1
|
Tabari F, Berger JI, Flouty O, Copeland B, Greenlee JD, Johari K. Speech, voice, and language outcomes following deep brain stimulation: A systematic review. PLoS One 2024; 19:e0302739. [PMID: 38728329 PMCID: PMC11086900 DOI: 10.1371/journal.pone.0302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) reliably ameliorates cardinal motor symptoms in Parkinson's disease (PD) and essential tremor (ET). However, the effects of DBS on speech, voice and language have been inconsistent and have not been examined comprehensively in a single study. OBJECTIVE We conducted a systematic analysis of literature by reviewing studies that examined the effects of DBS on speech, voice and language in PD and ET. METHODS A total of 675 publications were retrieved from PubMed, Embase, CINHAL, Web of Science, Cochrane Library and Scopus databases. Based on our selection criteria, 90 papers were included in our analysis. The selected publications were categorized into four subcategories: Fluency, Word production, Articulation and phonology and Voice quality. RESULTS The results suggested a long-term decline in verbal fluency, with more studies reporting deficits in phonemic fluency than semantic fluency following DBS. Additionally, high frequency stimulation, left-sided and bilateral DBS were associated with worse verbal fluency outcomes. Naming improved in the short-term following DBS-ON compared to DBS-OFF, with no long-term differences between the two conditions. Bilateral and low-frequency DBS demonstrated a relative improvement for phonation and articulation. Nonetheless, long-term DBS exacerbated phonation and articulation deficits. The effect of DBS on voice was highly variable, with both improvements and deterioration in different measures of voice. CONCLUSION This was the first study that aimed to combine the outcome of speech, voice, and language following DBS in a single systematic review. The findings revealed a heterogeneous pattern of results for speech, voice, and language across DBS studies, and provided directions for future studies.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| | - Joel I. Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States of America
| | - Brian Copeland
- Department of Neurology, LSU Health Sciences Center, New Orleans, LA, United States of America
| | - Jeremy D. Greenlee
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
- Iowa Neuroscience Institute, Iowa City, IA, United States of America
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
2
|
Zeng S, Zhou X, He R, Zhao Y, Liu Z, Xu Q, Guo J, Yan X, Li J, Tang B, Sun Q. Association Analysis of Essential Tremor-Associated Genetic Variants in Sporadic Late-Onset Parkinson's Disease. Tremor Other Hyperkinet Mov (N Y) 2024; 14:25. [PMID: 38737298 PMCID: PMC11086585 DOI: 10.5334/tohm.885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Background Parkinson's disease (PD) and Essential tremor (ET) are the two most common tremor diseases with recognized genetic pathogenesis. The overlapping clinical features suggest they may share genetic predispositions. Our previous study systematically investigated the association between rare coding variants in ET-associated genes and early-onset PD (EOPD), and found the suggestive association between teneurin transmembrane protein 4 (TENM4) and EOPD. In the current research, we explored the potential genetic interplay between ET-associated genetic loci/genes and sporadic late-onset PD (LOPD). Methods We performed whole-genome sequencing in the 1962 sporadic LOPD cases and 1279 controls from mainland China. We first used logistic regression analysis to test the top 16 SNPs identified by the ET genome-wide association study for the association between ET and LOPD. Then we applied the optimized sequence kernel association testing to explore the rare variant burden of 33 ET-associated genes in this cohort. Results We did not observe a significant association between the included SNPs with LOPD. We also did not discover a significant burden of rare deleterious variants of ET-associated genes in association with LOPD risk. Conclusion Our results do not support the role of ET-associated genetic loci and variants in LOPD. Highlights 1962 cases and 1279 controls were recruited to study the potential genetic interplay between ET-associated genetic loci/variants and sporadic LOPD.No significant association between the ET-associated SNPs and LOPD were observed.No significant burden of rare deleterious variants of ET-associated gene in LOPD risk were found.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China
| | - Xun Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhenhua Liu
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qian Xu
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jifeng Guo
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xinxiang Yan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinchen Li
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Beisha Tang
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Qiying Sun
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
3
|
