1
|
Bologna M, Paparella G, Valls-Solé J, Hallett M, Berardelli A. Neural control of blinking. Clin Neurophysiol 2024; 161:59-68. [PMID: 38447495 DOI: 10.1016/j.clinph.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Blinking is a motor act characterized by the sequential closing and opening of the eyelids, which is achieved through the reciprocal activation of the orbicularis oculi and levator palpebrae superioris muscles. This stereotyped movement can be triggered reflexively, occur spontaneously, or voluntarily initiated. During each type of blinking, the neural control of the antagonistic interaction between the orbicularis oculi and levator palpebrae superioris muscles is governed by partially overlapping circuits distributed across cortical, subcortical, and brainstem structures. This paper provides a comprehensive overview of the anatomical and physiological foundations underlying the neural control of blinking. We describe the infra-nuclear apparatus, as well as the supra-nuclear control mechanisms, i.e., how cortical, subcortical, and brainstem structures regulate and coordinate the different types of blinking.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Josep Valls-Solé
- Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| |
Collapse
|
2
|
Zarifkar P, Shaff NA, Nersesjan V, Mayer AR, Ryman S, Kondziella D. Lesion network mapping of eye-opening apraxia. Brain Commun 2023; 5:fcad288. [PMID: 37953849 PMCID: PMC10636562 DOI: 10.1093/braincomms/fcad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Apraxia of eyelid opening (or eye-opening apraxia) is characterized by the inability to voluntarily open the eyes because of impaired supranuclear control. Here, we examined the neural substrates implicated in eye-opening apraxia through lesion network mapping. We analysed brain lesions from 27 eye-opening apraxia stroke patients and compared them with lesions from 20 aphasia and 45 hemiballismus patients serving as controls. Lesions were mapped onto a standard brain atlas using resting-state functional MRI data derived from 966 healthy adults in the Harvard Dataverse. Our analyses revealed that most eye-opening apraxia-associated lesions occurred in the right hemisphere, with subcortical or mixed cortical/subcortical involvement. Despite their anatomical heterogeneity, these lesions functionally converged on the bilateral dorsal anterior and posterior insula. The functional connectivity map for eye-opening apraxia was distinct from those for aphasia and hemiballismus. Hemiballismus lesions predominantly mapped onto the putamen, particularly the posterolateral region, while aphasia lesions were localized to language-processing regions, primarily within the frontal operculum. In summary, in patients with eye-opening apraxia, disruptions in the dorsal anterior and posterior insula may compromise their capacity to initiate the appropriate eyelid-opening response to relevant interoceptive and exteroceptive stimuli, implicating a complex interplay between salience detection and motor execution.
Collapse
Affiliation(s)
- Pardis Zarifkar
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | | | - Vardan Nersesjan
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Copenhagen Research Center for Mental Health—CORE, Copenhagen University Hospital, 2900 Copenhagen, Denmark
| | | | | | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1172 Copenhagen, Denmark
| |
Collapse
|
3
|
Riby LM, Fenwick SK, Kardzhieva D, Allan B, McGann D. Unlocking the Beat: Dopamine and Eye Blink Response to Classical Music. NEUROSCI 2023; 4:152-163. [PMID: 39483319 PMCID: PMC11523725 DOI: 10.3390/neurosci4020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 11/03/2024] Open
Abstract
The present study examined music-induced dopamine release, as measured by a proxy measure of spontaneous eye blinks. Specifically, we explored the effects of uplifting and sombre tones in different sections of Vivaldi's Four Seasons to investigate the affective content of musical pieces within one composition. Seventeen participants listened to four concertos (Major modes: "Spring" and "Autumn", Minor modes: "Summer" and "Winter") and a silence condition while completing a three-stimulus odd-ball attention task. Electrooculograms were recorded from electrodes placed above and under the left eye. Self-reported arousal and music preference measures were also gathered during the testing session. In addition, the P3a Event-Related Potential (ERP) component was analysed as another potential index of dopamine function. Results revealed significant differences in the blink rates during music listening and silence, with the largest effect observed for the sad, melancholic "Winter" concerto. However, no significant correlation was found between blink rate and music preference or arousal. Furthermore, no reliable association was found between blink rate and the P3a ERP component, suggesting that these measures tap into different aspects of dopamine function. These findings contribute to understanding the link between dopamine and blink rate, particularly in response to classical music. Crucially, the study's discovery that the "Winter" concerto, with its sorrowful tone, significantly increased the blink rate highlights the significance of sad music and perhaps the programmatic qualities of this concerto to induce a strong emotional response.
