1
|
Morino H, Kurashige T, Matsuda Y, Ono M, Sahara N, Miyasaka T, Soeda Y, Shimada H, Yamazaki Y, Takahashi T, Izumi Y, Ito H, Maruyama H, Higuchi M, Arihiro K, Suhara T, Takashima A, Kawakami H. Clinical and Pathological Features of FTDP-17 with MAPT p.K298_H299insQ Mutation. Mov Disord Clin Pract 2024; 11:720-727. [PMID: 38605589 PMCID: PMC11145108 DOI: 10.1002/mdc3.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/14/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND MAPT is a causative gene in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), a hereditary degenerative disease with various clinical manifestations, including progressive supranuclear palsy, corticobasal syndrome, Parkinson's disease, and frontotemporal dementia. OBJECTIVES To analyze genetically, biochemically, and pathologically multiple members of two families who exhibited various phenotypes of the disease. METHODS Genetic analysis included linkage analysis, homozygosity haplotyping, and exome sequencing. We conducted tau protein microtubule polymerization assay, heparin-induced tau aggregation, and western blotting with brain lysate from an autopsy case. We also evaluated abnormal tau aggregation by using anti-tau antibody and PM-PBB3. RESULTS We identified a variant, c.896_897insACA, p.K298_H299insQ, in the MAPT gene of affected patients. Similar to previous reports, most patients presented with atypical parkinsonism. Biochemical analysis revealed that the mutant tau protein had a reduced ability to polymerize microtubules and formed abnormal fibrous aggregates. Pathological study revealed frontotemporal lobe atrophy, midbrain atrophy, depigmentation of the substantia nigra, and four-repeat tau-positive inclusions in the hippocampus, brainstem, and spinal cord neurons. The inclusion bodies also stained positively with PM-PBB3. CONCLUSIONS This study confirmed that the insACA mutation caused FTDP-17. The affected patients showed symptoms resembling Parkinson's disease initially and symptoms of progressive supranuclear palsy later. Despite the initial clinical diagnosis of frontotemporal dementia in the autopsy case, the spread of lesions could explain the process of progressive supranuclear palsy. The study of more cases in the future will help clarify the common pathogenesis of MAPT mutations or specific pathogeneses of each mutation.
Collapse
Affiliation(s)
- Hiroyuki Morino
- Department of Medical GeneticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takashi Kurashige
- Department of NeurologyNational Hospital Organization Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Yukiko Matsuda
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical SciencesDoshisha UniversityKyotanabeJapan
- Laboratory of Physiology & AnatomyNihon University School of PharmacyFunabashiJapan
| | | | - Hitoshi Shimada
- Department of Functional Brain Imaging, Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Yu Yamazaki
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yuishin Izumi
- Department of Clinical NeuroscienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Hidefumi Ito
- Department of NeurologyWakayama Medical UniversityWakayamaJapan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Koji Arihiro
- Department of Anatomical PathologyHiroshima University HospitalHiroshimaJapan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, Institute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | | | - Hideshi Kawakami
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| |
Collapse
|
2
|
Samudra N, Lane-Donovan C, VandeVrede L, Boxer AL. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest 2023; 133:e168553. [PMID: 37317972 PMCID: PMC10266783 DOI: 10.1172/jci168553] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Tauopathies are disorders associated with tau protein dysfunction and insoluble tau accumulation in the brain at autopsy. Multiple lines of evidence from human disease, as well as nonclinical translational models, suggest that tau has a central pathologic role in these disorders, historically thought to be primarily related to tau gain of toxic function. However, a number of tau-targeting therapies with various mechanisms of action have shown little promise in clinical trials in different tauopathies. We review what is known about tau biology, genetics, and therapeutic mechanisms that have been tested in clinical trials to date. We discuss possible reasons for failures of these therapies, such as use of imperfect nonclinical models that do not predict human effects for drug development; heterogeneity of human tau pathologies which may lead to variable responses to therapy; and ineffective therapeutic mechanisms, such as targeting of the wrong tau species or protein epitope. Innovative approaches to human clinical trials can help address some of the difficulties that have plagued our field's development of tau-targeting therapies thus far. Despite limited clinical success to date, as we continue to refine our understanding of tau's pathogenic mechanism(s) in different neurodegenerative diseases, we remain optimistic that tau-targeting therapies will eventually play a central role in the treatment of tauopathies.
