1
|
Sumarac S, Youn J, Fearon C, Zivkovic L, Keerthi P, Flouty O, Popovic M, Hodaie M, Kalia S, Lozano A, Hutchison W, Fasano A, Milosevic L. Clinico-physiological correlates of Parkinson's disease from multi-resolution basal ganglia recordings. NPJ Parkinsons Dis 2024; 10:175. [PMID: 39261476 PMCID: PMC11391063 DOI: 10.1038/s41531-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Parkinson's disease (PD) has been associated with pathological neural activity within the basal ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus (STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not correlate with PD symptoms. STN single-neuron and LFP low-beta (12-21 Hz) power and burst dynamics showed modest correlations with bradykinesia and rigidity severity, while STN spiketrain theta (4-8 Hz) power correlated modestly with tremor severity. GPi low- and high-beta (21-30 Hz) power and burst dynamics correlated moderately with bradykinesia and axial symptom severity. These findings suggest that elevated single-neuron and LFP oscillations may be linked to symptoms, though modest correlations imply that the pathophysiology of PD may extend beyond resting-state beta oscillations.
Collapse
Affiliation(s)
- Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jinyoung Youn
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Conor Fearon
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Luka Zivkovic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Prerana Keerthi
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Oliver Flouty
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Milos Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Suneil Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andres Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - William Hutchison
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- KITE, University Health Network, Toronto, ON, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada.
| |
Collapse
|
2
|
Tortato NCB, Ribas G, Frizon LA, Farah M, Teive HAG, Munhoz RP. Efficacy of subthalamic deep brain stimulation programming strategies for gait disorders in Parkinson's disease: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:525. [PMID: 39223361 DOI: 10.1007/s10143-024-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with advanced Parkinson's disease often suffer from severe gait and balance problems, impacting quality of live and persisting despite optimization of standard therapies. The aim of this review was to systematically review the efficacy of STN-DBS programming techniques in alleviating gait disturbances in patients with advanced PD. Searches were conducted in PubMed, Embase, and Lilacs databases, covering studies published until May 2024. The review identified 36 articles that explored five distinct STN-DBS techniques aimed at addressing gait and postural instability in Parkinson's patients: low-frequency stimulation, ventral STN stimulation for simultaneous substantia nigra activation, interleaving, asymmetric stimulation and a short pulse width study. Among these, 21 articles were included in the meta-analysis, which revealed significant heterogeneity among studies. Notably, low-frequency STN-DBS demonstrated positive outcomes in total UPDRS-III score and FOG-Q, especially when combined with dopaminergic therapy. The most favorable results were found for low-frequency STN stimulation. The descriptive analysis suggests that unconventional stimulation approaches may be viable for gait problems in patients who do not respond to standard therapies.
Collapse
Affiliation(s)
- Nathália C B Tortato
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil.
| | - Gustavo Ribas
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil
| | - Leonardo A Frizon
- Neurosurgery Department, Faculdade Pequeno Principe, Av Iguaçu, 333, Curitiba, Brazil
| | - Marina Farah
- Neurology Service, Pontifical Catholic University of Parana, Rua Imaculada Conceição, 1155, Curitiba, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181, Curitiba, 80060-900, PR, Brazil
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, 399 Bathurst St, Toronto, Canada
| |
Collapse
|
3
|
Mishra A, Bajaj V, Fitzpatrick T, Watts J, Khojandi A, Ramdhani RA. Differential Responses to Low- and High-Frequency Subthalamic Nucleus Deep Brain Stimulation on Sensor-Measured Components of Bradykinesia in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2024; 24:4296. [PMID: 39001075 PMCID: PMC11244034 DOI: 10.3390/s24134296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION The current approach to assessing bradykinesia in Parkinson's Disease relies on the Unified Parkinson's Disease Rating Scale (UPDRS), which is a numeric scale. Inertial sensors offer the ability to probe subcomponents of bradykinesia: motor speed, amplitude, and rhythm. Thus, we sought to investigate the differential effects of high-frequency compared to low-frequency subthalamic nucleus (STN) deep brain stimulation (DBS) on these quantified facets of bradykinesia. METHODS We recruited advanced Parkinson's Disease subjects with a chronic bilateral subthalamic nucleus (STN) DBS implantation to a single-blind stimulation trial where each combination of medication state (OFF/ON), electrode contacts, and stimulation frequency (60 Hz/180 Hz) was assessed. The Kinesia One sensor system was used to measure upper limb bradykinesia. For each stimulation trial, subjects performed extremity motor tasks. Sensor data were recorded continuously. We identified STN DBS parameters that were associated with improved upper extremity bradykinesia symptoms using a mixed linear regression model. RESULTS We recruited 22 subjects (6 females) for this study. The 180 Hz STN DBS (compared to the 60 Hz STN DBS) and dopaminergic medications improved all subcomponents of upper extremity bradykinesia (motor speed, amplitude, and rhythm). For the motor rhythm subcomponent of bradykinesia, ventral contacts yielded improved symptom improvement compared to dorsal contacts. CONCLUSION The differential impact of high- and low-frequency STN DBS on the symptoms of bradykinesia may advise programming for these patients but warrants further investigation. Wearable sensors represent a valuable addition to the armamentarium that furthers our ability to conduct objective, quantitative clinical assessments.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Vikram Bajaj
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Toni Fitzpatrick
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Jeremy Watts
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Anahita Khojandi
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Ritesh A. Ramdhani
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
4
|
Wilkins KB, Petrucci MN, Lambert EF, Melbourne JA, Gala AS, Akella P, Parisi L, Cui C, Kehnemouyi YM, Hoffman SL, Aditham S, Diep C, Dorris HJ, Parker JE, Herron JA, Bronte-Stewart HM. Beta Burst-Driven Adaptive Deep Brain Stimulation Improves Gait Impairment and Freezing of Gait in Parkinson's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.26.24309418. [PMID: 38978669 PMCID: PMC11230310 DOI: 10.1101/2024.06.26.24309418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease (PD) that is often refractory to medication. Pathological prolonged beta bursts within the subthalamic nucleus (STN) are associated with both worse impairment and freezing behavior in PD, which are improved with deep brain stimulation (DBS). The goal of the current study was to investigate the feasibility, safety, and tolerability of beta burst-driven adaptive DBS (aDBS) for FOG in PD. Methods Seven individuals with PD were implanted with the investigational Summit™ RC+S DBS system (Medtronic, PLC) with leads placed bilaterally in the STN. A PC-in-the-loop architecture was used to adjust stimulation amplitude in real-time based on the observed beta burst durations in the STN. Participants performed either a harnessed stepping-in-place task or a free walking turning and barrier course, as well as clinical motor assessments and instrumented measures of bradykinesia, OFF stimulation, on aDBS, continuous DBS (cDBS), or random intermittent DBS (iDBS). Results Beta burst driven aDBS was successfully implemented and deemed safe and tolerable in all seven participants. Gait metrics such as overall percent time freezing and mean peak shank angular velocity improved from OFF to aDBS and showed similar efficacy as cDBS. Similar improvements were also seen for overall clinical motor impairment, including tremor, as well as quantitative metrics of bradykinesia. Conclusion Beta burst driven adaptive DBS was feasible, safe, and tolerable in individuals with PD with gait impairment and FOG.
Collapse
Affiliation(s)
- K B Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - M N Petrucci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford Schools of Engineering & Medicine, Stanford, CA, United States
| | - E F Lambert
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J A Melbourne
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - A S Gala
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - P Akella
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - L Parisi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - C Cui
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Y M Kehnemouyi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford Schools of Engineering & Medicine, Stanford, CA, United States
| | - S L Hoffman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - S Aditham
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - C Diep
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - H J Dorris
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J E Parker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J A Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - H M Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Bocci T, Ferrara R, Albizzati T, Averna A, Guidetti M, Marceglia S, Priori A. Asymmetries of the subthalamic activity in Parkinson's disease: phase-amplitude coupling among local field potentials. Brain Commun 2024; 6:fcae201. [PMID: 38894949 PMCID: PMC11184348 DOI: 10.1093/braincomms/fcae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/22/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The role of brain asymmetries of dopaminergic neurons in motor symptoms of Parkinson's disease is still undefined. Local field recordings from the subthalamic nucleus revealed some neurophysiological biomarkers of the disease: increased beta activity, increased low-frequency activity and high-frequency oscillations. Phase-amplitude coupling coordinates the timing of neuronal activity and allows determining the mechanism for communication within distinct regions of the brain. In this study, we discuss the use of phase-amplitude coupling to assess the differences between the two hemispheres in a cohort of 24 patients with Parkinson's disease before and after levodopa administration. Subthalamic low- (12-20 Hz) and high-beta (20-30 Hz) oscillations were compared with low- (30-45 Hz), medium- (70-100 Hz) and high-frequency (260-360 Hz) bands. We found a significant beta-phase-amplitude coupling asymmetry between left and right and an opposite-side-dependent effect of the pharmacological treatment, which is associated with the reduction of motor symptoms. In particular, high coupling between high frequencies and high-beta oscillations was found during the OFF condition (P < 0.01) and a low coupling during the ON state (P < 0.0001) when the right subthalamus was assessed; exactly the opposite happened when the left subthalamus was considered in the analysis, showing a lower coupling between high frequencies and high-beta oscillations during the OFF condition (P < 0.01), followed by a higher one during the ON state (P < 0.01). Interestingly, these asymmetries are independent of the motor onset side, either left or right. These findings have important implications for neural signals that may be used to trigger adaptive deep brain stimulation in Parkinson's and could provide more exhaustive insights into subthalamic dynamics.