Yu J, Shi J, Chen L, Wang Y, Cai G, Chen X, Hong W, Ye Q. Diffusion tensor imaging techniques show that parkin gene S/N167 polymorphism is responsible for extensive brain white matter damage in patients with Parkinson's disease. Heliyon 2023; 9:e18395. [PMID: 37600423 PMCID: PMC10432609 DOI: 10.1016/j.heliyon.2023.e18395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To explore the influence of disease and genetic factors on the white matter microstructure in patients with PD. The white matter microstructural changes in the substantia nigra-striatum system were detected by diffusion tensor imaging (DTI) using the region of interest (ROI) and diffusion tensor tracer (DTT) methods. Methods Patients with primary Parkinson's disease (PD) without a family history of PD were selected and divided into PD-G/G and PD-G/A groups according to their parkin S/N167 polymorphism. Control groups matched for age, sex, and gene type (G/G and G/A) were also included. Three-dimensional brain volume imaging (3D-BRAVO) and DTI were performed. The microstructural changes in the substantia nigra-striatum system were evaluated by the ROI and DTT methods. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Hoehn-Yahr (H-Y) staging, and the third part of the Unified Parkinson's Disease Rating (UPDRS-III) scales evaluated the cognitive and motor function impairment in patients with PD. Independent samples t-test compared normally-distributed data, and the Wilcoxon rank sum test compared measurement or categorical non-normally distributed data. Multiple regression analysis was used to analyze the correlation between various DTI indicators and the MMSE, MoCA, UPDRS-III, and H-Y scores in the PD-G/G and PD-G/A groups. P < 0.05 was considered statistically significant. Results The white matter microstructural changes in the nigrostriatal pathway differed significantly between the PD or PD-G/A and the control group (P < 0.05)The ROI method showed that the left globus pallidus radial diffusivity (RD) value was negatively correlated with the MMSE score (r = -0.404, P = 0.040), and the left substantia nigra (LSN) fractional anisotropy (FA) value was positively correlated with the MoCA score (r = 0.405, P = 0.040) and negatively with the H-Y stage (r = -0.479, P = 0.013).The DTT method showed that the MMSE score was positively correlated with the right substantia nigra (RSN) FA value (r = 0.592, P = 0.001) and negatively with its RD value (r = -0.439, P = 0.025). The H-Y grade was negatively correlated with the number of fibers in the RSN (r = -0.406, P = 0.040). The UPDRS-Ⅲ score was positively correlated with the mean diffusivity (r = 0.420, P = 0.033) and RD (r = 0.396, P = 0.045) values of the LSN, and the AD value of the RSN (r = 0.439, P = 0.025). Conclusion The DTI technique detected extensive white matter fiber damage in patients with PD, primarily in those with the G/A genotype, that led to motor and cognitivesymptoms.
Collapse
Affiliation(s)
- Jinqiu Yu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Jinying Shi
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lina Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingqing Wang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Weiming Hong
- Department of Neurology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Allen BC, Kapoor S, Anzalone A, Mayer KP, Wolfe SQ, Duncan P, Asimos AW, D'Agostino R, Winslow JT, Sarwal A. Transcranial ultrasonography to detect intracranial pathology: A systematic review and meta-analysis. J Neuroimaging 2023; 33:333-358. [PMID: 36710079 DOI: 10.1111/jon.13087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Transcranial ultrasonography (TCU) can be a useful diagnostic tool in evaluating intracranial pathology in patients with limited or delayed access to routine neuroimaging in critical care or austere settings. We reviewed available literature investigating the diagnostic utility of TCU for detecting pediatric and adult patient's intracranial pathology in patients with intact skulls and reported diagnostic accuracy measures. METHODS We performed a systematic review of PubMed® , Cochrane Library, Embase® , Scopus® , Web of Science™, and Cumulative Index to Nursing and Allied Health Literature databases to identify articles evaluating ultrasound-based detection of intracranial pathology in comparison to routine imaging using broad Medical Subject Heading sets. Two independent reviewers reviewed the retrieved articles for bias using the Quality Assessment of Diagnostic Accuracy Studies tools and extracted measures of diagnostic accuracy and ultrasound parameters. Data were pooled using meta-analysis implementing a random-effects approach to examine the sensitivity, specificity, and accuracy of ultrasound-based diagnosis. RESULTS A total of 44 studies out of the 3432 articles screened met the eligibility criteria, totaling 2426 patients (Mean age: 60.1 ± 14.52 years). We found tumors, intracranial hemorrhage (ICH), and neurodegenerative diseases in the eligible studies. Sensitivity, specificity, and accuracy of TCU and their 95% confidence intervals were 0.80 (0.72, 0.89), 0.71 (0.59, 0.82), and 0.76 (0.71, 0.82) for neurodegenerative diseases; 0.88 (0.74, 1.02), 0.81 (0.50, 1.12), and 0.94 (0.92, 0.96) for ICH; and 0.97 (0.92, 1.03), 0.99 (0.96, 1.01), and 0.99 (0.97, 1.01) for intracranial masses. No studies reported ultrasound presets. CONCLUSIONS TCU has a reasonable sensitivity and specificity for detecting intracranial pathology involving ICH and tumors with clinical applications in remote locations or where standard imaging is unavailable. Future studies should investigate ultrasound parameters to enhance diagnostic accuracy in diagnosing intracranial pathology.