Collapse
|
3
|
Sun YM, Zhou XY, Liang XN, Lin JR, Xu YD, Chen C, Wei SD, Chen QS, Liu FT, Zhao J, Tang YL, Shen B, Gan LH, Lu B, Ding ZT, An Y, Wu JJ, Wang J. The genetic spectrum of a cohort of patients clinically diagnosed as Parkinson's disease in mainland China. NPJ Parkinsons Dis 2023; 9:76. [PMID: 37198191 DOI: 10.1038/s41531-023-00518-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
So far, over 20 causative genes of monogenic Parkinson's disease (PD) have been identified. Some causative genes of non-parkinsonian entities may also manifest with parkinsonism mimicking PD. This study aimed to investigate the genetic characteristics of clinically diagnosed PD with early onset age or family history. A total of 832 patients initially diagnosed with PD were enrolled, of which, 636 were classified into the early-onset group and 196 were classified into the familial late-onset group. The genetic testing included the multiplex ligation-dependent probe amplification and next generation sequencing (target sequencing or whole-exome sequencing). The dynamic variants of spinocerebellar ataxia were tested in probands with family history. In the early-onset group, 30.03% of patients (191/636) harbored pathogenic/likely pathogenic (P/LP) variants in known PD-related genes (CHCHD2, DJ-1, GBA (heterozygous), LRRK2, PINK1, PRKN, PLA2G6, SNCA and VPS35). Variants in PRKN were the most prevalent, accounting for 15.72% of the early-onset patients, followed by GBA (10.22%), and PLA2G6 (1.89%). And 2.52% (16/636) had P/LP variants in causative genes of other diseases (ATXN3, ATXN2, GCH1, TH, MAPT, GBA (homozygous)). In the familial late-onset group, 8.67% of patients (17/196) carried P/LP variants in known PD-related genes (GBA (heterozygous), HTRA2, SNCA) and 2.04% (4/196) had P/LP variants in other genes (ATXN2, PSEN1, DCTN1). Heterozygous GBA variants (7.14%) were the most common genetic cause found in familial late-onset patients. Genetic testing is of vital importance in differential diagnosis especially in early-onset and familial PD. Our findings may also provide some clues to the nomenclature of genetic movement disorders.
Collapse
Affiliation(s)
- Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Niu Liang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Ran Lin
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - Yi-Dan Xu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Si-Di Wei
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi-Si Chen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin-Hua Gan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheng-Tong Ding
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu An
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China.
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Funayama M, Nishioka K, Li Y, Hattori N. Molecular genetics of Parkinson's disease: Contributions and global trends. J Hum Genet 2023; 68:125-130. [PMID: 35821405 PMCID: PMC9968657 DOI: 10.1038/s10038-022-01058-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by motor dysfunction. Aging is the greatest risk factor for developing PD. Recent molecular genetic studies have revealed that genetic factors, in addition to aging and environmental factors, play an important role in the development of the disorder. Studies of familial PD have identified approximately 20 different causative genes. PRKN is the most frequently detected causative gene in Japan. The PRKN gene is located at a common fragile site, and both copy number variants as well as single nucleotide variants are frequently detected. The location and variety of variant types makes an accurate genetic diagnosis difficult with conventional genetic testing. In sporadic PD, genome-wide association studies have revealed more than 200 genes that are potential drivers for the development of PD. Many of these studies have been conducted in Caucasian populations alone, which has limited the identification of all genetic risk factors for sporadic PD, particularly as genetic backgrounds vary widely by race. The Global Parkinson's Genetics Program is a global undertaking meant to address the issue of regional differences in genetic studies of PD.