Collapse
Affiliation(s)
- Leigh M. Riby
- Department of Psychology, Northumbria University, Newcastle NE1 8ST, UK
| | | | | | | | | |
Collapse
|
4
|
Validating a Portable Device for Blinking Analyses through Laboratory Neurophysiological Techniques. Brain Sci 2022; 12:brainsci12091228. [PMID: 36138962 PMCID: PMC9496691 DOI: 10.3390/brainsci12091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Blinking analysis contributes to the understanding of physiological mechanisms in healthy subjects as well as the pathophysiological mechanisms of neurological diseases. To date, blinking is assessed by various neurophysiological techniques, including electromyographic (EMG) recordings and optoelectronic motion analysis. We recorded eye-blink kinematics with a new portable device, the EyeStat (Generation 3, blinktbi, Inc., Charleston, SC, USA), and compared the measurements with data obtained using traditional laboratory-based techniques. Sixteen healthy adults underwent voluntary, spontaneous, and reflex blinking recordings using the EyeStat device and the SMART motion analysis system (BTS, Milan, Italy). During the blinking recordings, the EMG activity was recorded from the orbicularis oculi muscles using surface electrodes. The blinking data were analyzed through dedicated software and evaluated with repeated-measure analyses of variance. The Pearson’s product-moment correlation coefficient served to assess possible associations between the EyeStat device, the SMART motion system, and the EMG data. We found that the EMG data collected during the EyeStat and SMART system recordings did not differ. The blinking data recorded with the EyeStat showed a linear relationship with the results obtained with the SMART system (r ranging from 0.85 to 0.57; p ranging from <0.001 to 0.02). These results demonstrate a high accuracy and reliability of a blinking analysis through this portable device, compared with standard techniques. EyeStat may make it easier to record blinking in research activities and in daily clinical practice, thus allowing large-scale studies in healthy subjects and patients with neurological diseases in an outpatient clinic setting.
Collapse
|
5
|
Herwig A, Agic A, Huppertz HJ, Klingebiel R, Zuhorn F, Schneider WX, Schäbitz WR, Rogalewski A. Differentiating Progressive Supranuclear Palsy and Parkinson's Disease With Head-Mounted Displays. Front Neurol 2022; 12:791366. [PMID: 35002933 PMCID: PMC8733559 DOI: 10.3389/fneur.2021.791366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder that, especially in the early stages of the disease, is clinically difficult to distinguish from Parkinson's disease (PD). Objective: This study aimed at assessing the use of eye-tracking in head-mounted displays (HMDs) for differentiating PSP and PD. Methods: Saccadic eye movements of 13 patients with PSP, 15 patients with PD, and a group of 16 healthy controls (HCs) were measured. To improve applicability in an inpatient setting and standardize the diagnosis, all the tests were conducted in a HMD. In addition, patients underwent atlas-based volumetric analysis of various brain regions based on high-resolution MRI. Results: Patients with PSP displayed unique abnormalities in vertical saccade velocity and saccade gain, while horizontal saccades were less affected. A novel diagnostic index was derived, multiplying the ratios of vertical to horizontal gain and velocity, allowing segregation of PSP from PD with high sensitivity (10/13, 77%) and specificity (14/15, 93%). As expected, patients with PSP as compared with patients with PD showed regional atrophy in midbrain volume, the midbrain plane, and the midbrain tegmentum plane. In addition, we found for the first time that oculomotor measures (vertical gain, velocity, and the diagnostic index) were correlated significantly to midbrain volume in the PSP group. Conclusions: Assessing eye movements in a HMD provides an easy to apply and highly standardized tool to differentiate PSP of patients from PD and HCs, which will aid in the diagnosis of PSP.