Collapse
Affiliation(s)
- Tommaso Bocci
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Rosanna Ferrara
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Tommaso Albizzati
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Matteo Guidetti
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
- Newronika S.r.l., 20093 Cologno Monzese, Italy
| | - Alberto Priori
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| |
Collapse
|
6
|
Cheng Y, Zhao G, Chen L, Cui D, Wang C, Feng K, Yin S. Effects of subthalamic nucleus deep brain stimulation using different frequency programming paradigms on axial symptoms in advanced Parkinson's disease. Acta Neurochir (Wien) 2024; 166:124. [PMID: 38457027 DOI: 10.1007/s00701-024-06005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND In advanced Parkinson's disease (PD), axial symptoms are common and can be debilitating. Although deep brain stimulation (DBS) significantly improves motor symptoms, conventional high-frequency stimulation (HFS) has limited effectiveness in improving axial symptoms. In this study, we investigated the effects on multiple axial symptoms after DBS surgery with three different frequency programming paradigms comprising HFS, low-frequency stimulation (LFS), and variable-frequency stimulation (VFS). METHODS This study involved PD patients who had significant preoperative axial symptoms and underwent bilateral subthalamic nucleus (STN) DBS. Axial symptoms, motor symptoms, medications, and quality of life were evaluated preoperatively (baseline). One month after surgery, HFS was applied. At 6 months post-surgery, HFS assessments were performed, and HFS was switched to LFS. A further month later, we conducted LFS assessments and switched LFS to VFS. At 8 months after surgery, VFS assessments were performed. RESULTS Of the 21 PD patients initially enrolled, 16 patients were ultimately included in this study. Regarding HFS, all axial symptoms except for the Berg Balance Scale (p < 0.0001) did not improve compared with the baseline (all p > 0.05). As for LFS and VFS, all axial symptoms improved significantly compared with both the baseline and HFS (all p < 0.05). Moreover, motor symptoms and medications were significantly better than the baseline (all p < 0.05) after using LFS and VFS. Additionally, the quality of life of the PD patients after receiving LFS and VFS was significantly better than at the baseline and with HFS (all p < 0.0001). CONCLUSION Our findings indicate that HFS is ineffective at improving the majority of axial symptoms in advanced PD. However, both the LFS and VFS programming paradigms exhibit significant improvements in various axial symptoms.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department of Functional Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
| | - Guangrui Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300350, China
| | - Lei Chen
- Department of Neurology, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
| | - Deqiu Cui
- Department of Functional Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
| | - Chunjuan Wang
- Department of Functional Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
| | - Keke Feng
- Department of Functional Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China.
| | - Shaoya Yin
- Department of Functional Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
7
|
He S, Baig F, Merla A, Torrecillos F, Perera A, Wiest C, Debarros J, Benjaber M, Hart MG, Ricciardi L, Morgante F, Hasegawa H, Samuel M, Edwards M, Denison T, Pogosyan A, Ashkan K, Pereira E, Tan H. Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson's disease. Brain 2023; 146:5015-5030. [PMID: 37433037 PMCID: PMC10690014 DOI: 10.1093/brain/awad233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Subthalamic nucleus (STN) beta-triggered adaptive deep brain stimulation (ADBS) has been shown to provide clinical improvement comparable to conventional continuous DBS (CDBS) with less energy delivered to the brain and less stimulation induced side effects. However, several questions remain unanswered. First, there is a normal physiological reduction of STN beta band power just prior to and during voluntary movement. ADBS systems will therefore reduce or cease stimulation during movement in people with Parkinson's disease and could therefore compromise motor performance compared to CDBS. Second, beta power was smoothed and estimated over a time period of 400 ms in most previous ADBS studies, but a shorter smoothing period could have the advantage of being more sensitive to changes in beta power, which could enhance motor performance. In this study, we addressed these two questions by evaluating the effectiveness of STN beta-triggered ADBS using a standard 400 ms and a shorter 200 ms smoothing window during reaching movements. Results from 13 people with Parkinson's disease showed that reducing the smoothing window for quantifying beta did lead to shortened beta burst durations by increasing the number of beta bursts shorter than 200 ms and more frequent switching on/off of the stimulator but had no behavioural effects. Both ADBS and CDBS improved motor performance to an equivalent extent compared to no DBS. Secondary analysis revealed that there were independent effects of a decrease in beta power and an increase in gamma power in predicting faster movement speed, while a decrease in beta event related desynchronization (ERD) predicted quicker movement initiation. CDBS suppressed both beta and gamma more than ADBS, whereas beta ERD was reduced to a similar level during CDBS and ADBS compared with no DBS, which together explained the achieved similar performance improvement in reaching movements during CDBS and ADBS. In addition, ADBS significantly improved tremor compared with no DBS but was not as effective as CDBS. These results suggest that STN beta-triggered ADBS is effective in improving motor performance during reaching movements in people with Parkinson's disease, and that shortening of the smoothing window does not result in any additional behavioural benefit. When developing ADBS systems for Parkinson's disease, it might not be necessary to track very fast beta dynamics; combining beta, gamma, and information from motor decoding might be more beneficial with additional biomarkers needed for optimal treatment of tremor.
Collapse
Affiliation(s)
- Shenghong He
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Fahd Baig
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Anca Merla
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Flavie Torrecillos
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Andrea Perera
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Christoph Wiest
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Jean Debarros
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Moaad Benjaber
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Michael G Hart
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Lucia Ricciardi
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Francesca Morgante
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Harutomo Hasegawa
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Michael Samuel
- Department of Neurology, King’s College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Mark Edwards
- Department of Clinical and Basic Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Erlick Pereira
- Neurosciences Research Centre, St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Cranmer Terrace, London SW17 0QT, UK
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
8
|
Ramdhani RA, Watts J, Kline M, Fitzpatrick T, Niethammer M, Khojandi A. Differential spatiotemporal gait effects with frequency and dopaminergic modulation in STN-DBS. Front Aging Neurosci 2023; 15:1206533. [PMID: 37842127 PMCID: PMC10570440 DOI: 10.3389/fnagi.2023.1206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Objective The spatiotemporal gait changes in advanced Parkinson's disease (PD) remain a treatment challenge and have variable responses to L-dopa and subthalamic deep brain stimulation (STN-DBS). The purpose of this study was to determine whether low-frequency STN-DBS (LFS; 60 Hz) elicits a differential response to high-frequency STN-DBS (HFS; 180 Hz) in spatiotemporal gait kinematics. Methods Advanced PD subjects with chronic STN-DBS were evaluated in both the OFF and ON medication states with LFS and HFS stimulation. Randomization of electrode contact pairs and frequency conditions was conducted. Instrumented Stand and Walk assessments were carried out for every stimulation/medication condition. LM-ANOVA was employed for analysis. Results Twenty-two PD subjects participated in the study, with a mean age (SD) of 63.9 years. Significant interactions between frequency (both LFS and HFS) and electrode contact pairs (particularly ventrally located contacts) were observed for both spatial (foot elevation, toe-off angle, stride length) and temporal (foot speed, stance, single limb support (SLS) and foot swing) gait parameters. A synergistic effect was also demonstrated with L-dopa and both HFS and LFS for right SLS, left stance, left foot swing, right toe-off angle, and left arm range of motion. HFS produced significant improvement in trunk and lumbar range of motion compared to LFS. Conclusion The study provides evidence of synergism of L-dopa and STN-DBS on lower limb spatial and temporal measures in advanced PD. HFS and LFS STN-DBS produced equivalent effects among all other tested lower limb gait features. HFS produced significant trunk and lumbar kinematic improvements.
Collapse
Affiliation(s)
- Ritesh A. Ramdhani
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jeremy Watts
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, United States
| | - Myriam Kline
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Toni Fitzpatrick
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Martin Niethammer
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Neurosciences, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, United States
| | - Anahita Khojandi
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
9
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
10
|
Kehnemouyi YM, Petrucci MN, Wilkins KB, Melbourne JA, Bronte-Stewart HM. The Sequence Effect Worsens Over Time in Parkinson's Disease and Responds to Open and Closed-Loop Subthalamic Nucleus Deep Brain Stimulation. JOURNAL OF PARKINSON'S DISEASE 2023:JPD223368. [PMID: 37125563 DOI: 10.3233/jpd-223368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND The sequence effect is the progressive deterioration in speech, limb movement, and gait that leads to an inability to communicate, manipulate objects, or walk without freezing of gait. Many studies have demonstrated a lack of improvement of the sequence effect from dopaminergic medication, however few studies have studied the metric over time or investigated the effect of open-loop deep brain stimulation in people with Parkinson's disease (PD). OBJECTIVE To investigate whether the sequence effect worsens over time and/or is improved on clinical (open-loop) deep brain stimulation (DBS). METHODS Twenty-one people with PD with bilateral subthalamic nucleus (STN) DBS performed thirty seconds of instrumented repetitive wrist flexion extension and the MDS-UPDRS III off therapy, prior to activation of DBS and every six months for up to three years. A sub-cohort of ten people performed the task during randomized presentations of different intensities of STN DBS. RESULTS The sequence effect was highly correlated with the overall MDS-UPDRS III score and the bradykinesia sub-score and worsened over three years. Increasing intensities of STN open-loop DBS improved the sequence effect and one subject demonstrated improvement on both open-loop and closed-loop DBS. CONCLUSION Sequence effect in limb bradykinesia worsened over time off therapy due to disease progression but improved on open-loop DBS. These results demonstrate that DBS is a useful treatment of the debilitating effects of the sequence effect in limb bradykinesia and upon further investigation closed-loop DBS may offer added improvement.