Collapse
Affiliation(s)
- Manabu Funayama
- Research Institute of Disease of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0106, Japan
| |
Collapse
|
5
|
Cheng HR, Lin RR, Li HL, Xue YY, Gao PR, Chen DF, Tao QQ, Wu ZY. Identification and functional characterization of novel variants of MAPT and GRN in Chinese patients with frontotemporal dementia. Neurobiol Aging 2023; 123:233-243. [PMID: 36641371 DOI: 10.1016/j.neurobiolaging.2022.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Frontotemporal dementia (FTD) is the second most common cause of dementia after Alzheimer's disease, characterized by distinct changes in behavior, personality, and language. Our study performed whole exome sequencing and repeat-primed PCR analysis in 29 unrelated FTD patients. Consequently, 2 known pathogenic variants (MAPT: p.P301L; TBK1: p.I450Kfs), and 4 novel variants (MAPT: p.R406Q, p.D430H, p.A330D; GRN: c.350-2A>G) were identified. The functional analysis results showed that phosphorylated tau levels were higher in cells expressing p.R406Q and p.D430H tau than those expressing wild-type tau, especially at the Thr205, Thr231, and Ser396 phosphorylation epitopes. Besides, the p.R406Q and p.D430H variants of MAPT impaired the ability of tau to bind to the microtubules and increased tau self-aggregation. Furthermore, we found that the c.350-2A>G variant caused exon 5 skipping. Our results showed that p.R406Q, p.D430H, and c.350-2A>G variants were classified as pathogenic. Finally, we summarized the clinical characterization of patients carrying pathogenic variants of MAPT in the East Asia populations. Our results broaden the genetic spectrum of FTD with MAPT and GRN variants.
Collapse
Affiliation(s)
- Hong-Rong Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong-Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Lei Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei-Rong Gao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian-Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
6
|
Wang R, Gao H, Xie H, Jia Z, Chen Q. Molecular imaging biomarkers in familial frontotemporal lobar degeneration: Progress and prospects. Front Neurol 2022; 13:933217. [PMID: 36051222 PMCID: PMC9424494 DOI: 10.3389/fneur.2022.933217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Familial frontotemporal lobar degeneration (FTLD) is a pathologically heterogeneous group of neurodegenerative diseases with diverse genotypes and clinical phenotypes. Three major mutations were reported in patients with familial FTLD, namely, progranulin (GRN), microtubule-associated protein tau (MAPT), and the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which could cause neurodegenerative pathological changes years before symptom onset. Noninvasive quantitative molecular imaging with PET or single-photon emission CT (SPECT) allows for selective visualization of the molecular targets in vivo to investigate brain metabolism, perfusion, neuroinflammation, and pathophysiological changes. There was increasing evidence that several molecular imaging biomarkers tend to serve as biomarkers to reveal the early brain abnormalities in familial FTLD. Tau-PET with 18F-flortaucipir and 11C-PBB3 demonstrated the elevated tau position in patients with FTLD and also showed the ability to differentiate patterns among the different subtypes of the mutations in familial FTLD. Furthermore, dopamine transporter imaging with the 11C-DOPA and 11C-CFT in PET and the 123I-FP-CIT in SPECT revealed the loss of dopaminergic neurons in the asymptomatic and symptomatic patients of familial FTLD. In addition, PET imaging with the 11C-MP4A has demonstrated reduced acetylcholinesterase (AChE) activity in patients with FTLD, while PET with the 11C-DAA1106 and 11C-PK11195 revealed an increased level of microglial activation associated with neuroinflammation even before the onset of symptoms in familial FTLD. 18F-fluorodeoxyglucose (FDG)-PET indicated hypometabolism in FTLD with different mutations preceded the atrophy on MRI. Identifying molecular imaging biomarkers for familial FTLD is important for the in-vivo assessment of underlying pathophysiological changes with disease progression and future disease-modifying therapy. We review the recent progress of molecular imaging in familial FTLD with focused on the possible implication of these techniques and their prospects in specific mutation types.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qin Chen