Collapse
Affiliation(s)
- Beddome C Allen
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Sahil Kapoor
- Department of Neurology, Division of Neurocritical Care, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Anthony Anzalone
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Kirby P Mayer
- College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Stacey Q Wolfe
- Department of Neurosurgery, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Pam Duncan
- Department of Neurology, Division of Neurocritical Care, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Andrew W Asimos
- Department of Emergency Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Ralph D'Agostino
- Department of Biostatistics and Data Science, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - James Tripp Winslow
- Department of Emergency Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Aarti Sarwal
- Department of Neurology, Division of Neurocritical Care, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| |
Collapse
|
5
|
Heim B, Peball M, Hammermeister J, Djamshidian A, Krismer F, Seppi K. Differentiating Parkinson’s Disease from Essential Tremor Using Transcranial Sonography: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1115-1123. [PMID: 35180133 PMCID: PMC9198761 DOI: 10.3233/jpd-213012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Essential tremor (ET) and the tremor of Parkinson’s disease (PD) are the most common tremors encountered in clinical practice. Especially in early disease stages, discrimination between the tremors of ET and PD can be challenging. Objective: The aim of this study was to evaluate the diagnostic accuracy of transcranial sonography (TCS) of the substantia nigra echogenicity for differential diagnosis of PD versus ET. Methods: A systematic PubMed search identified 512 studies. Sensitivity and specificity of substantia nigra hyperechogenicity was estimated. Data synthesis was carried applying a random effects bivariate binomial model. To assess study quality and risk of bias, the QUADAS-2 tool was used. Results: Eighteen studies were suitable for analysis including 1,264 PD and 824 ET patients. The meta analysis showed a pooled sensitivity and specificity for TCS in the differential diagnosis of PD versus ET of 84.6% (95% CI, 79.4–88.6%) and 83.9% (95% CI, 78.4–88.2%), respectively. Furthermore, we found nearly similar results in sensitivity and specificity comparing TCS and DaTSCAN in a subgroup-analysis of three studies using both diagnostic tools including 107 patients with PD and 62 patients with ET. The QUADAS-2 toolbox revealed a high risk of bias regarding the methodological quality of patient selection. Conclusion: Substantia nigra hyperechogenicity yield high diagnostic accuracy for the discrimination of PD from ET. TCS is a low cost, widely available, non-invasive marker without radiation Therefore, a diagnostic algorithm based on presence or absence of substantia nigra hyperechogenicity is highly warranted.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina Peball
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Kapoor S, Offnick A, Allen B, Brown PA, Sachs JR, Gurcan MN, Pinton G, D'Agostino R, Bushnell C, Wolfe S, Duncan P, Asimos A, Sarwal A. Brain topography on adult ultrasound images: Techniques, interpretation, and image library. J Neuroimaging 2022; 32:1013-1026. [PMID: 35924877 PMCID: PMC9804536 DOI: 10.1111/jon.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Many studies have explored the possibility of using cranial ultrasound for discerning intracranial pathologies like tumors, hemorrhagic stroke, or subdural hemorrhage in clinical scenarios where computer tomography may not be accessible or feasible. The visualization of intracranial anatomy on B-mode ultrasound is challenging due to the presence of the skull that limits insonation to a few segments on the temporal bone that are thin enough to allow transcranial transmission of sound. Several artifacts are produced by hyperechoic signals inherent in brain and skull anatomy when images are created using temporal