the cerebrospinal fluid indicates the risk of progression of synucleinopathies. Multidirectional approaches are required to correlate sleep disorders and neuropsychiatric symptoms and diagnose sensitive biomarkers for neurodegeneration. The evaluation of sleep pattern disturbances and cognitive impairment may aid in the development of novel and effective treatments for PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Rashmi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| |
Collapse
|
5
|
Mata I, Salles P, Cornejo-Olivas M, Saffie P, Ross OA, Reed X, Bandres-Ciga S. LRRK2: Genetic mechanisms vs genetic subtypes. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:133-154. [PMID: 36803807 DOI: 10.1016/b978-0-323-85555-6.00018-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In 2004, the identification of pathogenic variants in the LRRK2 gene across several families with autosomal dominant late-onset Parkinson's disease (PD) revolutionized our understanding of the role of genetics in PD. Previous beliefs that genetics in PD was limited to rare early-onset or familial forms of the disease were quickly dispelled. Currently, we recognize LRRK2 p.G2019S as the most common genetic cause of both sporadic and familial PD, with more than 100,000 affected carriers across the globe. The frequency of LRRK2 p.G2019S is also highly variable across populations, with some regions of Asian or Latin America reporting close to 0%, contrasting to Ashkenazi Jews or North African Berbers reporting up to 13% and 40%, respectively. Patients with LRRK2 pathogenic variants are clinically and pathologically heterogeneous, highlighting the age-related variable penetrance that also characterizes LRRK2-related disease. Indeed, the majority of patients with LRRK2-related disease are characterized by a relatively mild Parkinsonism with less motor symptoms with variable presence of α-synuclein and/or tau aggregates, with pathologic pleomorphism widely described. At a functional cellular level, it is likely that pathogenic variants mediate a toxic gain-of-function of the LRRK2 protein resulting in increased kinase activity perhaps in a cell-specific manner; by contrast, some LRRK2 variants appear to be protective reducing PD risk by decreasing the kinase activity. Therefore, employing this information to define appropriate patient populations for clinical trials of targeted kinase LRRK2 inhibition strategies is very promising and demonstrates a potential future application for PD using precision medicine.
Collapse
Affiliation(s)
- Ignacio Mata
- Genomic Medicine Institute (GMI), Cleveland Clinic, Cleveland, OH, United States.
| | - Philippe Salles
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Paula Saffie
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics and Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Salles PA, Liao J, Shuaib U, Mata IF, Fernandez HH. A Review on Response to Device-Aided Therapies Used in Monogenic Parkinsonism and GBA Variants Carriers: A Need for Guidelines and Comparative Studies. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1703-1725. [PMID: 35662127 PMCID: PMC9535575 DOI: 10.3233/jpd-212986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is in some cases predisposed-or-caused by genetic variants, contributing to the expression of different phenotypes. Regardless of etiology, as the disease progresses, motor fluctuations and/or levodopa-induced dyskinesias limit the benefit of pharmacotherapy. Device-aided therapies are good alternatives in advanced disease, including deep brain stimulation (DBS), levodopa-carbidopa intestinal gel, and continuous subcutaneous infusion of apomorphine. Candidate selection and timing are critical for the success of such therapies. Genetic screening in DBS cohorts has shown a higher proportion of mutation carriers than in general cohorts, suggesting that genetic factors may influence candidacy for advanced therapies. The response of monogenic PD to device therapies is not well established, and the contribution of genetic information to decision-making is still a matter of debate. The limited evidence regarding gene-dependent response to device-aided therapies is reviewed here. An accurate understanding of the adequacy and responses of different mutation carriers to device-aided therapies requires the development of specific studies with long-term monitoring.