Collapse
Affiliation(s)
- Yasmine M Kehnemouyi
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Engineering, Department of Bioengineering, Stanford, CA, USA
| | - Matthew N Petrucci
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Engineering, Department of Bioengineering, Stanford, CA, USA
| | - Kevin B Wilkins
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Jillian A Melbourne
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Helen M Bronte-Stewart
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Medicine, Department of Neurosurgery, Stanford, CA, USA
| |
Collapse
|
11
|
Lofredi R, Scheller U, Mindermann A, Feldmann LK, Krauss JK, Saryyeva A, Schneider GH, Kühn AA. Pallidal Beta Activity Is Linked to Stimulation-Induced Slowness in Dystonia. Mov Disord 2023. [PMID: 36807626 DOI: 10.1002/mds.29347] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Pallidal deep brain stimulation (DBS) effectively alleviates symptoms in dystonia patients, but may induce movement slowness as a side-effect. In Parkinson's disease, hypokinetic symptoms have been associated with increased beta oscillations (13-30 Hz). We hypothesize that this pattern is symptom-specific, thus accompanying DBS-induced slowness in dystonia. METHODS In 6 dystonia patients, pallidal rest recordings with a sensing-enabled DBS device were performed and tapping speed was assessed using marker-less pose estimation over 5 time points following cessation of DBS. RESULTS After cessation of pallidal stimulation, movement speed increased over time (P < 0.01). A linear mixed-effects model revealed that pallidal beta activity explained 77% of the variance in movement speed across patients (P = 0.01). CONCLUSIONS The association between beta oscillations and slowness across disease entities provides further evidence for symptom-specific oscillatory patterns in the motor circuit. Our findings might help DBS therapy improvements, as DBS-devices able to adapt to beta oscillations are already commercially available. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Ute Scheller
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Aurika Mindermann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucia K Feldmann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Exzellenzcluster - NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Lopes EM, Rego R, Rito M, Chamadoira C, Dias D, Cunha JPS. Estimation of ANT-DBS Electrodes on Target Positioning Based on a New Percept TM PC LFP Signal Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22176601. [PMID: 36081060 PMCID: PMC9460540 DOI: 10.3390/s22176601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/12/2023]
Abstract
Deep brain stimulation of the Anterior Nucleus of the Thalamus (ANT-DBS) is an effective therapy in epilepsy. Poorer surgical outcomes are related to deviations of the lead from the ANT-target. The target identification relies on the visualization of anatomical structures by medical imaging, which presents some disadvantages. This study aims to research whether ANT-LFPs recorded with the PerceptTM PC neurostimulator can be an asset in the identification of the DBS-target. For this purpose, 17 features were extracted from LFPs recorded from a single patient, who stayed at an Epilepsy Monitoring Unit for a 5-day period. Features were then integrated into two machine learning (ML)-based methodologies, according to different LFP bipolar montages: Pass1 (nonadjacent channels) and Pass2 (adjacent channels). We obtained an accuracy of 76.6% for the Pass1-classifier and 83.33% for the Pass2-classifier in distinguishing locations completely inserted in the target and completely outside. Then, both classifiers were used to predict the target percentage of all combinations, and we found that contacts 3 (left hemisphere) and 2 and 3 (right hemisphere) presented higher signatures of the ANT-target, which agreed with the medical images. This result opens a new window of opportunity for the use of LFPs in the guidance of DBS target identification.
Collapse
Affiliation(s)
- Elodie Múrias Lopes
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ricardo Rego
- Neurophysiology Unit, Neurology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Manuel Rito
- Neurosurgery Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Clara Chamadoira
- Neurosurgery Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Duarte Dias
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - João Paulo Silva Cunha
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
13
|
Darcy N, Lofredi R, Al-Fatly B, Neumann WJ, Hübl J, Brücke C, Krause P, Schneider GH, Kühn A. Spectral and spatial distribution of subthalamic beta peak activity in Parkinson's disease patients. Exp Neurol 2022; 356:114150. [PMID: 35732220 DOI: 10.1016/j.expneurol.2022.114150] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Current efforts to optimize subthalamic deep brain stimulation in Parkinson's disease patients aim to harness local oscillatory activity in the beta frequency range (13-35 Hz) as a feedback-signal for demand-based adaptive stimulation paradigms. A high prevalence of beta peak activity is prerequisite for this approach to become routine clinical practice. In a large dataset of postoperative rest recordings from 106 patients we quantified occurrence and identified determinants of spectral peaks in the alpha, low and high beta bands. At least one peak in beta band occurred in 92% of patients and 84% of hemispheres off medication, irrespective of demographic parameters, clinical subtype or motor symptom severity. Distance to previously described clinical sweet spot was significantly related both to beta peak occurrence and to spectral power (rho -0.21, p 0.006), particularly in the high beta band. Electrophysiological landscapes of our cohort's dataset in normalised space showed divergent heatmaps for alpha and beta but found similar regions for low and high beta frequency bands. We discuss potential ramifications for clinicians' programming decisions. In summary, this report provides robust evidence that spectral peaks in beta frequency range can be detected in the vast majority of Parkinsonian subthalamic nuclei, increasing confidence in the broad applicability of beta-guided deep brain stimulation.
Collapse
Affiliation(s)
- Natasha Darcy
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Roxanne Lofredi
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Bassam Al-Fatly
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
| | - Julius Hübl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christof Brücke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Krause
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité - Universitätsmedizin Berlin, Berlin, Germany; DZNE, German center for neurodegenerative diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
14
|
Cury RG, Pavese N, Aziz TZ, Krauss JK, Moro E. Gaps and roadmap of novel neuromodulation targets for treatment of gait in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:8. [PMID: 35017551 PMCID: PMC8752758 DOI: 10.1038/s41531-021-00276-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Gait issues in Parkinson's disease (PD) are common and can be highly disabling. Although levodopa and deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus internus have been established therapies for addressing the motor symptoms of PD, their effects on gait are less predictable and not well sustained with disease progression. Given the high prevalence of gait impairment in PD and the limitations in currently approved therapies, there has been considerable interest in alternative neuromodulation targets and techniques. These have included DBS of pedunculopontine nucleus and substantia nigra pars reticulata, spinal cord stimulation, non-invasive modulation of cortical regions and, more recently, vagus nerve stimulation. However, successes and failures have also emerged with these approaches. Current gaps and controversies are related to patient selection, optimal electrode placement within the target, placebo effects and the optimal programming parameters. Additionally, recent advances in pathophysiology of oscillation dynamics have driven new models of closed-loop DBS systems that may or may not be applicable to gait issues. Our aim is to describe approaches, especially neuromodulation procedures, and emerging challenges to address PD gait issues beyond subthalamic nucleus and the globus pallidus internus stimulation.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Tipu Z Aziz
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Elena Moro
- Division of Neurology, Grenoble Institute of Neurosciences, Grenoble Alpes University, CHU of Grenoble, Grenoble, France
- INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
15
|
Nie Y, Guo X, Li X, Geng X, Li Y, Quan Z, Zhu G, Yin Z, Zhang J, Wang S. Real-time removal of stimulation artifacts in closed-loop deep brain stimulation. J Neural Eng 2021; 18. [PMID: 34818629 DOI: 10.1088/1741-2552/ac3cc5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023]
Abstract
Objective.Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters.Approach.We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals andin vivoclosed-loop DBS applications in Parkinsonian animal models.Main results. The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2-150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS applicationsin vivo, and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations.Significance.The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.
Collapse
Affiliation(s)
- Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xuanjun Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xiao Li
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Neuville RS, Petrucci MN, Wilkins KB, Anderson RW, Hoffman SL, Parker JE, Velisar A, Bronte-Stewart HM. Differential Effects of Pathological Beta Burst Dynamics Between Parkinson's Disease Phenotypes Across Different Movements. Front Neurosci 2021; 15:733203. [PMID: 34858125 PMCID: PMC8631908 DOI: 10.3389/fnins.2021.733203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Resting state beta band (13-30 Hz) oscillations represent pathological neural activity in Parkinson's disease (PD). It is unknown how the peak frequency or dynamics of beta oscillations may change among fine, limb, and axial movements and different disease phenotypes. This will be critical for the development of personalized closed loop deep brain stimulation (DBS) algorithms during different activity states. Methods: Subthalamic (STN) and local field potentials (LFPs) were recorded from a sensing neurostimulator (Activa® PC + S, Medtronic PLC.) in fourteen PD participants (six tremor-dominant and eight akinetic-rigid) off medication/off STN DBS during 30 s of repetitive alternating finger tapping, wrist-flexion extension, stepping in place, and free walking. Beta power peaks and beta burst dynamics were identified by custom algorithms and were compared among movement tasks and between tremor-dominant and akinetic-rigid groups. Results: Beta power peaks were evident during fine, limb, and axial movements in 98% of movement trials; the peak frequencies were similar during each type of movement. Burst power and duration were significantly larger in the high beta band, but not in the low beta band, in the akinetic-rigid group compared to the tremor-dominant group. Conclusion: The conservation of beta peak frequency during different activity states supports the feasibility of patient-specific closed loop DBS algorithms driven by the dynamics of the same beta band during different activities. Akinetic-rigid participants had greater power and longer burst durations in the high beta band than tremor-dominant participants during movement, which may relate to the difference in underlying pathophysiology between phenotypes.
Collapse
Affiliation(s)
- Raumin S. Neuville
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Matthew N. Petrucci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Ross W. Anderson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Shannon L. Hoffman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jordan E. Parker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anca Velisar
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, United States
| | - Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
17
|
Nie Y, Luo H, Li X, Geng X, Green AL, Aziz TZ, Wang S. Subthalamic dynamic neural states correlate with motor symptoms in Parkinson's Disease. Clin Neurophysiol 2021; 132:2789-2797. [PMID: 34592557 DOI: 10.1016/j.clinph.2021.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study aims to discriminate the dynamic synchronization states from the subthalamic local field potentials and investigate their correlations with the motor symptoms in Parkinson's Disease (PD). METHODS The resting-state local field potentials of 10 patients with PD were recorded from the subthalamic nucleus. The dynamic neural states of multiple oscillations were discriminated and analyzed. The Spearman correlation was used to investigate the correlations between occurrence rate or duration of dynamic neural states and the severity of motor symptoms. RESULTS The proportion of long low-beta and theta synchronized state was significantly correlated with the general motor symptom and tremor, respectively. The duration of combined low/high-beta state was significantly correlated with rigidity, and the duration of combined alpha/high-beta state was significantly correlated with bradykinesia. CONCLUSIONS This study provides evidence that motor symptoms are associated with the neural states coded with multiple oscillations in PD. SIGNIFICANCE This study may advance the understanding of the neurophysiological mechanisms of the motor symptoms and provide potential biomarkers for closed-loop deep brain stimulation in PD.