Collapse
Affiliation(s)
- Arvid Herwig
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Bremen, Bremen, Germany.,Department of Psychology, Neuro-Cognitive Psychology, and Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Almedin Agic
- Department of Neurology, Evangelisches Klinikum Bethel, University Hospital OWL of the University Bielefeld, Bielefeld, Germany
| | | | - Randolf Klingebiel
- Department of Neuroradiology, Evangelisches Klinikum Bethel, University Hospital OWL of the University Bielefeld, Bielefeld, Germany
| | - Frédéric Zuhorn
- Department of Neurology, Evangelisches Klinikum Bethel, University Hospital OWL of the University Bielefeld, Bielefeld, Germany
| | - Werner X Schneider
- Department of Psychology, Neuro-Cognitive Psychology, and Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wolf-Rüdiger Schäbitz
- Department of Neurology, Evangelisches Klinikum Bethel, University Hospital OWL of the University Bielefeld, Bielefeld, Germany
| | - Andreas Rogalewski
- Department of Neurology, Evangelisches Klinikum Bethel, University Hospital OWL of the University Bielefeld, Bielefeld, Germany
| |
Collapse
|
6
|
Paparella G, Di Stefano G, Fasolino A, Di Pietro G, Colella D, Truini A, Cruccu G, Berardelli A, Bologna M. Painful stimulation increases spontaneous blink rate in healthy subjects. Sci Rep 2020; 10:20014. [PMID: 33203984 PMCID: PMC7672065 DOI: 10.1038/s41598-020-76804-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Spontaneous blink rate is considered a biomarker of central dopaminergic activity. Recent evidence suggests that the central dopaminergic system plays a role in nociception. In the present study, we aimed to investigate whether pain modulates spontaneous blink rate in healthy subjects. We enrolled 15 participants. Spontaneous blink rate was quantified with an optoelectronic system before and after: (1) a painful laser stimulation, and (2) an acoustic startling stimulation. In control experiments, we investigated whether laser stimulation effects depended on stimulation intensity and whether laser stimulation induced any changes in the blink reflex recovery cycle. Finally, we investigated any relationship between spontaneous blink rate modification and pain modulation effect during the cold pressor test. Laser, but not acoustic, stimulation increased spontaneous blink rate. This effect was independent of stimulation intensity and negatively correlated with pain perception. No changes in trigeminal-facial reflex circuit excitability were elicited by laser stimulation. The cold pressor test also induced an increased spontaneous blink rate. Our study provides evidence on the role of dopamine in nociception and suggests that dopaminergic activity may be involved in pain modulation. These findings lay the groundwork for further investigations in patients with pathological conditions characterized by dopaminergic deficit and pain.
Collapse
Affiliation(s)
| | - Giulia Di Stefano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Alessandra Fasolino
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Giuseppe Di Pietro
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Andrea Truini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Giorgio Cruccu
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS, Italy. .,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy.
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| |
Collapse
|
7
|
Orcutt T, Vitek J, Patriat R, Harel N, Matsumoto J. Apraxia of Eyelid Opening Improved by Pallidal Stimulation in Progressive Supranuclear Palsy. Mov Disord Clin Pract 2020; 7:698-700. [PMID: 32775519 DOI: 10.1002/mdc3.13001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tseganesh Orcutt
- Department of Neurology University of Minnesota Minneapolis Minnesota USA
| | - Jerrold Vitek
- Department of Neurology University of Minnesota Minneapolis Minnesota USA
| | - Rémi Patriat
- Department of Radiology Center for Magnetic Resonance Research, University of Minnesota Minneapolis Minnesota USA
| | - Noam Harel
- Department of Radiology Center for Magnetic Resonance Research, University of Minnesota Minneapolis Minnesota USA
| | - Joseph Matsumoto
- Department of Neurology University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
8
|
Bologna M, Berardelli A. Brainstem avenues in Parkinson’s disease research. Clin Neurophysiol 2019; 130:554-555. [DOI: 10.1016/j.clinph.2019.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
|
9
|
Sciacca G, Nicoletti A, Mostile G, Luca A, Raciti L, Dibilio V, Drago F, Salomone S, Zappia M. Blink reflex recovery cycle to differentiate progressive supranuclear palsy from corticobasal syndrome. Eur J Neurol 2018; 25:1100-e85. [PMID: 29754397 DOI: 10.1111/ene.13673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/03/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) may share similar clinical findings and tests to distinguish between the two disorders could be useful. We evaluated the blink reflex and R2 blink reflex recovery cycle (R2BRRC), determining diagnostic sensitivity, specificity and positive and negative predictive value of R2BRRC in differentiating patients with PSP from those with CBS. METHODS This was a prospective data collection study investigating blink reflex and R2BRRC at interstimulus intervals (ISIs) of 100, 150, 200, 300, 400, 500 and 750 ms in 12 patients with PSP, eight patients with CBS and 10 controls. RESULTS Patients with PSP have earlier recruitment of R2BRRC as compared with patients with CBS (ISI: 100 ms, P = 0.002; 150 ms, P < 0.001; 200 ms, P < 0.001; 300 ms, P = 0.02) and controls (ISI: 100 ms, P < 0.001; 150 ms, P < 0.001; 200 ms, P < 0.001; 300 ms, P = 0.004). The presence of an early recovery of the R2 differentiated PSP from CBS with a specificity and sensitivity of 87.5% and 91.7%, respectively. CONCLUSIONS The R2BRRC curve might be considered to be a useful tool in differentiating patients with PSP from those with CBS.