windows. METHODS While the literature has investigated the accuracy of diagnosis of intracranial pathology with ultrasound, we lack a reference source for images acquired on cranial topography on B-mode ultrasound to illustrate the appearance of normal and abnormal structures of the brain and skull. Two investigators underwent hands-on training in Cranial point-of-care ultrasound (c-POCUS) and acquired multiple images from each patient to obtain the most in-depth images of brain to investigate all visible anatomical structures and pathology within 24 hours of any CT/MRI imaging done. RESULTS Most reproducible structures visible on c-POCUS included bony parts and parenchymal structures. Transcranial and abdominal presets were equivalent in elucidating anatomical structures. Brain pathology like parenchymal hemorrhage, cerebral edema, and hydrocephalus were also visualized. CONCLUSIONS We present an illustrated anatomical atlas of cranial ultrasound B-mode images acquired in various pathologies in a critical care environment and compare our findings with published literature by performing a scoping review of literature on the subject.
Collapse
Affiliation(s)
- Sahil Kapoor
- Department of NeurologyWake Forest Baptist Medical CenterWinston‐SalemNorth CarolinaUSA
| | - Austin Offnick
- Department of NeurologyWake Forest Baptist Medical CenterWinston‐SalemNorth CarolinaUSA
| | - Beddome Allen
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Patrick A. Brown
- Departments of Radiology and NeurosurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeffrey R. Sachs
- Neuroradiology Section, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Metin Nafi Gurcan
- Center for Biomedical InformaticsWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gianmarco Pinton
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill & North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Ralph D'Agostino
- Department of Biostatistics and Data ScienceWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cheryl Bushnell
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Stacey Wolfe
- Department of NeurosurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Pam Duncan
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Andrew Asimos
- Department of Emergency MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA,Carolinas Stroke NetworkAtrium HealthCharlotteNorth CarolinaUSA
| | - Aarti Sarwal
- Department of NeurologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
7
|
Wang XX, Feng Y, Li X, Zhu XY, Truong D, Ondo WG, Wu YC. Prodromal Markers of Parkinson's Disease in Patients With Essential Tremor. Front Neurol 2020; 11:874. [PMID: 32982913 PMCID: PMC7477377 DOI: 10.3389/fneur.2020.00874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Essential tremor (ET) is manifested as an isolated syndrome of bilateral upper limb action tremor. Parkinson's disease (PD) is the second most common neurodegenerative disease, with typical motor symptoms of bradykinesia, rigidity, and resting tremor. ET-PD describes the new-onset of PD in ET patients. Recently, numerous studies on epidemiology, genetics, pathology, clinical features, and neuroimaging studies are challenging the idea that ET is an isolated disease, suggesting that patients with ET have the tendency to develop PD. Methods: In this review article, we collected recent findings that reveal prodromal markers of PD in patients with ET. Results: Substantia nigra hyperechogenicity serves as a prodromal marker for predicting the development of PD in patients with ET and provides a reference for therapeutic strategies. Additional potential markers include other neuroimaging, clinical features, heart rate, and genetics, whereas others lack sufficient evidence. Conclusion: In consideration of the limited research of PD in patients with ET, we are still far from revealing the prodromal markers. However, from the existing follow-up studies on ET patients, Substantia nigra hyperechogenicity may enable further exploration of the relationship between ET and PD and the search for pathogenesis-based therapies.