Collapse
Affiliation(s)
- Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Ministry of Education, Fudan University, Shanghai, China
| | - Huichun Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Ministry of Education, Fudan University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Ministry of Education, Fudan University, Shanghai, China
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Ministry of Education, Fudan University, Shanghai, China; Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Plate A, Hell F, Mehrkens JH, Koeglsperger T, Bovet A, Stanslaski S, Bötzel K. Peaks in the beta band of the human subthalamic nucleus: a case for low beta and high beta activity. J Neurosurg 2021; 136:672-680. [PMID: 34560646 DOI: 10.3171/2021.3.jns204113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/03/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Peaks in the beta band of local field potentials (LFPs) may serve as a biological feedback signal for closed-loop deep brain stimulation (DBS) in Parkinson's disease (PD). However, the specific frequency of such peaks and their response to DBS and to different types of movement remains uncertain. In the present study, the authors examined the abundance of discernible peaks in the beta band and the effect of different types of movement and DBS on these peaks. METHODS Subthalamic nucleus LFPs were analyzed from 38 patients with PD in a frequency range between 10 and 35 Hz, as well as the impact of movement (gait, hand movements) and electrical stimulation on these peaks. The position of the electrode segments from which LFPs were recorded was computed. RESULTS The authors found a bimodal distribution of peaks in the beta band with discernible high- (27 Hz) and low-frequency (15 Hz) peaks. Movement of either hand had no significant effect on these peaks, whereas walking significantly reduced high-frequency beta peaks but not the peaks in the low beta band. Stimulation caused an amplitude-dependent suppression of both peaks. CONCLUSIONS DBS suppresses LFP beta peaks of different frequencies, whereas beta suppression caused by movement is dependent on the type of movement and frequency of the peak. These results will support the investigation of distinct LFP spectra for the application of closed-loop DBS.
Collapse
Affiliation(s)
| | | | - Jan H Mehrkens
- 2Neurosurgery, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Koeglsperger
- Departments of1Neurology and.,4Department of Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ayse Bovet
- 3Medtronic plc, Minneapolis, Minnesota; and
| | | | | |
Collapse
|
19
|
Cummins DD, Kochanski RB, Gilron R, Swann NC, Little S, Hammer LH, Starr PA. Chronic Sensing of Subthalamic Local Field Potentials: Comparison of First and Second Generation Implantable Bidirectional Systems Within a Single Subject. Front Neurosci 2021; 15:725797. [PMID: 34447294 PMCID: PMC8382799 DOI: 10.3389/fnins.2021.725797] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Many adaptative deep brain stimulation (DBS) paradigms rely upon the ability to sense neural signatures of specific clinical signs or symptoms in order to modulate therapeutic stimulation. In first-generation bidirectional neurostimulators, the ability to sense neural signals during active stimulation was often limited by artifact. Newer devices, with improved design specifications for sensing, have recently been developed and are now clinically available. OBJECTIVE To compare the sensing capabilities of the first-generation Medtronic PC + S and second-generation Percept PC neurostimulators within a single patient. METHODS A 42-year-old man with Parkinson's disease was initially implanted with left STN DBS leads connected to a PC + S implantable pulse generator. Four years later, the PC + S was replaced with the Percept PC. Local field potential (LFP) signals were recorded, both with stimulation OFF and ON, at multiple timepoints with each device and compared. Offline processing of time series data included artifact removal using digital filtering and template subtraction, before subsequent spectral analysis. With Percept PC, embedded processing of spectral power within a narrow frequency band was also utilized. RESULTS In the absence of stimulation, both devices demonstrated a peak in the beta range (approximately 20 Hz), which was stable throughout the 4-year period. Similar to previous reports, recordings with the PC + S during active stimulation demonstrated significant stimulation artifact, limiting the ability to recover meaningful LFP signal. In contrast, the Percept PC, using the same electrodes and stimulation settings, produced time series data during stimulation with spectral analysis revealing a peak in the beta-band. Online analysis by the Percept demonstrated a reduction in beta-band activity with increasing stimulation amplitude. CONCLUSION This report highlights recent advances in implantable neurostimulator technology for DBS, demonstrating improvements in sensing capabilities during active stimulation between first- and second-generation devices. The ability to reliably sense during stimulation is an important step toward both the clinical implementation of adaptive algorithms and the further investigation into the neurophysiology underlying movement disorders.
Collapse
Affiliation(s)
- Daniel D. Cummins
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ryan B. Kochanski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Roee Gilron
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole C. Swann
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Simon Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lauren H. Hammer
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
20
|
Vijiaratnam N, Girges C, Wirth T, Grover T, Preda F, Tripoliti E, Foley J, Scelzo E, Macerollo A, Akram H, Hyam J, Zrinzo L, Limousin P, Foltynie T. Long-term success of low-frequency subthalamic nucleus stimulation for Parkinson's disease depends on tremor severity and symptom duration. Brain Commun 2021; 3:fcab165. [PMID: 34396114 PMCID: PMC8361419 DOI: 10.1093/braincomms/fcab165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 11/15/2022] Open
Abstract
Patients with Parkinson’s disease can develop axial symptoms, including speech, gait and balance difficulties. Chronic high-frequency (>100 Hz) deep brain stimulation can contribute to these impairments while low-frequency stimulation (<100 Hz) may improve symptoms but only in some individuals. Factors predicting which patients benefit from low-frequency stimulation in the long term remain unclear. This study aims to confirm that low-frequency stimulation improves axial symptoms, and to go further to also explore which factors predict the durability of its effects. We recruited patients who developed axial motor symptoms while using high-frequency stimulation and objectively assessed the short-term impact of low-frequency stimulation on axial symptoms, other aspects of motor function and quality of life. A retrospective chart review was then conducted on a larger cohort to identify which patient characteristics were associated with not only the need to trial low-frequency stimulation, but also those which predicted its sustained use. Among 20 prospective patients, low-frequency stimulation objectively improved mean motor and axial symptom severity and quality of life in the short term. Among a retrospective cohort of 168 patients, those with less severe tremor and those in whom axial symptoms had emerged sooner after subthalamic nucleus deep brain stimulation were more likely to be switched to and remain on long-term low-frequency stimulation. These data suggest that low-frequency stimulation results in objective mean improvements in overall motor function and axial symptoms among a group of patients, while individual patient characteristics can predict sustained long-term benefits. Longer follow-up in the context of a larger, controlled, double-blinded study would be required to provide definitive evidence of the role of low-frequency deep brain stimulation.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Christine Girges
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Wirth
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Timothy Grover
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Francesca Preda
- Unit of Neurology of Ospedale "M. Bufalini" of Cesena, Cesena, Italy
| | - Elina Tripoliti
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Jennifer Foley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Emma Scelzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Antonella Macerollo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK.,Department of Neurology, the Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Jonathan Hyam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Unit of Functional Neurosurgery, the National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
21
|
Yin Z, Zhu G, Zhao B, Bai Y, Jiang Y, Neumann WJ, Kühn AA, Zhang J. Local field potentials in Parkinson's disease: A frequency-based review. Neurobiol Dis 2021; 155:105372. [PMID: 33932557 DOI: 10.1016/j.nbd.2021.105372] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) surgery offers a unique opportunity to record local field potentials (LFPs), the electrophysiological population activity of neurons surrounding the depth electrode in the target area. With direct access to the subcortical activity, LFP research has provided valuable insight into disease mechanisms and cognitive processes and inspired the advent of adaptive DBS for Parkinson's disease (PD). A frequency-based framework is usually employed to interpret the implications of LFP signatures in LFP studies on PD. This approach standardizes the methodology, simplifies the interpretation of LFP patterns, and makes the results comparable across studies. Importantly, previous works have found that activity patterns do not represent disease-specific activity but rather symptom-specific or task-specific neuronal signatures that relate to the current motor, cognitive or emotional state of the patient and the underlying disease. In the present review, we aim to highlight distinguishing features of frequency-specific activities, mainly within the motor domain, recorded from DBS electrodes in patients with PD. Associations of the commonly reported frequency bands (delta, theta, alpha, beta, gamma, and high-frequency oscillations) to motor signs are discussed with respect to band-related phenomena such as individual tremor and high/low beta frequency activity, as well as dynamic transients of beta bursts. We provide an overview on how electrophysiology research in DBS patients has revealed and will continuously reveal new information about pathophysiology, symptoms, and behavior, e.g., when combining deep LFP and surface electrocorticography recordings.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´ Campus Mitte, Charite´ - University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´ Campus Mitte, Charite´ - University Medicine Berlin, Berlin, Germany; Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Unter den Linden 6, 10099 Berlin, Germany; NeuroCure, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
22
|
Jimenez-Shahed J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson's disease and related disorders. Expert Rev Med Devices 2021; 18:319-332. [PMID: 33765395 DOI: 10.1080/17434440.2021.1909471] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Several software and hardware advances in the field of deep brain stimulation (DBS) have been realized in recent years and devices from three manufacturers are available. The Percept™ PC platform (Medtronic, Inc.) enables brain sensing, the latest innovation. Clinicians should be familiar with the differences in devices, and with the latest technologies to deliver optimized patient care.Areas covered: In this device profile, the sensing capabilities of the Percept™ PC platform are described, and the system capabilities are differentiated from other available platforms. The development of the preceding Activa™ PC+S research platform, an investigational device to simultaneously sense brain signals and provide therapeutic stimulation, is provided to place Percept™ PC in the appropriate context.Expert opinion: Percept™ PC offers unique sensing and diary functions as a means to refine therapeutic stimulation, track symptoms and correlate them to neurophysiologic characteristics. Additional features enhance the patient experience with DBS, including 3 T magnetic resonance imaging compatibility, wireless telemetry, a smaller and thinner battery profile, and increased battery longevity. Future work will be needed to illustrate the clinical utility and added value of using sensing to optimize DBS therapy. Patients implanted with Percept™ PC will have ready access to future technology developments.