Collapse
Affiliation(s)
- Philippe A Salles
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA.,Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - James Liao
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| | - Umar Shuaib
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| | - Ignacio F Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
7
|
Huang J, Cheng Y, Li C, Shang H. Genetic heterogeneity on sleep disorders in Parkinson's disease: a systematic review and meta-analysis. Transl Neurodegener 2022; 11:21. [PMID: 35395825 PMCID: PMC8991652 DOI: 10.1186/s40035-022-00294-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
A growing amount of evidence has indicated contributions of variants in causative genes of Parkinson’s disease (PD) to the development of sleep disturbance in PD and prodromal PD stages. In this article, we aimed to investigate the role of genetics in sleep disorders in PD patients and asymptomatic carriers at prodromal stage of PD. A systematic review and meta-analysis of observational studies was conducted based on the MEDLINE, EMBASE and PsychINFO databases. A pooled effect size was calculated by odds ratio (OR) and standard mean difference (SMD). Forty studies were selected for quantitative analysis, including 17 studies on glucocerebrosidase (GBA), 25 studies on Leucine-rich repeat kinase 2 (LRRK2) and 7 on parkin (PRKN) genes, and 3 studies on alpha-synuclein gene (SNCA) were used for qualitative analysis. Patients with PD carrying GBA variants had a significantly higher risk for rapid-eye-movement behavior disorders (RBD) (OR, 1.82) and higher RBD Screening Questionnaire scores (SMD, 0.33). Asymptomatic carriers of GBA variants had higher severity of RBD during follow-up. Patients with PD carrying the LRRK2 G2019S variant had lower risk and severity of RBD compared with those without LRRK2 G2019S. Variants of GBA, LRRK2 and PRKN did not increase or decrease the risk and severity of excessive daytime sleepiness and restless legs syndrome in PD. Our findings suggest that the genetic heterogeneity plays a role in the development of sleep disorders, mainly RBD, in PD and the prodromal stage of PD.
Collapse
Affiliation(s)
- Jingxuan Huang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfan Cheng
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022; 17:2. [PMID: 35000606 PMCID: PMC8744293 DOI: 10.1186/s13024-021-00504-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson's disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson's disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson's disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson's disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson's reflect the sleep and circadian abnormalities of Parkinson's disease observed in the clinic.
Collapse
Affiliation(s)
- Jeremy Hunt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Zahed H, Zuzuarregui JRP, Gilron R, Denison T, Starr PA, Little S. The Neurophysiology of Sleep in Parkinson's Disease. Mov Disord 2021; 36:1526-1542. [PMID: 33826171 DOI: 10.1002/mds.28562] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Sleep disturbances are among the most common nonmotor complications of Parkinson's disease (PD), can present in prodromal stages, and progress with advancing disease. In addition to being a symptom of neurodegeneration, sleep disturbances may also contribute to disease progression. Currently, limited options exist to modulate sleep disturbances in PD. Studying the neurophysiological changes that affect sleep in PD at the cortical and subcortical level may yield new insights into mechanisms for reversal of sleep disruption. In this article, we review cortical and subcortical recording studies of sleep in PD with a particular focus on dissecting reported electrophysiological changes. These studies show that slow-wave sleep and rapid eye movement sleep are both notably disrupted in PD. We further explore the impact of these electrophysiological changes and discuss the potential for targeting sleep via stimulation therapy to modify PD-related motor and nonmotor symptoms. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hengameh Zahed
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | | | - Ro'ee Gilron
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Timothy Denison
- Institute of Biomedical Engineering and MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Simon Little
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Liu X, Le W. Profiling Non-motor Symptoms in Monogenic Parkinson's Disease. Front Aging Neurosci 2020; 12:591183. [PMID: 33192488 PMCID: PMC7661846 DOI: 10.3389/fnagi.2020.591183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elder population, pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra. While the precise mechanisms underlying the pathogenesis of PD remain unknown, various genetic factors have been proved to be associated with PD. To date, at least 23 loci and 19 disease-causing genes for PD have been identified. Although monogenic (often familial) cases account for less than 5% of all PD patients, exploring the phenotypes of monogenic PD can help us understand the disease pathogenesis and progression. Primary motor symptoms are important for PD diagnosis but only detectable at a relatively late stage. Despite typical motor symptoms, various non-motor symptoms (NMS) including sensory complaints, mental disorders, autonomic dysfunction, and sleep disturbances also have negative impacts on the quality of life in PD patients and pose major challenges for disease management. NMS is common in all stages of the PD course. NMS can occur long before the onset of PD motor symptoms or can present in the middle or late stage of the disease accompanied by motor symptoms. Therefore, the profiling and characterization of NMS in monogenic PD may help the diagnosis and differential diagnosis of PD, which thereby can execute early intervention to delay the disease progression. In this review, we summarize the characteristics, clinical phenotypes, especially the NMS of monogenic PD patients carrying mutations of SNCA, LRRK2, VPS35, Parkin, PINK1, DJ-1, and GBA. The clinical implications of this linkage between NMS and PD-related genes are also discussed.