Collapse
Affiliation(s)
- Xi-Xi Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai General Hospital of Nanjing Medical University, Nanjing, China
| | - Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Li
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ying Zhu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daniel Truong
- Orange Coast Memorial Medical Center, The Truong Neurosciences Institute, Fountain Valley, CA, United States.,Department of Neurosciences and Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - William G Ondo
- Weill Cornell Medical School, Methodist Neurological Institute, Houston, TX, United States
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Bor-Seng-Shu E, Paschoal FM, Almeida KJ, De Lima Oliveira M, Nogueira RC, Teixeira MJ, Walter U. Transcranial brain sonography for Parkinsonian syndromes. J Neurosurg Sci 2020; 63:441-449. [PMID: 31210040 DOI: 10.23736/s0390-5616.19.04696-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Substantia nigra (SN) hyperechogenicity has been proved to be a characteristic finding for idiopathic Parkinson's disease (PD), occurring in more than 90% of the patients. This echofeature is owed to increased amounts of iron in the SN region and reflects a functional impairment of the nigrostriatal dopaminergic system. In a prospective blinded study in which a group of patients with early mild signs and symptoms of unclear Parkinsonism were followed until a definite clinical diagnosis of PD, the hyperechogenicity of the SN was demonstrated to be highly predictive of a final diagnosis of PD. For the diagnosis of PD in individuals with early motor symptoms, both the sensitivity and positive predictive value of SN hyperechogenicity were higher than 90% and both the specificity and negative predictive value were higher than 80%. For early differential diagnosis between PD and atypical Parkinsonian syndromes, the sensitivity and positive predictive value of SN hyperechogenicity were higher than 90%, and both the specificity and negative predictive value were higher than 80%. The diagnostic specificity is increased if combining the TCS findings of SN, lenticular nucleus and third ventricle. In asymptomatic adult subjects, SN hyperechogenicity, at least unilaterally, indicates a subclinical functional insufficiency of the nigrostriatal dopaminergic system. Recent papers revealed that SN hyperechogenicity might suggest preclinical PD. Reduced echogenicity of midbrain raphe indicates increased risk of depression in PD patients. Caudate nucleus hyperechogenicity has been associated with drug-induced psychosis, and frontal horn dilatation >20 mm with dementia. Transcranial brain sonography can be a valuable tool for managing patients with Parkinsonian signs and symptoms.
Collapse
Affiliation(s)
- Edson Bor-Seng-Shu
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil -
| | - Fernando M Paschoal
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Kelson J Almeida
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo De Lima Oliveira
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Ricardo C Nogueira
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Manoel J Teixeira
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Uwe Walter
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Miyamoto M, Miyamoto T. Relationship of substantia nigra hyperechogenicity to risk of Lewy body disease in idiopathic REM sleep behavior disorder patients: a longitudinal study. Sleep Med 2019; 68:31-34. [PMID: 32018190 DOI: 10.1016/j.sleep.2019.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND We examined the relationship between baseline substantia nigra (SN) echogenicity on transcranial sonography (TCS) images and medium-to long-term developments of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) in idiopathic RBD (IRBD) patients. METHODS From 2007-2009, TCS and odor identification tests were performed in 34 consecutive IRBD patients (67.9 ± 6.1 years). A medical chart review was conducted in August 2019 to investigate the development of PD or DLB. RESULTS Of the 34 IRBD patients, 14 (41.2%) showed SN hyperechogenicity (SN+) on TCS at baseline. There were no significant differences in age, Unified Parkinson's Disease Rating Scale (UPDRS) score, Mini-Mental State Exam (MMSE) score, or odor identification (OSIT-J) score between the SN+ and SN normoechogenicity (SN-) groups at baseline. The phenoconversion rate was 57.4% (n = 8) in the SN+ group (mean 5.8 years from baseline TCS), and 25.0% (n = 5) in the SN- group (mean 8.6 years from baseline TCS). Of those with phenoconversions, there were five PD patients and three DLB patients in the SN+ group, and one PD patient and four DLB patients in the SN- group. The SN+ group had a higher estimated risk for disease development than the SN- group. The coexistence of SN+ with functional anosmia may predict a short-term Lewy body disease onset risk. CONCLUSION A single baseline TCS for IRBD patients may be a suitable test for screening and predicting groups at high-risk for developing PD or DLB. This may help to select appropriate IRBD patients in clinical trials for disease modifying therapy to prevent progression to PD or DLB.