| |
Collapse
|
7
|
Nishioka K, Imai Y, Yoshino H, Li Y, Funayama M, Hattori N. Clinical Manifestations and Molecular Backgrounds of Parkinson's Disease Regarding Genes Identified From Familial and Population Studies. Front Neurol 2022; 13:764917. [PMID: 35720097 PMCID: PMC9201061 DOI: 10.3389/fneur.2022.764917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past 20 years, numerous robust analyses have identified over 20 genes related to familial Parkinson's disease (PD), thereby uncovering its molecular underpinnings and giving rise to more sophisticated approaches to investigate its pathogenesis. α-Synuclein is a major component of Lewy bodies (LBs) and behaves in a prion-like manner. The discovery of α-Synuclein enables an in-depth understanding of the pathology behind the generation of LBs and dopaminergic neuronal loss. Understanding the pathophysiological roles of genes identified from PD families is uncovering the molecular mechanisms, such as defects in dopamine biosynthesis and metabolism, excessive oxidative stress, dysfunction of mitochondrial maintenance, and abnormalities in the autophagy–lysosome pathway, involved in PD pathogenesis. This review summarizes the current knowledge on familial PD genes detected by both single-gene analyses obeying the Mendelian inheritance and meta-analyses of genome-wide association studies (GWAS) from genome libraries of PD. Studying the functional role of these genes might potentially elucidate the pathological mechanisms underlying familial PD and sporadic PD and stimulate future investigations to decipher the common pathways between the diseases.
Collapse
Affiliation(s)
- Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- *Correspondence: Kenya Nishioka
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Yuzuru Imai
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
8
|
Nakano Y, Shimada H, Shinotoh H, Hirano S, Tagai K, Sano Y, Yamamoto Y, Endo H, Matsuoka K, Takahata K, Kubota M, Takado Y, Kimura Y, Ichise M, Ono M, Sahara N, Kawamura K, Zhang MR, Kuwabara S, Suhara T, Higuchi M. PET-based classification of corticobasal syndrome. Parkinsonism Relat Disord 2022; 98:92-98. [PMID: 35533530 DOI: 10.1016/j.parkreldis.2022.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Corticobasal degeneration (CBD) is the most common neuropathological substrate for clinically diagnosed corticobasal syndrome (CBS), while identifying CBD pathology in living individuals has been challenging. This study aimed to examine the capability of positron emission tomography (PET) to detect CBD-type tau depositions and neuropathological classification of CBS. METHODS Sixteen CBS cases diagnosed by Cambridge's criteria and 12 cognitively healthy controls (HCs) underwent PET scans with 11C-PiB, 11C-PBB3, and 18F-FDG, along with T1-weighted magnetic resonance imaging. Amyloid positivity was assessed by visual inspection of 11C-PiB retentions. Tau positivity was judged by quantitative comparisons of 11C-PBB3 binding to HCs. RESULTS Sixteen CBS cases consisted of two cases (13%) with amyloid and tau positivities indicative of Alzheimer's disease (AD) pathologies, 11 cases (69%) with amyloid negativity and tau positivity, and three cases (19%) with amyloid and tau negativities. Amyloid(-), tau(+) CBS cases showed increased retentions of 11C-PBB3 in the frontoparietal areas, basal ganglia, and midbrain, and reduced metabolism in the precentral gyrus and thalamus relative to HCs. The enhanced tau probe retentions in the frontal gray and white matters partially overlapped with metabolic deficits and atrophy and correlated with Clinical Dementia Rating scores. CONCLUSIONS PET-based classification of CBS was in accordance with previous neuropathological reports on the prevalences of AD, non-AD tauopathies, and others in CBS. The current work suggests that 11C-PBB3-PET may assist the biological classification of CBS and understanding of links between CBD-type tau depositions and neuronal deteriorations leading to cognitive declines.