Collapse
Affiliation(s)
- Joohi Jimenez-Shahed
- Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
23
|
Kehnemouyi YM, Wilkins KB, Anidi CM, Anderson RW, Afzal MF, Bronte-Stewart HM. Modulation of beta bursts in subthalamic sensorimotor circuits predicts improvement in bradykinesia. Brain 2021; 144:473-486. [PMID: 33301569 PMCID: PMC8240742 DOI: 10.1093/brain/awaa394] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/09/2020] [Indexed: 01/25/2023] Open
Abstract
No biomarker of Parkinson's disease exists that allows clinicians to adjust chronic therapy, either medication or deep brain stimulation, with real-time feedback. Consequently, clinicians rely on time-intensive, empirical, and subjective clinical assessments of motor behaviour and adverse events to adjust therapies. Accumulating evidence suggests that hypokinetic aspects of Parkinson's disease and their improvement with therapy are related to pathological neural activity in the beta band (beta oscillopathy) in the subthalamic nucleus. Additionally, effectiveness of deep brain stimulation may depend on modulation of the dorsolateral sensorimotor region of the subthalamic nucleus, which is the primary site of this beta oscillopathy. Despite the feasibility of utilizing this information to provide integrated, biomarker-driven precise deep brain stimulation, these measures have not been brought together in awake freely moving individuals. We sought to directly test whether stimulation-related improvements in bradykinesia were contingent on reduction of beta power and burst durations, and/or the volume of the sensorimotor subthalamic nucleus that was modulated. We recorded synchronized local field potentials and kinematic data in 16 subthalamic nuclei of individuals with Parkinson's disease chronically implanted with neurostimulators during a repetitive wrist-flexion extension task, while administering randomized different intensities of high frequency stimulation. Increased intensities of deep brain stimulation improved movement velocity and were associated with an intensity-dependent reduction in beta power and mean burst duration, measured during movement. The degree of reduction in this beta oscillopathy was associated with the improvement in movement velocity. Moreover, the reduction in beta power and beta burst durations was dependent on the theoretical degree of tissue modulated in the sensorimotor region of the subthalamic nucleus. Finally, the degree of attenuation of both beta power and beta burst durations, together with the degree of overlap of stimulation with the sensorimotor subthalamic nucleus significantly explained the stimulation-related improvement in movement velocity. The above results provide direct evidence that subthalamic nucleus deep brain stimulation-related improvements in bradykinesia are related to the reduction in beta oscillopathy within the sensorimotor region. With the advent of sensing neurostimulators, this beta oscillopathy combined with lead location could be used as a marker for real-time feedback to adjust clinical settings or to drive closed-loop deep brain stimulation in freely moving individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Yasmine M Kehnemouyi
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Kevin B Wilkins
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Chioma M Anidi
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ross W Anderson
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Muhammad Furqan Afzal
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen M Bronte-Stewart
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Medicine, Department of Neurosurgery, Stanford, CA, USA
| |
Collapse
|
24
|
Romagnolo A, Zibetti M, Lenzi M, Vighetti S, Pongmala C, Artusi CA, Montanaro E, Imbalzano G, Rizzone MG, Lopiano L. Low frequency subthalamic stimulation and event-related potentials in Parkinson disease. Parkinsonism Relat Disord 2020; 82:123-127. [PMID: 33321451 DOI: 10.1016/j.parkreldis.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND High frequency (130 Hz) subthalamic Deep-Brain-Stimulation (STN-DBS) optimally improves cardinal motor symptoms in Parkinson disease (PD). Low stimulation frequencies (60-80 Hz) improve axial symptoms in some patients and, according to preliminary evidences, may also have a beneficial effect on the cognitive component of motor planning. OBJECTIVE To analyze the configuration of the P300 component of cortical event-related auditory potentials (ERPs), a reliable index of attentive cognitive functions, at different stimulation frequencies in STN-DBS in PD patients. METHODS 12 PD patients underwent ERPs recordings using a standard oddball auditory paradigm with STN-DBS at 60 Hz, 80 Hz, 130 Hz, and OFF-stimulation, applied in a randomized double-blind sequence. ERPs analysis considered the peak amplitude and latency of the P300 components at midline electrode positions (Fz, Cz, Pz). RESULTS P300 latency over Cz and Pz electrodes significantly increased with STN-DBS at 130 Hz compared to OFF-stimulation. P300 latency was also significantly increased, though to a lesser degree, over Pz electrode with stimulation at 80 Hz. No significant P300 latency modifications were detected at 60 Hz stimulation compared to OFF-stimulation condition. P300 amplitude did not change significantly for any of the stimulation conditions tested. CONCLUSIONS Low frequency STN-DBS is associated with minor modifications of P300 latency compared to conventional stimulation at 130 Hz, possibly suggesting that 60 and 80 Hz may have less interference with attentive and cognitive processes in PD patients.
Collapse
Affiliation(s)
- Alberto Romagnolo
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.
| | - Marco Lenzi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Sergio Vighetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Chatkaew Pongmala
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Elisa Montanaro
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Gabriele Imbalzano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Mario Giorgio Rizzone
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
25
|
Stefani A, Cerroni R, Pierantozzi M, D’Angelo V, Grandi L, Spanetta M, Galati S. Deep brain stimulation in Parkinson’s disease patients and routine 6‐OHDA rodent models: Synergies and pitfalls. Eur J Neurosci 2020; 53:2322-2343. [DOI: 10.1111/ejn.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Rocco Cerroni
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Mariangela Pierantozzi
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Vincenza D’Angelo
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Laura Grandi
- Center for Movement Disorders Neurocenter of Southern Switzerland Lugano Switzerland
| | - Matteo Spanetta
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Salvatore Galati
- Center for Movement Disorders Neurocenter of Southern Switzerland Lugano Switzerland
- Faculty of Biomedical Sciences Università della Svizzera Italiana Lugano Switzerland
| |
Collapse
|
26
|
O'Day JJ, Kehnemouyi YM, Petrucci MN, Anderson RW, Herron JA, Bronte-Stewart HM. Demonstration of Kinematic-Based Closed-loop Deep Brain Stimulation for Mitigating Freezing of Gait in People with Parkinson's Disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3612-3616. [PMID: 33018784 DOI: 10.1109/embc44109.2020.9176638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Impaired gait in Parkinson's disease is marked by slow, arrhythmic stepping, and often includes freezing of gait episodes where alternating stepping halts completely. Wearable inertial sensors offer a way to detect these gait changes and novel deep brain stimulation (DBS) systems can respond with clinical therapy in a real-time, closed-loop fashion. In this paper, we present two novel closed-loop DBS algorithms, one using gait arrhythmicity and one using a logistic-regression model of freezing of gait detection as control signals. Benchtop validation results demonstrate the feasibility of running these algorithms in conjunction with a closed-loop DBS system by responding to real-time human subject kinematic data and pre-recorded data from leg-worn inertial sensors from a participant with Parkinson's disease. We also present a novel control policy algorithm that changes neurostimulator frequency in response to the kinematic inputs. These results provide a foundation for further development, iteration, and testing in a clinical trial for the first closed-loop DBS algorithms using kinematic signals to therapeutically improve and understand the pathophysiological mechanisms of gait impairment in Parkinson's disease.
Collapse
|
27
|
Vissani M, Isaias IU, Mazzoni A. Deep brain stimulation: a review of the open neural engineering challenges. J Neural Eng 2020; 17:051002. [PMID: 33052884 DOI: 10.1088/1741-2552/abb581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.
Collapse
Affiliation(s)
- Matteo Vissani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | |
Collapse
|
28
|
Chen Y, Gong C, Tian Y, Orlov N, Zhang J, Guo Y, Xu S, Jiang C, Hao H, Neumann WJ, Kühn AA, Liu H, Li L. Neuromodulation effects of deep brain stimulation on beta rhythm: A longitudinal local field potential study. Brain Stimul 2020; 13:1784-1792. [PMID: 33038597 DOI: 10.1016/j.brs.2020.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/15/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) holds great promise in treating various brain diseases but its chronic therapeutic mechanisms are unclear. OBJECTIVE To explore the immediate and chronic effects of DBS on brain oscillations, and understand how different sub-bands of oscillations may be related to symptom improvement in Parkinson's patients. METHODS We carried out a longitudinal study to examine the effects of DBS on local field potentials recorded by sensing-enabled neurostimulators in the subthalamic nuclei of Parkinson's patients, using a novel block-design stimulation paradigm. RESULTS DBS significantly suppressed beta activity (13-35Hz) but the suppression effect appeared to gradually attenuate during a 6-month follow-up period after surgery (p = 0.002). However, beta suppression did not attenuate after repeated stimulation over several minutes (p > 0.110), suggesting that the changes in beta suppression may reflect a slow reconfiguration of neural pathways instead of habituation. Suppression of beta was also associated with clinical symptom improvement across subjects. Importantly, symptom-relevant features fell within the high beta band at month 1 but shifted to the low beta band at month 6, indicating that the high beta and the low beta oscillations may play different functional roles and respond differently to stimulation over the long-term treatment. CONCLUSION These data may advance understanding of chronic DBS effects on beta oscillations and their association with clinical improvement, offering novel insights to the therapeutic mechanisms of DBS.
Collapse
Affiliation(s)
- Yue Chen
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Chen Gong
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Natasza Orlov
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, 100032, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Changqing Jiang
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Hongwei Hao
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, 29425, SC, USA.