Collapse
Affiliation(s)
- G Sciacca
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - A Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - G Mostile
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - A Luca
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - L Raciti
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - V Dibilio
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - F Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - S Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - M Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Neurophysiological studies on atypical parkinsonian syndromes. Parkinsonism Relat Disord 2017; 42:12-21. [DOI: 10.1016/j.parkreldis.2017.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/14/2017] [Accepted: 06/24/2017] [Indexed: 01/31/2023]
|
11
|
Spontaneous eye blink rate as predictor of dopamine-related cognitive function-A review. Neurosci Biobehav Rev 2016; 71:58-82. [PMID: 27555290 DOI: 10.1016/j.neubiorev.2016.08.020] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022]
Abstract
An extensive body of research suggests the spontaneous eye blink rate (EBR) is a non-invasive indirect marker of central dopamine (DA) function, with higher EBR predicting higher DA function. In the present review we provide a comprehensive overview of this literature. We broadly divide the available research in studies that aim to disentangle the dopaminergic underpinnings of EBR, investigate its utility in diagnosis of DA-related disorders and responsivity to drug treatment, and, lastly, investigate EBR as predictor of individual differences in DA-related cognitive performance. We conclude (i) EBR can reflect both DA receptor subtype D1 and D2 activity, although baseline EBR might be most strongly related to the latter, (ii) EBR can predict hypo- and hyperdopaminergic activity as well as normalization of this activity following treatment, and (iii) EBR can reliably predict individual differences in performance on many cognitive tasks, in particular those related to reward-driven behavior and cognitive flexibility. In sum, this review establishes EBR as a useful predictor of DA in a wide variety of contexts.
Collapse
|
12
|
Upadhyay N, Suppa A, Piattella MC, Bologna M, Di Stasio F, Formica A, Tona F, Colosimo C, Berardelli A, Pantano P. MRI gray and white matter measures in progressive supranuclear palsy and corticobasal syndrome. J Neurol 2016; 263:2022-31. [PMID: 27411806 DOI: 10.1007/s00415-016-8224-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 02/02/2023]
Abstract
We evaluated MRI measures of gray and white matter damages in 19 patients with progressive supranuclear palsy (PSP), 11 with corticobasal syndrome (CBS), and 14 healthy subjects (HS) to differentiate patients with PSP from those with CBS. We calculated surface-based maps of the cortical volume, cortical thickness, surface area, and voxel level maps of sub-cortical volume, and diffusion tensor imaging parameters using automated scripts implemented in FreeSurfer and FSL toolboxes. No significant differences in cortical volume loss were observed between PSP and CBS. When cortical volume was divided into cortical thickness and surface area, cortical thickness in peri-rolandic brain regions was significantly smaller in CBS than in PSP patients, whereas surface area was significantly smaller in PSP than HS. We also found widespread volume loss in sub-cortical structures in patients with PSP and CBS in comparison to HS. Both patient groups displayed diffusion tensor imaging abnormalities: compared to HS, widespread fractional anisotropy and radial diffusivity changes were observed in PSP, whereas axial and radial diffusivity changes were prominent in CBS. Mini-mental state examination positively correlated with diffusion changes in patients with PSP. In conclusion, cortical thickness, surface area, and diffusion tensor imaging parameters may be sensitive enough to help differentiate patients with PSP from those with CBS.
Collapse
Affiliation(s)
- Neeraj Upadhyay
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Antonio Suppa
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
- IRCCS INM Neuromed, Pozzilli, IS, Italy
| | - Maria Cristina Piattella
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Matteo Bologna
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
- IRCCS INM Neuromed, Pozzilli, IS, Italy
| | | | - Alessandra Formica
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Francesca Tona
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
- IRCCS INM Neuromed, Pozzilli, IS, Italy
| | - Patrizia Pantano
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Viale dell'Università, 30, 00185, Rome, Italy.
- IRCCS INM Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|