Collapse
Affiliation(s)
- Yoshikazu Nakano
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Neurology, Chibaken Saiseikai Narashino Hospital, Narashino, Japan
| | - Hitoshi Shimada
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Functional Neurology & Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hitoshi Shinotoh
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Neurology Clinic Chiba, Chiba, Japan
| | - Shigeki Hirano
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Tagai
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasunori Sano
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasuharu Yamamoto
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kiwamu Matsuoka
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Keisuke Takahata
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Manabu Kubota
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasuyuki Kimura
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masanori Ichise
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Maiko Ono
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naruhiko Sahara
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazunori Kawamura
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tetsuya Suhara
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
9
|
Riku Y, Iwasaki Y, Ishigaki S, Akagi A, Hasegawa M, Nishioka K, Li Y, Riku M, Ikeuchi T, Fujioka Y, Miyahara H, Sone J, Hattori N, Yoshida M, Katsuno M, Sobue G. Motor neuron TDP-43 proteinopathy in progressive supranuclear palsy and corticobasal degeneration. Brain 2022; 145:2769-2784. [PMID: 35274674 DOI: 10.1093/brain/awac091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) is mislocalized from the nucleus and aggregates within the cytoplasm of affected neurons in amyotrophic lateral sclerosis (ALS) cases. TDP-43 pathology has also been found in brain tissues under non-ALS conditions, suggesting mechanistic links between TDP-43-related ALS (ALS-TDP) and various neurological disorders. This study aimed to assess TDP-43 pathology in the spinal cord motor neurons of tauopathies. We examined 106 spinal cords from consecutively autopsied cases with progressive supranuclear palsy (PSP, n = 26), corticobasal degeneration (CBD, n = 12), globular glial tauopathy (GGT, n = 5), Alzheimer's disease (AD, n = 21), or Pick disease (PiD, n = 6) and neurologically healthy controls (n = 36). Ten of the PSP cases (38%) and seven of the CBD cases (58%) showed mislocalization and cytoplasmic aggregation of TDP-43 in spinal cord motor neurons, which was prominent in the cervical cord. TDP-43-aggregates were found to be skein-like, round-shaped, granular, or dot-like and contained insoluble C-terminal fragments showing blotting pattern of ALS or frontotemporal lobar degeneration (FTLD). The lower motor neurons also showed cystatin-C aggregates, although Bunina bodies were absent in hematoxylin-eosin staining. The spinal cord TDP-43 pathology was often associated with TDP-43 pathology of the primary motor cortex. Positive correlations were shown between the severities of TDP-43 and 4-repeat (4R)-tau aggregates in the cervical cord. TDP-43 and 4R-tau aggregates burdens positively correlated with microglial burden in anterior horn. TDP-43 pathology of spinal cord motor neuron did not develop in an age-dependent manner and was not found in the AD, PiD, GGT, and control groups. Next, we assessed splicing factor proline/glutamine rich (SFPQ) expression in spinal cord motor neurons; SFPQ is a recently-identified regulator of ALS/FTLD pathogenesis, and it is also reported that interaction between SFPQ and fused-in-sarcoma (FUS) regulates splicing of microtubule-associated protein tau exon 10. Immunofluorescent and proximity-ligation assays revealed altered SFPQ/FUS-interactions in the neuronal nuclei of PSP, CBD, and ALS-TDP cases but not in AD, PiD, and GGT cases. Moreover, SFPQ expression was depleted in neurons containing TDP-43 or 4R-tau aggregates of PSP and CBD cases. Our results indicate that PSP and CBD may have properties of systematic motor neuron TDP-43 proteinopathy, suggesting mechanistic links with ALS-TDP. SFPQ dysfunction, arising from altered interaction with FUS, may be a candidate of the common pathway.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan.,Department of Neurology, Graduate School of Nagoya University, Aichi, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Graduate School of Nagoya University, Aichi, Japan
| | - Akio Akagi
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Miho Riku
- Department of Pathology, Aichi Medical University, Aichi, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yusuke Fujioka
- Department of Neurology, Graduate School of Nagoya University, Aichi, Japan