Collapse
Affiliation(s)
- Masayuki Miyamoto
- Department of Neurology, Center of Sleep Medicine, Dokkyo Medical University, Japan
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center, Japan.
| |
Collapse
|
10
|
Cardaioli G, Ripandelli F, Paolini Paoletti F, Nigro P, Simoni S, Brahimi E, Romoli M, Filidei M, Eusebi P, Calabresi P, Tambasco N. Substantia nigra hyperechogenicity in essential tremor and Parkinson's disease: a longitudinal study. Eur J Neurol 2019; 26:1370-1376. [PMID: 31094036 DOI: 10.1111/ene.13988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/23/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Essential tremor (ET) and Parkinson's disease (PD) sometimes overlap in their clinical expression with ET preceding PD onset, often leading to misdiagnosis. Transcranial sonography (TCS) has been shown to be a valid and non-invasive diagnostic tool to identify early idiopathic PD and to differentiate it from ET. The purpose of this study was to investigate the relevance of substantia nigra hyperechogenicity in patients with ET. METHODS A total of 138 patients (79 with PD, 59 with ET) and 50 matched controls underwent TCS examination at baseline. All patients were followed in a 3-year longitudinal assessment. RESULTS A total of 10 subjects were excluded from the analysis due to the bilateral absence of a temporal acoustic window. During the follow-up period, 11 of the patients with ET developed new-onset parkinsonian features, without fulfilling criteria for PD diagnosis (ET+). Nine patients developed clinical features meeting diagnostic criteria for probable PD (ET-PD). Patients with ET- did not develop parkinsonian features. For each group, the maximum size of the substantia nigra hyperechogenicity was as follows: 5.62 ± 5.40 mm2 in the control group, 19.02 ± 14.27 mm2 in patients with PD, 9.15 ± 11.26 mm2 in patients with ET-, 20.05 ± 13.78 mm2 in patients with ET+ and 20.13 ± 13.51 mm2 in patients with ET-PD. ET-PD maximum values were significantly different from controls. Maximum values in patients with ET+ were different from both controls and patients with ET-. CONCLUSION Substantia nigra hyperechogenicity in ET seems to represent a risk marker for developing early parkinsonian symptoms or signs in the 3 years following TCS assessment.
Collapse
Affiliation(s)
- G Cardaioli
- Neurology Clinic, University of Perugia, Perugia, Italy
| | - F Ripandelli
- Neurology Clinic, University of Perugia, Perugia, Italy
| | | | - P Nigro
- Neurology Clinic, University of Perugia, Perugia, Italy
| | - S Simoni
- Neurology Clinic, University of Perugia, Perugia, Italy
| | - E Brahimi
- Neurology Clinic, University of Perugia, Perugia, Italy
| | - M Romoli
- Neurology Clinic, University of Perugia, Perugia, Italy
| | - M Filidei
- Neurology Clinic, University of Perugia, Perugia, Italy
| | - P Eusebi
- Neurology Clinic, University of Perugia, Perugia, Italy
| | - P Calabresi
- Neurology Clinic, University of Perugia, Perugia, Italy.,IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - N Tambasco
- Neurology Clinic, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Perez Akly MS, Stefani CV, Ciancaglini L, Bestoso JS, Funes JA, Bauso DJ, Besada CH. Accuracy of nigrosome-1 detection to discriminate patients with Parkinson's disease and essential tremor. Neuroradiol J 2019; 32:395-400. [PMID: 31149866 DOI: 10.1177/1971400919853787] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The use of susceptibility weighted imaging in high field magnetic resonance imaging scanners can detect the nigrosome-1 area located in the caudo-lateral region of the pars compacta in the substantia nigra. This structure comprises a significant amount of dopaminergic neurons and degenerates in the early stages of Parkinson's disease. Essential tremor is a neurological condition that in some cases could be confused with the early stages of Parkinson's disease with a possible error in clinical diagnosis. Our purpose is to evaluate the accuracy of nigrosome-1 detection by high resolution magnetic resonance imaging to discriminate Parkinson's disease from essential tremor. METHODS A case-control study compared patients with a clinical diagnosis of Parkinson's disease and essential tremor. Magnetic resonance imaging studies were performed using a 3T magnetic resonance imaging scanner. The susceptibility weighted imaging sequence was obtained in the axial plane with an isotropic voxel of 0.75 mm. Two independent neuroradiologists evaluated the images without access to clinical patient data. RESULTS Sixteen patients were included in each group (Parkinson's disease and essential tremor). Average age: Parkinson's disease group: 71.3 (SD 6.3) and essential tremor group: 68.3 (SD 12.3). For the first evaluator, the nigrosome-1 area was absent in 15 patients with Parkinson's disease and in two with essential tremor and for the second evaluator was absent in 15 patients with Parkinson's disease and four with essential tremor. The sensitivity/specificity for the diagnosis of Parkinson's disease was 93.75%/87.5% for the first evaluator and 93.75%/75% for the second evaluator. CONCLUSION The detection of the nigrosome-1 area is a useful tool in the differential diagnosis between Parkinson's disease and essential tremor, with high sensitivity and specificity.
