1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R. Dopamine Transporter Imaging, Current Status of a Potential Biomarker: A Comprehensive Review. Int J Mol Sci 2021; 22:11234. [PMID: 34681899 PMCID: PMC8538800 DOI: 10.3390/ijms222011234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
A major goal of current clinical research in Parkinson's disease (PD) is the validation and standardization of biomarkers enabling early diagnosis, predicting outcomes, understanding PD pathophysiology, and demonstrating target engagement in clinical trials. Molecular imaging with specific dopamine-related tracers offers a practical indirect imaging biomarker of PD, serving as a powerful tool to assess the status of presynaptic nigrostriatal terminals. In this review we provide an update on the dopamine transporter (DAT) imaging in PD and translate recent findings to potentially valuable clinical practice applications. The role of DAT imaging as diagnostic, preclinical and predictive biomarker is discussed, especially in view of recent evidence questioning the incontrovertible correlation between striatal DAT binding and nigral cell or axon counts.
Collapse
Affiliation(s)
- Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Sara Giannoni
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Unit of Neurology, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson’s Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
3
|
Lee EY, Flynn MR, Du G, Lewis MM, Goldenberg M, Kong L, Mailman RB, Hong YS, Huang X. Nigral MRI features of asymptomatic welders. Parkinsonism Relat Disord 2021; 85:37-43. [PMID: 33691274 DOI: 10.1016/j.parkreldis.2021.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Manganese (Mn)-induced parkinsonism involves motor symptoms similar to those observed in Parkinson's disease (PD). Previous literature suggests that chronic Mn- exposure may increase PD risk, although Mn-induced clinical syndromes are considered atypical for PD. This study investigated whether asymptomatic welders display differences in the substantia nigra (SN), the key pathological locus of PD. METHOD Brain MRI data and occupational exposure history were obtained in welders (N = 43) and matched controls (N = 31). Diffusion tensor imaging fractional anisotropy (FA; estimate of microstructural integrity) and R2* (estimate of iron and other PD-related brain differences) values in the SN pars compacta (SNc), SN reticulata (SNr), and globus pallidus (GP) were compared between the two groups. The MRI markers of the SN and GP within welders were related to exposure estimates. RESULTS Compared to controls, welders who had chronic, but low-level, Mn-exposure had similar FA and R2* values in both SN regions (p's > 0.082), but significantly lower FA (p = 0.0013), although not R2* (p = 0.553), in the GP. In welders, FA values in the SN and GP showed a second-order polynomial relationship with cumulative lifetime welding exposure (p's < 0.03). CONCLUSION Neurotoxic processes associated with Mn-exposure may be different from those in PD when the exposure-level is relatively low. Greater welding duration and level, however, were associated with FA differences in the GP and SN, indicating that welding exposures above a certain level may induce neurotoxicity in the SN, a finding that should be explored further in future studies.
Collapse
Affiliation(s)
- Eun-Young Lee
- Department of Health Care and Science, Dong-A University, Busan, South Korea.
| | - Michael R Flynn
- Department of Kinesiology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA; Department of Environmental Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Guangwei Du
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| | - Mechelle M Lewis
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| | - Michael Goldenberg
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| | - Lan Kong
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| | - Richard B Mailman
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| | - Young-Seoub Hong
- Department of Preventive Medicine, Dong-A University College of Medicine, Busan, South Korea.
| | - Xuemei Huang
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA; Department of Radiology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA; Department of Neurosurgery, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA; Department of Kinesiology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, 17033, USA; Department of Environmental Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|