| | - Hiroaki Miyahara
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Jun Sone
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Graduate School of Nagoya University, Aichi, Japan
| | - Gen Sobue
- Department of Neurology, Graduate School of Nagoya University, Aichi, Japan.,Aichi Medical University, Aichi, Japan
| |
Collapse
|
10
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Zhou XY, Lu JY, Liu FT, Wu P, Zhao J, Ju ZZ, Tang YL, Shi QY, Lin HM, Wu JJ, Yen TC, Zuo CT, Sun YM, Wang J. In Vivo 18 F-APN-1607 Tau Positron Emission Tomography Imaging in MAPT Mutations: Cross-Sectional and Longitudinal Findings. Mov Disord 2021; 37:525-534. [PMID: 34842301 DOI: 10.1002/mds.28867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration with tauopathy caused by MAPT (microtubule-associated protein tau) mutations is a highly heterogenous disorder. The ability to visualize and longitudinally monitor tau deposits may be beneficial to understand disease pathophysiology and predict clinical trajectories. OBJECTIVE The aim of this study was to investigate the cross-sectional and longitudinal 18 F-APN-1607 positron emission tomography/computed tomography (PET/CT) imaging findings in MAPT mutation carriers. METHODS Seven carriers of MAPT mutations (six within exon 10 and one outside of exon 10) and 15 healthy control subjects were included. All participants underwent 18 F-APN-1607 PET/CT at baseline. Three carriers of exon 10 mutations received follow-up 18 F-APN-1607 PET/CT scans. Standardized uptake value ratio (SUVR) maps were obtained using the cerebellar gray matter as the reference region. SUVR values observed in MAPT mutation carriers were normalized to data from healthy control subjects. A regional SUVR z score ≥ 2 was used as the criterion to define positive 18 F-APN-1607 PET/CT findings. RESULTS Although the seven study patients had heterogenous clinical phenotypes, all showed a significant 18 F-APN-1607 uptake characterized by high-contrast signals. However, the anatomical localization of tau deposits differed in patients with distinct clinical symptoms. Follow-up imaging data, which were available for three patients, demonstrated worsening trends in patterns of tau accumulation over time, which were paralleled by a significant clinical deterioration. CONCLUSIONS Our data represent a promising step in understanding the usefulness of 18 F-APN-1607 PET/CT imaging for detecting tau accumulation in MAPT mutation carriers. Our preliminary follow-up data also suggest the potential value of 18 F-APN-1607 PET/CT for monitoring the longitudinal trajectories of frontotemporal lobar degeneration caused by MAPT mutations. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Yi Shi
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Mei Lin
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Su Y, Fu J, Yu J, Zhao Q, Guan Y, Zuo C, Li M, Tan H, Cheng X. Tau PET Imaging with [18F]PM-PBB3 in Frontotemporal Dementia with MAPT Mutation. J Alzheimers Dis 2021; 76:149-157. [PMID: 32444551 DOI: 10.3233/jad-200287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Flortaucipir (AV-1451) and pyridinyl-butadienyl-benzothiazole 3 (PBB3) are newly developed and commonly used positron emission tomography (PET) tracers to detect tau deposition in tauopathies, including frontotemporal dementia (FTD). [18F]PM-PBB3, as a second-generation compound, has not been described in FTD so far. OBJECTIVE We aim to explore the in vivo performance of [18F]PM-PBB3 tau PET in an FTD case caused by microtubule-associated protein tau (MAPT) mutation and compare the binding to different tau strains between AV-1451 and PBB3. METHODS We reported the clinical and FDG, [18F]AV45 amyloid and [18F]PM-PBB3 tau PET findings in a patient with FTD of P301L MAPT mutation. Based on our results and published data, we summarized and compared the different utilities of tau PET tracers of AV-1451 and PBB3 in FTD with MAPT mutation. RESULTS The patient demonstrated slightly diffuse [18F]PM-PBB3 tau deposition in cerebral lobes especially in the left frontal lobe overlapping with the hypometabolic region detected by FDG PET. From our analysis of 35 FTD patients with MAPT mutation who underwent tau PET, AV-1451 was positive in all (n = 11) patients with mutations known to cause three and four repeat (3R/4R) tau deposition and in 14.3% (n = 2/14) of 4R tauopathies, while positive PBB3 retention was found in all patients with both 3R/4R (n = 2) and 4R (n = 8) tau. CONCLUSIONS [18F]PM-PBB3 tau PET assisted the diagnosis of FTD with P301L MAPT mutation, and might be useful in the in vivo detection of both 3R/4R and 4R tau domains in the brain of FTD with MAPT mutation.