Collapse
Affiliation(s)
- Manuel S Perez Akly
- Department of Diagnostic Imaging, Hospital Italiano de Buenos Aires, Argentina
| | - Carla V Stefani
- Department of Neurology, Hospital Italiano de Buenos Aires, Argentina
| | - Lucía Ciancaglini
- Department of Neurology, Hospital Italiano de Buenos Aires, Argentina
| | - José S Bestoso
- Department of Neurology, Hospital Italiano de Buenos Aires, Argentina
| | - Jorge A Funes
- Department of Diagnostic Imaging, Hospital Italiano de Buenos Aires, Argentina
| | - Diego J Bauso
- Department of Neurology, Hospital Italiano de Buenos Aires, Argentina
| | - Cristina H Besada
- Department of Diagnostic Imaging, Hospital Italiano de Buenos Aires, Argentina
| |
Collapse
|
12
|
Tarakad A, Jankovic J. Essential Tremor and Parkinson's Disease: Exploring the Relationship. Tremor Other Hyperkinet Mov (N Y) 2019; 8:589. [PMID: 30643667 PMCID: PMC6329774 DOI: 10.7916/d8md0gvr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background There is longstanding controversy surrounding the possible link between essential tremor (ET) and Parkinson's disease (PD). Inconsistent and unreliable diagnostic criteria may in part account for some of the difficulties in defining the relationship between these two common movement disorders. Methods References for this systematic review were identified using PubMed with the search terms "essential tremor" AND "Parkinson's disease" with articles published in English between 1960 and September 2018 included. Results In this review we provide evidence that some patients diagnosed with ET have an increased risk of developing PD years or decades after onset of action tremor. There are several still unresolved questions about the link between the two disorders including lack of verifiable diagnostic criteria for the two disorders and marked overlap in phenomenology. Here we review clinical, epidemiologic, imaging, pathologic, and genetic studies that address the ET-PD relationship. Several lines of evidence support the association between ET and PD, including overlapping motor and non-motor features, relatively high prevalence of rapid eye movement sleep behavior disorder (26-43%) in ET patients, increased prevalence of PD in patients with longstanding antecedent ET, increased prevalence of ET in family members of patients with PD, and the presence of Lewy bodies in the brains of some ET patients (15-24%). Discussion There is a substantial body of evidence supporting the association between ET and PD within at least a subset of patients, although the nature and possible pathogenic mechanisms of the relationship are not well understood.
Collapse
Affiliation(s)
- Arjun Tarakad
- Parkinson’s Disease Center and Movement Disorders Clinic, Baylor College of Medicine Houston, TX, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
13
|
Transcranial B-Mode Sonography in Movement Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:179-212. [PMID: 30473195 DOI: 10.1016/bs.irn.2018.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Applying a 2-4MHz probe at the temporal bone window transcranial B-mode sonography (TCS) enables the depiction of the brain parenchyma through the intact skull. Meanwhile it has been applied for the diagnosis and the differential diagnosis of movement disorders for decades. In the first part of this chapter, we summarize the technical requirements and describe the ultrasound method for optimal TCS examination. Imaging planes and the relevant structures are explained in detail. In the second part of the chapter, we focus on the role of substantia nigra hyperechogenicity for the diagnosis of Parkinson's disease (PD) and prodromal PD. In this part, we also mention the role of TCS in atypical and secondary Parkinsonian syndromes and other movement disorders. Summarizing all these information we explain how TCS can be helpful for the differential diagnosis of movement disorders. The current data show that TCS is an easily applicable and economic imaging method which can be used as an additional tool for the diagnosis of PD with a high sensitivity (>85%), specificity (>80%) and inter-rater reliability (>84%) as well as for the differential diagnosis of movement disorders. Lately, TCS has also been utilized in further areas such as the detection of individuals at risk for PD or the determination of electrode localization in patients with deep brain stimulation. An insufficient temporal bone window especially in the elderly and the necessity of an experienced investigator are limitations of this method.