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China; Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518071, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, 100084, China; Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| |
Collapse
|
29
|
Imbalzano G, Artusi CA, Montanaro E, Romagnolo A, Rizzone MG, Lopiano L, Zibetti M. Tuning deep brain stimulation related depression by frequency modulation: A case report. Brain Stimul 2020; 13:1265-1267. [PMID: 32534251 DOI: 10.1016/j.brs.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022] Open
Affiliation(s)
- Gabriele Imbalzano
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Elisa Montanaro
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Alberto Romagnolo
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Mario Giorgio Rizzone
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126, Turin, Italy.
| |
Collapse
|
30
|
Bronte-Stewart HM, Petrucci MN, O’Day JJ, Afzal MF, Parker JE, Kehnemouyi YM, Wilkins KB, Orthlieb GC, Hoffman SL. Perspective: Evolution of Control Variables and Policies for Closed-Loop Deep Brain Stimulation for Parkinson's Disease Using Bidirectional Deep-Brain-Computer Interfaces. Front Hum Neurosci 2020; 14:353. [PMID: 33061899 PMCID: PMC7489234 DOI: 10.3389/fnhum.2020.00353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/21/2022] Open
Abstract
A deep brain stimulation system capable of closed-loop neuromodulation is a type of bidirectional deep brain-computer interface (dBCI), in which neural signals are recorded, decoded, and then used as the input commands for neuromodulation at the same site in the brain. The challenge in assuring successful implementation of bidirectional dBCIs in Parkinson's disease (PD) is to discover and decode stable, robust and reliable neural inputs that can be tracked during stimulation, and to optimize neurostimulation patterns and parameters (control policies) for motor behaviors at the brain interface, which are customized to the individual. In this perspective, we will outline the work done in our lab regarding the evolution of the discovery of neural and behavioral control variables relevant to PD, the development of a novel personalized dual-threshold control policy relevant to the individual's therapeutic window and the application of these to investigations of closed-loop STN DBS driven by neural or kinematic inputs, using the first generation of bidirectional dBCIs.
Collapse
Affiliation(s)
- Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew N. Petrucci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Johanna J. O’Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Muhammad Furqan Afzal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jordan E. Parker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasmine M. Kehnemouyi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerrit C. Orthlieb
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Shannon L. Hoffman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
31
|
O’Day J, Syrkin-Nikolau J, Anidi C, Kidzinski L, Delp S, Bronte-Stewart H. The turning and barrier course reveals gait parameters for detecting freezing of gait and measuring the efficacy of deep brain stimulation. PLoS One 2020; 15:e0231984. [PMID: 32348346 PMCID: PMC7190141 DOI: 10.1371/journal.pone.0231984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/03/2020] [Indexed: 01/06/2023] Open
Abstract
Freezing of gait (FOG) is a devastating motor symptom of Parkinson’s disease that leads to falls, reduced mobility, and decreased quality of life. Reliably eliciting FOG has been difficult in the clinical setting, which has limited discovery of pathophysiology and/or documentation of the efficacy of treatments, such as different frequencies of subthalamic deep brain stimulation (STN DBS). In this study we validated an instrumented gait task, the turning and barrier course (TBC), with the international standard FOG questionnaire question 3 (FOG-Q3, r = 0.74, p < 0.001). The TBC is easily assembled and mimics real-life environments that elicit FOG. People with Parkinson’s disease who experience FOG (freezers) spent more time freezing during the TBC compared to during forward walking (p = 0.007). Freezers also exhibited greater arrhythmicity during non-freezing gait when performing the TBC compared to forward walking (p = 0.006); this difference in gait arrhythmicity between tasks was not detected in non-freezers or controls. Freezers’ non-freezing gait was more arrhythmic than that of non-freezers or controls during all walking tasks (p < 0.05). A logistic regression model determined that a combination of gait arrhythmicity, stride time, shank angular range, and asymmetry had the greatest probability of classifying a step as FOG (area under receiver operating characteristic curve = 0.754). Freezers’ percent time freezing and non-freezing gait arrhythmicity decreased, and their shank angular velocity increased in the TBC during both 60 Hz and 140 Hz STN DBS (p < 0.05) to non-freezer values. The TBC is a standardized tool for eliciting FOG and demonstrating the efficacy of 60 Hz and 140 Hz STN DBS for gait impairment and FOG. The TBC revealed gait parameters that differentiated freezers from non-freezers and best predicted FOG; these may serve as relevant control variables for closed loop neurostimulation for FOG in Parkinson’s disease.
Collapse
Affiliation(s)
- Johanna O’Day
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, United States of America
| | - Judy Syrkin-Nikolau
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, United States of America
| | - Chioma Anidi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, United States of America
| | - Lukasz Kidzinski
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Scott Delp
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, United States of America
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Fleming JE, Dunn E, Lowery MM. Simulation of Closed-Loop Deep Brain Stimulation Control Schemes for Suppression of Pathological Beta Oscillations in Parkinson's Disease. Front Neurosci 2020; 14:166. [PMID: 32194372 PMCID: PMC7066305 DOI: 10.3389/fnins.2020.00166] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
This study presents a computational model of closed-loop control of deep brain stimulation (DBS) for Parkinson's disease (PD) to investigate clinically viable control schemes for suppressing pathological beta-band activity. Closed-loop DBS for PD has shown promising results in preliminary clinical studies and offers the potential to achieve better control of patient symptoms and side effects with lower power consumption than conventional open-loop DBS. However, extensive testing of algorithms in patients is difficult. The model presented provides a means to explore a range of control algorithms in silico and optimize control parameters before preclinical testing. The model incorporates (i) the extracellular DBS electric field, (ii) antidromic and orthodromic activation of STN afferent fibers, (iii) the LFP detected at non-stimulating contacts on the DBS electrode and (iv) temporal variation of network beta-band activity within the thalamo-cortico-basal ganglia loop. The performance of on-off and dual-threshold controllers for suppressing beta-band activity by modulating the DBS amplitude were first verified, showing levels of beta suppression and reductions in power consumption comparable with previous clinical studies. Proportional (P) and proportional-integral (PI) closed-loop controllers for amplitude and frequency modulation were then investigated. A simple tuning rule was derived for selecting effective PI controller parameters to target long duration beta bursts while respecting clinical constraints that limit the rate of change of stimulation parameters. Of the controllers tested, PI controllers displayed superior performance for regulating network beta-band activity whilst accounting for clinical considerations. Proportional controllers resulted in undesirable rapid fluctuations of the DBS parameters which may exceed clinically tolerable rate limits. Overall, the PI controller for modulating DBS frequency performed best, reducing the mean error by 83% compared to DBS off and the mean power consumed to 25% of that utilized by open-loop DBS. The network model presented captures sufficient physiological detail to act as a surrogate for preclinical testing of closed-loop DBS algorithms using a clinically accessible biomarker, providing a first step for deriving and testing novel, clinically suitable closed-loop DBS controllers.
Collapse
Affiliation(s)
- John E. Fleming
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
33
|
Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A. Evolving concepts on bradykinesia. Brain 2020; 143:727-750. [PMID: 31834375 PMCID: PMC8205506 DOI: 10.1093/brain/awz344] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease and other parkinsonisms. The various clinical aspects related to bradykinesia and the pathophysiological mechanisms underlying bradykinesia are, however, still unclear. In this article, we review clinical and experimental studies on bradykinesia performed in patients with Parkinson's disease and atypical parkinsonism. We also review studies on animal experiments dealing with pathophysiological aspects of the parkinsonian state. In Parkinson's disease, bradykinesia is characterized by slowness, the reduced amplitude of movement, and sequence effect. These features are also present in atypical parkinsonisms, but the sequence effect is not common. Levodopa therapy improves bradykinesia, but treatment variably affects the bradykinesia features and does not significantly modify the sequence effect. Findings from animal and patients demonstrate the role of the basal ganglia and other interconnected structures, such as the primary motor cortex and cerebellum, as well as the contribution of abnormal sensorimotor processing. Bradykinesia should be interpreted as arising from network dysfunction. A better understanding of bradykinesia pathophysiology will serve as the new starting point for clinical and experimental purposes.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
34
|
Anderson CJ, Figueroa KP, Dorval AD, Pulst SM. Deep cerebellar stimulation reduces ataxic motor symptoms in the shaker rat. Ann Neurol 2020; 85:681-690. [PMID: 30854718 DOI: 10.1002/ana.25464] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Degenerative cerebellar ataxias (DCAs) affect up to 1 in 5,000 people worldwide, leading to incoordination, tremor, and falls. Loss of Purkinje cells, nearly universal across DCAs, dysregulates the dentatothalamocortical network. To address the paucity of treatment strategies, we developed an electrical stimulation-based therapy for DCAs targeting the dorsal dentate nucleus. METHODS We tested this therapeutic strategy in the Wistar Furth shaker rat model of Purkinje cell loss resulting in tremor and ataxia. We implanted shaker rats with stimulating electrodes targeted to the dorsal dentate nucleus and tested a spectrum of frequencies ranging from 4 to 180 Hz. RESULTS Stimulation at 30 Hz most effectively reduced motor symptoms. Stimulation frequencies >100 Hz, commonly used for parkinsonism and essential tremor, worsened incoordination, and frequencies within the tremor physiologic range may worsen tremor. INTERPRETATION Low-frequency deep cerebellar stimulation may provide a novel strategy for treating motor symptoms of degenerative cerebellar ataxias. Ann Neurol 2019;85:681-690.