Collapse
Affiliation(s)
- Xinyao Liu
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, China
| |
Collapse
|
11
|
Zhang Y, Ren R, Sanford LD, Yang L, Zhou J, Tan L, Li T, Zhang J, Wing YK, Shi J, Lu L, Tang X. Sleep in Parkinson's disease: A systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev 2020; 51:101281. [PMID: 32135452 DOI: 10.1016/j.smrv.2020.101281] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Polysomnographic studies have been conducted to explore sleep changes in Parkinson's disease (PD), but the relationships between sleep disturbances and PD are imperfectly understood. We conducted a systematic review of the literature exploring polysomnographic differences between PD patients and controls in EMBASE, MEDLINE, All EBM databases, CINAHL, and PsycIFNO. 67 studies were identified for systematic review, 63 of which were used for meta-analysis. Meta-analyses revealed significant reductions in total sleep time, sleep efficiency, N2 percentage, slow wave sleep, rapid eye movement sleep (REM) percentage, and increases in wake time after sleep onset, N1 percentage, REM latency, apnea hypopnea index, and periodic limb movement index in PD patients compared with controls. There were no remarkable differences in sleep continuity or sleep architecture between PD patients with and without REM sleep behavior disorder (RBD). Our study suggests that PD patients have poor sleep quality and quantity. Sex, age, disease duration, presence of RBD, medication status, cognitive impairment, and adaptation night are factors that contributed to heterogeneity between studies.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junying Zhou
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Tan
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Taomei Li
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jihui Zhang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yun-Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol 2020; 16:97-107. [PMID: 31980808 DOI: 10.1038/s41582-019-0301-2] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
One of the most common monogenic forms of Parkinson disease (PD) is caused by mutations in the LRRK2 gene that encodes leucine-rich repeat kinase 2 (LRRK2). LRRK2 mutations, and particularly the most common mutation Gly2019Ser, are observed in patients with autosomal dominant PD and in those with apparent sporadic PD, who are clinically indistinguishable from those with idiopathic PD. The discoveries that pathogenic mutations in the LRRK2 gene increase LRRK2 kinase activity and that small-molecule LRRK2 kinase inhibitors can be neuroprotective in preclinical models of PD have placed LRRK2 at the centre of disease modification efforts in PD. Recent investigations also suggest that LRRK2 has a role in the pathogenesis of idiopathic PD and that LRRK2 therapies might, therefore, be beneficial in this common subtype of PD. In this Review, we describe the characteristics of LRRK2-associated PD that are most relevant to the development of LRRK2-targeted therapies and the design and implementation of clinical trials. We highlight strategies for correcting the effects of mutations in the LRRK2 gene, focusing on how to identify which patients are the optimal candidates and how to decide on the timing of such trials. In addition, we discuss challenges in implementing trials of disease-modifying treatment in people who carry LRRK2 mutations.