Collapse
|
14
|
Vázquez-Costa JF, Tembl JI, Fornés-Ferrer V, Cardona F, Morales-Caba L, Fortea G, Pérez-Tur J, Sevilla T. Genetic and constitutional factors are major contributors to substantia nigra hyperechogenicity. Sci Rep 2017; 7:7119. [PMID: 28769074 PMCID: PMC5541052 DOI: 10.1038/s41598-017-07835-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperechogenicity of substantia nigra (SNh) is a frequent finding in amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and other movement disorders (MD) patients, but its meaning is unclear. To ascertain the contribution of different factors to SNh area, we measured it in 108 ALS, 102 PD, 91 other MD patients and 91 healthy controls. Demographical data were collected in all patients and controls. In ALS patients, we also recorded clinical variables, performed genetic analysis and measured baseline levels of ferritin. After family history and genetic testing, ALS patients were classified as familial (15) or sporadic (93). ALS, PD and other MD patients had a larger SNh area than controls. Left SNh and male gender, but not age, associated with larger SNh area in both patients and controls. Familial ALS patients showed larger SNh area than sporadic ones and familial ALS was the only clinical variable in the multivariate analysis to be associated with larger SNh area in ALS patients. Our results suggest that SNh associates with genetic and constitutional factors (male gender, handedness), some of which predispose to certain neurodegenerative diseases. This evidence supports the idea of SNh as an inborn marker of unspecific neuronal vulnerability.
Collapse
Affiliation(s)
- Juan F Vázquez-Costa
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain. .,ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - José I Tembl
- Neurosonology Laboratory, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Victoria Fornés-Ferrer
- Biostatistics Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
| | - Fernando Cardona
- Laboratory of Molecular Genetics, Institut de Biomedicina de València-CSIC, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Lluis Morales-Caba
- Neurosonology Laboratory, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gerardo Fortea
- Neurosonology Laboratory, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jordi Pérez-Tur
- Laboratory of Molecular Genetics, Institut de Biomedicina de València-CSIC, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.,Unidad mixta de Neurología y Genética, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain.,ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
15
|
Yoon JH, Kim MS, Lee SM, Kim HJ, Hong JM. Heart rate variability to differentiate essential tremor from early-stage tremor-dominant Parkinson's disease. J Neurol Sci 2016; 368:55-8. [PMID: 27538602 DOI: 10.1016/j.jns.2016.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/30/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Essential tremor (ET) and Parkinson's disease (PD) are the most common movement disorders in the elderly, but it is difficult to differentiate ET from early-stage tremor-dominant Parkinson's disease (TDPD). METHODS We investigated heart rate variability (HRV) in 23 patients with ET, 27 patients with TDPD, and 23 healthy controls. HRV was determined using the RR intervals of a 5-min electrocardiogram recording. Measurements of beat-to-beat RR variability, including time domains [(standard deviation of the normal-to-normal RR interval (SDNN), and the root mean square difference of successive RR intervals (RMSSD)] and frequency domains [low-frequency (LF) and high-frequency (HF) components and total spectral power (TP)], were assessed retrospectively.x RESULTS In the TDPD group, SDNN, LF, HF, and TP were significantly lower than those in the ET group. In a receiver operating characteristic area under the curve (AUC) analysis, LF was the best potential diagnostic marker (AUC=0.87). CONCLUSION Non-invasive and routine electrocardiography may be helpful in differentiating ET from TDPD during the early disease stage.
Collapse
Affiliation(s)
- Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea.
| | - Min Seung Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Sun Min Lee
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Hyun Jae Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|