Collapse
Affiliation(s)
| | | | - Alan D Dorval
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| | | |
Collapse
|
35
|
Krishna V, Young NA, Sammartino F. Imaging: Patient Selection, Targeting, and Outcome Biomarkers. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
|
37
|
Petkos K, Guiho T, Degenaar P, Jackson A, Brown P, Denison T, Drakakis EM. A high-performance 4 nV (√Hz) -1 analog front-end architecture for artefact suppression in local field potential recordings during deep brain stimulation. J Neural Eng 2019; 16:066003. [PMID: 31151118 PMCID: PMC6877351 DOI: 10.1088/1741-2552/ab2610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recording of local field potentials (LFPs) during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, existing recording systems lack the ability to provide artefact-free high-frequency (>100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. APPROACH To solve this problem, we designed and developed a novel, low-noise and versatile analog front-end (AFE) that uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, we assessed the performance of the realised AFE by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). A full performance comparison between the proposed AFE and an identical AFE, equipped with an 8th order analog Bessel notch filter, was also conducted. MAIN RESULTS A high-performance, 4 nV ([Formula: see text])-1 AFE that is capable of recording nV-scale signals was designed in accordance with the imposed specifications. Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5-250 Hz) during stimulation. Its sensing and stimulation artefact suppression capabilities outperformed the capabilities of the AFE equipped with the Bessel notch filter. SIGNIFICANCE The designed AFE can precisely record LFP signals, in and without the presence of either unipolar or bipolar DBS, which renders it as a functional and practical AFE architecture to be utilised in a wide range of applications and environments. This work paves the way for the development of externalized research tools for closed-loop neuromodulation that use low- and higher-frequency LFPs as control signals.
Collapse
Affiliation(s)
- Konstantinos Petkos
- Department of Bioengineering, Imperial College London, London, United Kingdom. Center for Neurotechnology, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Bouthour W, Béreau M, Kibleur A, Zacharia A, Tomkova Chaoui E, Fleury V, Benis D, Momjian S, Bally J, Lüscher C, Krack P, Burkhard PR. Dyskinesia‐inducing lead contacts optimize outcome of subthalamic stimulation in Parkinson's disease. Mov Disord 2019; 34:1728-1734. [DOI: 10.1002/mds.27853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Walid Bouthour
- Department of Neurology Geneva University Hospital Geneva Switzerland
- Department of Basic Neuroscience University of Geneva Geneva Switzerland
| | - Matthieu Béreau
- Department of Neurology Geneva University Hospital Geneva Switzerland
| | - Astrid Kibleur
- Department of Neurology Geneva University Hospital Geneva Switzerland
| | - André Zacharia
- Department of Neurology Geneva University Hospital Geneva Switzerland
| | | | - Vanessa Fleury
- Department of Neurology Geneva University Hospital Geneva Switzerland
| | - Damien Benis
- Department of Neurology Geneva University Hospital Geneva Switzerland
| | - Shahan Momjian
- Department of Neurosurgery Geneva University Hospital Geneva Switzerland
| | - Julien Bally
- Department of Neurology Geneva University Hospital Geneva Switzerland
| | - Christian Lüscher
- Department of Neurology Geneva University Hospital Geneva Switzerland
- Department of Basic Neuroscience University of Geneva Geneva Switzerland
| | - Paul Krack
- Department of Neurology Geneva University Hospital Geneva Switzerland
| | | |
Collapse
|
39
|
Stefani A, Grandi LC, Galati S. Deep brain stimulation of the pedunculopontine nucleus modulates subthalamic pathological oscillations. Neurobiol Dis 2019; 128:49-52. [DOI: 10.1016/j.nbd.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023] Open
|
40
|
Hasan H, Burrows M, Athauda DS, Hellman B, James B, Warner T, Foltynie T, Giovannoni G, Lees AJ, Noyce AJ. The BRadykinesia Akinesia INcoordination (BRAIN) Tap Test: Capturing the Sequence Effect. Mov Disord Clin Pract 2019; 6:462-469. [PMID: 31392247 PMCID: PMC6660282 DOI: 10.1002/mdc3.12798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/05/2019] [Accepted: 05/18/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The BRadykinesia Akinesia INcoordination (BRAIN) tap test is an online keyboard tapping task that has been previously validated to assess upper limb motor function in Parkinson's disease (PD). OBJECTIVES To develop a new parameter that detects a sequence effect and to reliably distinguish between PD patients on and off medication. In addition, we sought to validate a mobile version of the test for use on smartphones and tablet devices. METHODS The BRAIN test scores in 61 patients with PD and 93 healthy controls were compared. A range of established parameters captured number and accuracy of alternate taps. The new velocity score recorded the intertap speed. Decrement in the velocity score was used as a marker for the sequence effect. In the validation phase, 19 PD patients and 19 controls were tested using different hardware including mobile devices. RESULTS Quantified slopes from the velocity score demonstrated bradykinesia (sequence effect) in PD patients (slope cut-off -0.002) with 58% sensitivity and 81% specificity (discovery phase of the study) and 65% sensitivity and 88% specificity (validation phase). All BRAIN test parameters differentiated between on and off medication states in PD. Differentiation between PD patients and controls was possible on all hardware versions of the test. CONCLUSION The BRAIN tap test is a simple, user-friendly, and free-to-use tool for the assessment of upper limb motor dysfunction in PD, which now includes a measure of bradykinesia.
Collapse
Affiliation(s)
- Hasan Hasan
- Institute of NeurologyQueen SquareUniversity College London, LondonUK
| | - Maggie Burrows
- Department of Clinical and Movement NeurosciencesInstitute of NeurologyQueen Square, University College London, LondonUK
- Reta Lila Weston Institute of Neurological StudiesInstitute of Neurology, University College LondonLondonUK
| | - Dilan S. Athauda
- Department of Clinical and Movement NeurosciencesInstitute of NeurologyQueen Square, University College London, LondonUK
- National Hospital for Neurology and NeurosurgeryLondonUK
| | | | | | - Thomas Warner
- Department of Clinical and Movement NeurosciencesInstitute of NeurologyQueen Square, University College London, LondonUK
- Reta Lila Weston Institute of Neurological StudiesInstitute of Neurology, University College LondonLondonUK
| | - Thomas Foltynie
- Department of Clinical and Movement NeurosciencesInstitute of NeurologyQueen Square, University College London, LondonUK
- National Hospital for Neurology and NeurosurgeryLondonUK
| | - Gavin Giovannoni
- Blizard InstituteQueen Mary University London, Barts and the London School of Medicine and DentistryLondonUK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Andrew J. Lees
- Department of Clinical and Movement NeurosciencesInstitute of NeurologyQueen Square, University College London, LondonUK
- Reta Lila Weston Institute of Neurological StudiesInstitute of Neurology, University College LondonLondonUK
| | - Alastair J. Noyce
- Department of Clinical and Movement NeurosciencesInstitute of NeurologyQueen Square, University College London, LondonUK
- Reta Lila Weston Institute of Neurological StudiesInstitute of Neurology, University College LondonLondonUK
- Blizard InstituteQueen Mary University London, Barts and the London School of Medicine and DentistryLondonUK
| |
Collapse
|
41
|
Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat Rev Neurol 2019; 15:343-352. [DOI: 10.1038/s41582-019-0166-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul 2019; 12:868-876. [PMID: 30833216 DOI: 10.1016/j.brs.2019.02.020] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Closed loop deep brain stimulation (clDBS) in Parkinson's disease (PD) using subthalamic (STN) neural feedback has been shown to be efficacious only in the acute post-operative setting, using externalized leads and stimulators. OBJECTIVE To determine feasibility of neural (N)clDBS using the clinical implanted neurostimulator (Activa™ PC + S, FDA IDE approved) and a novel beta dual threshold algorithm in tremor and bradykinesia dominant PD patients on chronic DBS. METHODS 13 PD subjects (20 STNs), on open loop (ol)DBS for 22 ± 7.8 months, consented to NclDBS driven by beta (13-30 Hz) power using a dual threshold algorithm, based on patient specific therapeutic voltage windows. Tremor was assessed continuously, and bradykinesia was evaluated after 20 min of NclDBS using a repetitive wrist flexion-extension task (rWFE). Total electrical energy delivered (TEED) on NclDBS was compared to olDBS using the same active electrode. RESULTS NclDBS was tolerated for 21.67 [21.10-26.15] minutes; no subject stopped early. Resting beta band power was measurable and similar between tremor and bradykinesia dominant patients. NclDBS improved bradykinesia and tremor while delivering only 56.86% of the TEED of olDBS; rWFE velocity (p = 0.003) and frequency (p < 0.001) increased; tremor was below 0.15 rad/sec for 95.4% of the trial and averaged 0.26 rad/sec when present. CONCLUSION This is the first study to demonstrate that STN NclDBS is feasible, efficacious and more efficient than olDBS in tremor and bradykinesia dominant PD patients, on long-term DBS, using an implanted clinical neurostimulator and driven by beta power with a novel dual threshold algorithm, based on customized therapeutic voltage windows.