Collapse
Affiliation(s)
- Eduardo Tolosa
- Parkinson and Movement Disorders Unit, Neurology Service, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Miquel Vila
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| |
Collapse
|
13
|
Pal P, Mahale R, Yadav R. Does quality of sleep differ in familial and sporadic Parkinson’s disease? ANNALS OF MOVEMENT DISORDERS 2020. [DOI: 10.4103/aomd.aomd_7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Zhang JR, Jin H, Li K, Mao CJ, Yang YP, Wang F, Gu CC, Zhang HJ, Chen J, Liu CF. Genetic analysis of LRRK2 in Parkinson's disease in Han Chinese population. Neurobiol Aging 2018; 72:187.e5-187.e10. [PMID: 30049590 DOI: 10.1016/j.neurobiolaging.2018.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/07/2018] [Accepted: 06/23/2018] [Indexed: 01/03/2023]
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are recognized as the most frequent genetic factors contributing to Parkinson's disease (PD). The aim of our study was to explore LRRK2 variants in PD patients within the mainland Han Chinese population. The whole coding regions of LRRK2 from 296 PD patients were sequenced by targeted regions sequencing and exome sequencing. Eighteen rare variants were identified in 27 PD patients, and 13 of them (M100T, L153W, A459S, S722N, R792K, C925Y, R981K, S1007T, V1447M, R1677S, N2308D, N2313S, and S2350I) were firstly reported in PD. We also tried to explore the genotype-phenotype associations of LRRK2 variants in our data and found that PD with common and rare LRRK2 variants was more likely to have motor fluctuation and nonmotor symptoms. The identification of novel variants in LRRK2 suggests that this gene plays an important role in the pathogenesis and phenotype of PD in Han Chinese population, and our data also rang the alarm bell-more attention should be paid to the whole coding regions of LRRK2.
Collapse
Affiliation(s)
- Jin-Ru Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Jin
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya-Ping Yang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chen-Chen Gu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui-Jun Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
15
|
Li J, Ruskey JA, Arnulf I, Dauvilliers Y, Hu MTM, Högl B, Leblond CS, Zhou S, Ambalavanan A, Ross JP, Bourassa CV, Spiegelman D, Laurent SB, Stefani A, Charley Monaca C, Cochen De Cock V, Boivin M, Ferini-Strambi L, Plazzi G, Antelmi E, Young P, Heidbreder A, Labbe C, Ferman TJ, Dion PA, Fan D, Desautels A, Gagnon JF, Dupré N, Fon EA, Montplaisir JY, Boeve BF, Postuma RB, Rouleau GA, Ross OA, Gan-Or Z. Full sequencing and haplotype analysis of MAPT in Parkinson's disease and rapid eye movement sleep behavior disorder. Mov Disord 2018; 33:1016-1020. [PMID: 29756641 DOI: 10.1002/mds.27385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND MAPT haplotypes are associated with PD, but their association with rapid eye movement sleep behavior disorder is unclear. OBJECTIVE To study the role of MAPT variants in rapid eye movement sleep behavior disorder. METHODS Two cohorts were included: (A) PD (n = 600), rapid eye movement sleep behavior disorder (n = 613) patients, and controls (n = 981); (B) dementia with Lewy bodies patients with rapid eye movement sleep behavior disorder (n = 271) and controls (n = 950). MAPT-associated variants and the entire coding sequence of MAPT were analyzed. Age-, sex-, and ethnicity-adjusted analyses were performed to examine the association between MAPT, PD, and rapid eye movement sleep behavior disorder. RESULTS MAPT-H2 variants were associated with PD (odds ratios: 0.62-0.65; P = 0.010-0.019), but not with rapid eye movement sleep behavior disorder. In PD, the H1 haplotype odds ratio was 1.60 (95% confidence interval: 1.12-2.28; P = 0.009), and the H2 odds ratio was 0.68 (95% confidence interval: 0.48-0.96; P = 0.03). The H2/H1 haplotypes were not associated with rapid eye movement sleep behavior disorder. CONCLUSIONS Our results confirm the protective effect of the MAPT-H2 haplotype in PD, and define its components. Furthermore, our results suggest that MAPT does not play a major role in rapid eye movement sleep behavior disorder, emphasizing different genetic background than in PD in this locus. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jiao Li
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Isabelle Arnulf
- Sleep Disorders Unit, Pitié Salpêtrière Hospital, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière and Sorbonne Universities, UPMC Paris 6 univ, Paris, France
| | - Yves Dauvilliers
- Sleep Unit, National Reference Network for Narcolepsy, Department of Neurology Hôpital-Gui-de Chauliac, CHU Montpellier, INSERM U1061, Montpellier, France
| | - Michele T M Hu
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Birgit Högl
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claire S Leblond
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada
| | - Sirui Zhou