Collapse
Affiliation(s)
- Ya Su
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jiayu Fu
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jintai Yu
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Haibo Tan
- PET Centre, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Kawamura K, Hashimoto H, Furutsuka K, Ohkubo T, Fujishiro T, Togashi T, Arashi D, Sakai T, Muto M, Ogawa M, Kurihara Y, Nengaki N, Takei M, Nemoto K, Higuchi M, Zhang MR. Radiosynthesis and quality control testing of the tau imaging positron emission tomography tracer [ 18 F]PM-PBB3 for clinical applications. J Labelled Comp Radiopharm 2021; 64:109-119. [PMID: 33067819 DOI: 10.1002/jlcr.3890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Recently, we produced 11 C-labeled 2-((1E,3E)-4-(6-(methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol ([11 C]PBB3) as a clinically useful positron emission tomography (PET) tracer for in vivo imaging of tau pathologies in the human brain. To overcome the limitations (i.e., rapid in vivo metabolism and short half-life) of [11 C]PBB3, we further synthesized 18 F-labeled 1-fluoro-3-((2-((1E,3E)-4-(6-(methylamino)pyridine-3-yl)buta-1,3-dien-1-yl)benzo[d]thiazol-6-yl)oxy)propan-2-ol ([18 F]PM-PBB3). [18 F]PM-PBB3 is also a useful tau PET tracer for imaging tau pathologies. In this study, we developed a routine radiosynthesis and quality control testing of [18 F]PM-PBB3 for clinical applications. [18 F]PM-PBB3 was synthesized by direct 18 F-fluorination of the tosylated derivative, followed by removal of the protecting group. [18 F]PM-PBB3 was obtained with sufficient radioactivity (25 ± 6.0% of the nondecay-corrected radiochemical yield at the end of synthesis, EOS), radiochemical purity (98 ± 0.6%), and molar activity (350 ± 94 GBq/μmol at EOS; n = 53). Moreover, [18 F]PM-PBB3 consistently retained >95% of radiochemical purity for 60 min without undergoing photoisomerization using a new UV-cutoff light (yellow light) fixed in the hot cell to monitor the synthesis. All the results of the quality control testing for the [18 F]PM-PBB3 injection complied with our in-house quality control and quality assurance specifications. We have accomplished >200 production runs of [18 F]PM-PBB3 in our facility for various research purposes.