Collapse
|
43
|
Decreasing subthalamic deep brain stimulation frequency reverses cognitive interference during gait initiation in Parkinson’s disease. Clin Neurophysiol 2018; 129:2482-2491. [DOI: 10.1016/j.clinph.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/25/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022]
|
44
|
Habets JGV, Heijmans M, Kuijf ML, Janssen MLF, Temel Y, Kubben PL. An update on adaptive deep brain stimulation in Parkinson's disease. Mov Disord 2018; 33:1834-1843. [PMID: 30357911 PMCID: PMC6587997 DOI: 10.1002/mds.115] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/26/2018] [Accepted: 07/08/2018] [Indexed: 12/24/2022] Open
Abstract
Advancing conventional open‐loop DBS as a therapy for PD is crucial for overcoming important issues such as the delicate balance between beneficial and adverse effects and limited battery longevity that are currently associated with treatment. Closed‐loop or adaptive DBS aims to overcome these limitations by real‐time adjustment of stimulation parameters based on continuous feedback input signals that are representative of the patient's clinical state. The focus of this update is to discuss the most recent developments regarding potential input signals and possible stimulation parameter modulation for adaptive DBS in PD. Potential input signals for adaptive DBS include basal ganglia local field potentials, cortical recordings (electrocorticography), wearable sensors, and eHealth and mHealth devices. Furthermore, adaptive DBS can be applied with different approaches of stimulation parameter modulation, the feasibility of which can be adapted depending on specific PD phenotypes. Implementation of technological developments like machine learning show potential in the design of such approaches; however, energy consumption deserves further attention. Furthermore, we discuss future considerations regarding the clinical implementation of adaptive DBS in PD. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeroen G V Habets
- Departments of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Margot Heijmans
- Departments of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark L Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcus L F Janssen
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Departments of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter L Kubben
- Departments of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
45
|
Frequency-dependent effects of subthalamic deep brain stimulation on motor symptoms in Parkinson's disease: a meta-analysis of controlled trials. Sci Rep 2018; 8:14456. [PMID: 30262859 PMCID: PMC6160461 DOI: 10.1038/s41598-018-32161-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/03/2018] [Indexed: 11/08/2022] Open
Abstract
This study aims to investigate how the frequency settings of deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) influence the motor symptoms of Parkinson's disease (PD). Stimulation with frequencies less than 100 Hz (mostly 60 or 80 Hz) is considered low-frequency stimulation (LFS) and with frequencies greater than 100 Hz (mostly 130 or 150 Hz) is considered high-frequency stimulation (HFS). We conducted a comprehensive literature review and meta-analysis with a random-effect model. Ten studies with 132 patients were included in our analysis. The pooled results showed no significant difference in the total Unified Parkinson Disease Rating Scale part III (UPDRS-III) scores (mean effect, -1.50; p = 0.19) or the rigidity subscore between HFS and LFS. Compared to LFS, HFS induced greater reduction in the tremor subscore within the medication-off condition (mean effect, 1.01; p = 0.002), while no significance was shown within the medication-on condition (mean effect, 0.01; p = 0.92). LFS induced greater reduction in akinesia subscore (mean effect, -1.68, p = 0.003), the time to complete the stand-walk-sit (SWS) test (mean effect, -4.84; p < 0.00001), and the number of freezing of gait (FOG) (mean effect, -1.71; p = 0.03). These results suggest that two types of frequency settings may have different effects, that is, HFS induces better responses for tremor and LFS induces greater response for akinesia, gait, and FOG, respectively, which are worthwhile to be confirmed in future study, and will ultimately inform the clinical practice in the management of PD using STN-DBS.
Collapse
|
46
|
Gilat M. Towards closed-loop deep brain stimulation for freezing of gait in Parkinson's disease. Clin Neurophysiol 2018; 129:2448-2450. [PMID: 30195971 DOI: 10.1016/j.clinph.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Moran Gilat
- Research Group for Neuromotor Rehabilitation, Department of Rehabilitation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Anidi C, O'Day JJ, Anderson RW, Afzal MF, Syrkin-Nikolau J, Velisar A, Bronte-Stewart HM. Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson's disease. Neurobiol Dis 2018; 120:107-117. [PMID: 30196050 DOI: 10.1016/j.nbd.2018.09.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/18/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
Freezing of gait (FOG) is a devastating axial motor symptom in Parkinson's disease (PD) leading to falls, institutionalization, and even death. The response of FOG to dopaminergic medication and deep brain stimulation (DBS) is complex, variable, and yet to be optimized. Fundamental gaps in the knowledge of the underlying neurobiomechanical mechanisms of FOG render this symptom one of the unsolved challenges in the treatment of PD. Subcortical neural mechanisms of gait impairment and FOG in PD are largely unknown due to the challenge of accessing deep brain circuitry and measuring neural signals in real time in freely-moving subjects. Additionally, there is a lack of gait tasks that reliably elicit FOG. Since FOG is episodic, we hypothesized that dynamic features of subthalamic (STN) beta oscillations, or beta bursts, may contribute to the Freezer phenotype in PD during gait tasks that elicit FOG. We also investigated whether STN DBS at 60 Hz or 140 Hz affected beta burst dynamics and gait impairment differently in Freezers and Non-Freezers. Synchronized STN local field potentials, from an implanted, sensing neurostimulator (Activa® PC + S, Medtronic, Inc.), and gait kinematics were recorded in 12 PD subjects, off-medication during forward walking and stepping-in-place tasks under the following randomly presented conditions: NO, 60 Hz, and 140 Hz DBS. Prolonged movement band beta burst durations differentiated Freezers from Non-Freezers, were a pathological neural feature of FOG and were shortened during DBS which improved gait. Normal gait parameters, accompanied by shorter bursts in Non-Freezers, were unchanged during DBS. The difference between the mean burst duration between hemispheres (STNs) of all individuals strongly correlated with the difference in stride time between their legs but there was no correlation between mean burst duration of each STN and stride time of the contralateral leg, suggesting an interaction between hemispheres influences gait. These results suggest that prolonged STN beta burst durations measured during gait is an important biomarker for FOG and that STN DBS modulated long not short burst durations, thereby acting to restore physiological sensorimotor information processing, while improving gait.
Collapse
Affiliation(s)
- Chioma Anidi
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Johanna J O'Day
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Ross W Anderson
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Muhammad Furqan Afzal
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Judy Syrkin-Nikolau
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Anca Velisar
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Helen M Bronte-Stewart
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA; Stanford University, Department of Neurosurgery, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Xie T, Bloom L, Padmanaban M, Bertacchi B, Kang W, MacCracken E, Dachman A, Vigil J, Satzer D, Zadikoff C, Markopoulou K, Warnke P, Kang UJ. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. J Neurol Neurosurg Psychiatry 2018; 89:989-994. [PMID: 29654112 DOI: 10.1136/jnnp-2018-318060] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate the long-term effect of 60 Hz stimulation of the subthalamic nucleus (STN) on dysphagia, freezing of gait (FOG) and other motor symptoms in patients with Parkinson's disease (PD) who have FOG at the usual 130 Hz stimulation. METHODS This is a prospective, sequence randomised, crossover, double-blind study. PD patients with medication refractory FOG at 130 Hz stimulation of the STN were randomised to the sequences of 130 Hz, 60 Hz or deep brain stimulation off to assess swallowing function (videofluoroscopic evaluation and swallowing questionnaire), FOG severity (stand-walk-sit test and FOG questionnaire) and motor function (Unified PD Rating Scale, Part III motor examination (UPDRS-III)) at initial visit (V1) and follow-up visit (V2, after being on 60 Hz stimulation for an average of 14.5 months), in their usual medications on state. The frequency of aspiration events, perceived swallowing difficulty and FOG severity at 60 Hz compared with 130 Hz stimulation at V2, and their corresponding changes at V2 compared with V1 at 60 Hz were set as primary outcomes, with similar comparisons in UPDRS-III and its subscores as secondary outcomes. RESULTS All 11 enrolled participants completed V1 and 10 completed V2. We found the benefits of 60 Hz stimulation compared with 130 Hz in reducing aspiration frequency, perceived swallowing difficulty, FOG severity, bradykinesia and overall axial and motor symptoms at V1 and persistent benefits on all of them except dysphagia at V2, with overall decreasing efficacy when comparing V2 to V1. CONCLUSIONS The 60 Hz stimulation, when compared with 130 Hz, has long-term benefits on reducing FOG, bradykinesia and overall axial and motor symptoms except dysphagia, although the overall benefits decrease with long-term use. CLINICAL TRIAL REGISTRATION NCT02549859; Pre-results.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Lisa Bloom
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Breanna Bertacchi
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Wenjun Kang
- Center for Research Informatics, University of Chicago, Chicago, Illinois, USA
| | - Ellen MacCracken
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Abraham Dachman
- Department of Radiology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Julie Vigil
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - David Satzer
- Department of Neurosurgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Cindy Zadikoff
- Department of Neurology, Northwestern University Medical Center, Chicago, Illinois, USA
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Glenview, Illinois, USA
| | - Peter Warnke
- Department of Neurosurgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Un Jung Kang
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA
| |
Collapse
|
49
|
Stefani A, Cerroni R, Mazzone P, Liguori C, Di Giovanni G, Pierantozzi M, Galati S. Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson's disease: central role of disease severity. Eur J Neurosci 2018; 49:805-816. [DOI: 10.1111/ejn.14088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Rocco Cerroni
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | | | - Claudio Liguori
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry Faculty of Medicine and Surgery University of Malta La Valletta Malta
| | - Mariangela Pierantozzi
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Salvatore Galati
- Movement disorders service Neurocenter of Southern Switzerland Lugano Switzerland
| |
Collapse
|
50
|
Huang HD, Santaniello S. Closed-loop low-frequency DBS restores thalamocortical relay fidelity in a computational model of the motor loop. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1954-1957. [PMID: 29060276 DOI: 10.1109/embc.2017.8037232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Closed-loop modulation of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) is investigated to automatically adjust the stimulation to the patients' conditions, optimize the clinical outcomes, and reduce the energy requirements. This study proposes a closed-loop control system for real-time adaptation of the STN-DBS amplitude based on the neural activity in the motor thalamus. Population-averaged post-stimulus time histograms are used to measure the average effects of STN-DBS on the thalamocortical neurons and a L2-norm minimization problem is solved to design the control algorithm, while the frequency of stimulation is kept constant. Applied on a large-scale, biophysically-based, anatomically-compliant model of the cortico-basal ganglia-thalamo-cortical motor loop under PD conditions, our adaptive DBS significantly (P-value P<;0.05) improved the relay fidelity of the thalamocortical neurons and restored the average power of the thalamocortical spike trains in the band [3, 100] Hz, two indicators of restored thalamocortical activity. Furthermore, adaptive-DBS significantly decreased the energy requirements when compared with non-adaptive-DBS at the same frequency. Finally, 30- and 60-Hz-adaptive-DBS determined the maximal restoration of thalamocortical activity and outperformed high-frequency, non-adaptive-DBS. Overall, results suggest that a feedback-controlled, low-frequency DBS pattern may result in significant restoration of the thalamocortical encoding while lowering the energy requirements.
Collapse
|