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Amirthagowri Ambalavanan
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Jay P Ross
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada
| | - Cynthia V Bourassa
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Ambra Stefani
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christelle Charley Monaca
- University Lille north of France, Department of clinical neurophysiology and sleep center, CHU Lille, Lille, France
| | - Valérie Cochen De Cock
- Sleep and neurology unit, Beau Soleil Clinic, Montpellier, France.,EuroMov, University of Montpellier, Montpellier, France
| | - Michel Boivin
- GRIP, École de psychologie, Université Laval, Québec city, QC, Canada.,Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Tomsk, Russia
| | - Luigi Ferini-Strambi
- Department of Neurological Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Peter Young
- Department of Sleep Medicine and Neuromuscular Disorders, University of Muenster, Muenster, Germany
| | - Anna Heidbreder
- Department of Sleep Medicine and Neuromuscular Disorders, University of Muenster, Muenster, Germany
| | - Catherine Labbe
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA
| | - Patrick A Dion
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Alex Desautels
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Gagnon
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada.,Département de psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, QC, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Jacques Y Montplaisir
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.,Department of Neurology, Montreal General Hospital, Montréal, QC, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida, USA
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada
| |
Collapse
|
16
|
Gan-Or Z, Alcalay RN, Rouleau GA, Postuma RB. Sleep disorders and Parkinson disease; lessons from genetics. Sleep Med Rev 2018; 41:101-112. [PMID: 29449121 DOI: 10.1016/j.smrv.2018.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 02/08/2023]
Abstract
Parkinson disease is a common, age-related neurodegenerative disorder, projected to afflict millions of individuals in the near future. Understanding its etiology and identifying clinical, genetic or biological markers for Parkinson disease onset and progression is therefore of major importance. Various sleep-related disorders are the most common group of non-motor symptoms in advanced Parkinson disease, but they can also occur during its prodromal phase. However, with the exception of REM sleep behavior disorder, it is unclear whether they are part of the early pathological process of Parkinson disease, or if they develop as Parkinson disease advances because of treatments and neurodegeneration progression. The advancements in genetic studies in the past two decades have generated a wealth of information, and recent genetic studies offer new insight on the association of sleep-related disorders with Parkinson disease. More specifically, comparing genetic data between Parkinson disease and sleep-related disorders can clarify their association, which may assist in determining whether they can serve as clinical markers for Parkinson disease risk or progression. In this review, we discuss the current knowledge on the genetics of sleep-related disorders in Parkinson disease context, and the potential implications on research, diagnosis, counseling and treatment.
Collapse
Affiliation(s)
- Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| | - Roy N Alcalay
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Ronald B Postuma
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
17
|
Weil RS, Lashley TL, Bras J, Schrag AE, Schott JM. Current concepts and controversies in the pathogenesis of Parkinson's disease dementia and Dementia with Lewy Bodies. F1000Res 2017; 6:1604. [PMID: 28928962 PMCID: PMC5580419 DOI: 10.12688/f1000research.11725.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are relentlessly progressive neurodegenerative disorders that are likely to represent two ends of a disease spectrum. It is well established that both are characterised pathologically by widespread cortical Lewy body deposition. However, until recently, the pathophysiological mechanisms leading to neuronal damage were not known. It was also not understood why some cells are particularly vulnerable in PDD/DLB, nor why some individuals show more aggressive and rapid dementia than others. Recent studies using animal and cell models as well as human post-mortem analyses have provided important insights into these questions. Here, we review recent developments in the pathophysiology in PDD/DLB. Specifically, we examine the role of pathological proteins other than α-synuclein, consider particular morphological and physiological features that confer vulnerabilities on some neurons rather than others, and finally examine genetic factors that may explain some of the heterogeneity between individuals with PDD/DLB.
Collapse
Affiliation(s)
- Rimona S. Weil
- Dementia Research Centre, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Tammaryn L. Lashley
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological diseases, UCL Institute of Neurology, London, UK
| | - Jose Bras
- Dementia Research Centre, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Anette E. Schrag
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
18
|
Jin H, Zhang JR, Shen Y, Liu CF. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism. Neurosci Bull 2017; 33:576-584. [PMID: 28770440 DOI: 10.1007/s12264-017-0164-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/14/2017] [Indexed: 12/16/2022] Open
Abstract
Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism, and it may serve as a prodromal marker of neurodegenerative disease. The mechanism underlying RBD is unclear. Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease, including olfactory dysfunction, abnormal color vision, autonomic dysfunction, excessive daytime sleepiness, depression, and cognitive impairment. Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD. In this review, we describe the main clinical and pathogenic features of RBD, focusing on its association with other non-motor symptoms of parkinsonism.
Collapse
Affiliation(s)
- Hong Jin
- Department of Neurology and Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin-Ru Zhang
- Department of Neurology and Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yun Shen
- Department of Neurology and Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Bouhouche A, Tibar H, Ben El Haj R, El Bayad K, Razine R, Tazrout S, Skalli A, Bouslam N, Elouardi L, Benomar A, Yahyaoui M, Regragui W. LRRK2 G2019S Mutation: Prevalence and Clinical Features in Moroccans with Parkinson's Disease. PARKINSON'S DISEASE 2017; 2017:2412486. [PMID: 28465860 PMCID: PMC5390546 DOI: 10.1155/2017/2412486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
Background. The LRRK2 G2019S mutation is the most common genetic determinant of Parkinson's disease (PD) identified to date. This mutation, reported in both familial and sporadic PD, occurs at elevated frequencies in Maghreb population. In the present study, we examined the prevalence of the G2019S mutation in the Moroccan population and we compared the motor and nonmotor phenotype of G2019S carriers to patients with idiopathic Parkinson's disease. Methods. 100 PD patients were assessed for motor and nonmotor symptoms, current medication, and motor complication including motor fluctuations and dyskinesia. The LRRK2 G2019S mutation was investigated by direct sequencing in patients and ethnically matched controls, all of Moroccan origin. Results. Among the 100 PD Moroccan patients, 41 (41%) were carriers of the G2019S mutation. The mutation frequency was higher among probands with autosomal dominant inheritance (76%) than among sporadic ones (28%). Interestingly, G2019S mutation was also found in 5% of control individuals. Clinically, patients carrying the G2019S mutation have more dystonia (OR = 4.6, p = 0.042) and more sleep disorders (OR = 2.4, p = 0.045) than noncarriers. Conclusions. The LRRK2 G2019S prevalence in Morocco is the highest in the world reported to date. Some clinical features in G2019S carriers such as dystonia and sleep disturbances are worth noting.
Collapse
Affiliation(s)
- Ahmed Bouhouche
- Research Team in Neurology and Neurogenetics, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| | - Houyam Tibar
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| | - Rafiqua Ben El Haj
- Research Team in Neurology and Neurogenetics, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Khalil El Bayad
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| | - Rachid Razine
- Laboratory of Public Health, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Sanaa Tazrout
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| | - Asmae Skalli
- Research Team in Neurology and Neurogenetics, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Naima Bouslam
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| | - Loubna Elouardi
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| | - Ali Benomar
- Research Team in Neurology and Neurogenetics, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| | - Mohammed Yahyaoui
- Research Team in Neurology and Neurogenetics, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| | - Wafa Regragui
- Research Team in Neurology and Neurogenetics, Medical School and Pharmacy, Mohammed V University, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, Rabat, Morocco
| |
Collapse
|
20
|
Koros C, Simitsi A, Stefanis L. Genetics of Parkinson's Disease: Genotype-Phenotype Correlations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:197-231. [PMID: 28554408 DOI: 10.1016/bs.irn.2017.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the first discovery of a specific genetic defect in the SNCA gene, encoding for α-synuclein, as a causative factor for Parkinson's disease 20 years ago, a multitude of other genes have been linked to this disease in rare cases with Mendelian inheritance. Furthermore, the genetic contribution to the much more common sporadic disease has been demonstrated through case control association studies and, more recently, genome-wide association studies. Interestingly, some of the genes with Mendelian inheritance, such as SNCA, are also relevant to the sporadic disease, suggesting common pathogenetic mechanisms. In this review, we place an emphasis on Mendelian forms, and in particular genetic defects which present predominantly with Parkinsonism. We provide details into the particular phenotypes associated with each genetic defect, with a particular emphasis on nonmotor symptoms. For genetic defects for whom a sufficient number of patients has been assessed, there are evident genotype-phenotype correlations. However, it should be noted that patients with the same causative mutation may present with distinctly divergent phenotypes. This phenotypic variability may be due to genetic, epigenetic or environmental factors. From a clinical and genetic point of view, it will be especially interesting in the future to identify genetic factors that modify disease penetrance, the age of onset or other specific phenotypic features.
Collapse
Affiliation(s)
- Christos Koros
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece
| | - Athina Simitsi
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece
| | - Leonidas Stefanis
- National and Kapodistrian University of Athens Medical School, "Attikon" Hospital, Athens, Greece.
| |
Collapse
|
21
|
Weil RS, Schrag AE, Warren JD, Crutch SJ, Lees AJ, Morris HR. Visual dysfunction in Parkinson's disease. Brain 2016; 139:2827-2843. [PMID: 27412389 PMCID: PMC5091042 DOI: 10.1093/brain/aww175] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 01/09/2023] Open
Abstract
Patients with Parkinson's disease have a number of specific visual disturbances. These include changes in colour vision and contrast sensitivity and difficulties with complex visual tasks such as mental rotation and emotion recognition. We review changes in visual function at each stage of visual processing from retinal deficits, including contrast sensitivity and colour vision deficits to higher cortical processing impairments such as object and motion processing and neglect. We consider changes in visual function in patients with common Parkinson's disease-associated genetic mutations including GBA and LRRK2 . We discuss the association between visual deficits and clinical features of Parkinson's disease such as rapid eye movement sleep behavioural disorder and the postural instability and gait disorder phenotype. We review the link between abnormal visual function and visual hallucinations, considering current models for mechanisms of visual hallucinations. Finally, we discuss the role of visuo-perceptual testing as a biomarker of disease and predictor of dementia in Parkinson's disease.
Collapse
Affiliation(s)
- Rimona S. Weil
- 1 Institute of Neurology, University College London, London, UK
- 2 National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- 3 Department of Clinical Neurosciences, Royal Free Hospital NHS Trust, London, UK
| | - Anette E. Schrag
- 1 Institute of Neurology, University College London, London, UK
- 2 National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Jason D. Warren
- 2 National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- 4 Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sebastian J. Crutch
- 4 Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Andrew J. Lees
- 1 Institute of Neurology, University College London, London, UK
- 2 National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Huw R. Morris
- 1 Institute of Neurology, University College London, London, UK
- 2 National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- 3 Department of Clinical Neurosciences, Royal Free Hospital NHS Trust, London, UK
| |
Collapse
|