Collapse
Affiliation(s)
- Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroki Hashimoto
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kenji Furutsuka
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Takayuki Ohkubo
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Tomoya Fujishiro
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Tokyo Nuclear Services Co. Ltd., Tokyo, Japan
| | - Takahiro Togashi
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Tokyo Nuclear Services Co. Ltd., Tokyo, Japan
| | - Daisuke Arashi
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Tokyo Nuclear Services Co. Ltd., Tokyo, Japan
| | - Toshiyuki Sakai
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Tokyo Nuclear Services Co. Ltd., Tokyo, Japan
| | - Masatoshi Muto
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Tokyo Nuclear Services Co. Ltd., Tokyo, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Makoto Takei
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuyoshi Nemoto
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
14
|
Boeve BF, Rosen H. Clinical and Neuroimaging Aspects of Familial Frontotemporal Lobar Degeneration Associated with MAPT and GRN Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:77-92. [PMID: 33433870 DOI: 10.1007/978-3-030-51140-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.
Collapse
Affiliation(s)
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Hu J, Qing Z, Liu R, Zhang X, Lv P, Wang M, Wang Y, He K, Gao Y, Zhang B. Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease. Front Neurosci 2021; 14:626154. [PMID: 33551735 PMCID: PMC7858673 DOI: 10.3389/fnins.2020.626154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) have overlapping symptoms, and accurate differential diagnosis is important for targeted intervention and treatment. Previous studies suggest that the deep learning (DL) techniques have the potential to solve the differential diagnosis problem of FTD, AD and normal controls (NCs), but its performance is still unclear. In addition, existing DL-assisted diagnostic studies still rely on hypothesis-based expert-level preprocessing. On the one hand, it imposes high requirements on clinicians and data themselves; On the other hand, it hinders the backtracking of classification results to the original image data, resulting in the classification results cannot be interpreted intuitively. In the current study, a large cohort of 3D T1-weighted structural magnetic resonance imaging (MRI) volumes (n = 4,099) was collected from two publicly available databases, i.e., the ADNI and the NIFD. We trained a DL-based network directly based on raw T1 images to classify FTD, AD and corresponding NCs. And we evaluated the convergence speed, differential diagnosis ability, robustness and generalizability under nine scenarios. The proposed network yielded an accuracy of 91.83% based on the most common T1-weighted sequence [magnetization-prepared rapid acquisition with gradient echo (MPRAGE)]. The knowledge learned by the DL network through multiple classification tasks can also be used to solve subproblems, and the knowledge is generalizable and not limited to a specified dataset. Furthermore, we applied a gradient visualization algorithm based on guided backpropagation to calculate the contribution graph, which tells us intuitively why the DL-based networks make each decision. The regions making valuable contributions to FTD were more widespread in the right frontal white matter regions, while the left temporal, bilateral inferior frontal and parahippocampal regions were contributors to the classification of AD. Our results demonstrated that DL-based networks have the ability to solve the enigma of differential diagnosis of diseases without any hypothesis-based preprocessing. Moreover, they may mine the potential patterns that may be different from human clinicians, which may provide new insight into the understanding of FTD and AD.
Collapse
Affiliation(s)
- Jingjing Hu
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pin Lv
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Maoxue Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Kelei He
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| | - Yang Gao
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Bing Zhang
- National Institute of Healthcare Data Science at Nanjing University, Nanjing, China.,State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China.,Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Guillaud L, El-Agamy SE, Otsuki M, Terenzio M. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Front Mol Neurosci 2020; 13:556175. [PMID: 33071754 PMCID: PMC7531239 DOI: 10.3389/fnmol.2020.556175] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons are highly polarized cells with an elongated axon that extends far away from the cell body. To maintain their homeostasis, neurons rely extensively on axonal transport of membranous organelles and other molecular complexes. Axonal transport allows for spatio-temporal activation and modulation of numerous molecular cascades, thus playing a central role in the establishment of neuronal polarity, axonal growth and stabilization, and synapses formation. Anterograde and retrograde axonal transport are supported by various molecular motors, such as kinesins and dynein, and a complex microtubule network. In this review article, we will primarily discuss the molecular mechanisms underlying anterograde axonal transport and its role in neuronal development and maturation, including the establishment of functional synaptic connections. We will then provide an overview of the molecular and cellular perturbations that affect axonal transport and are often associated with axonal degeneration. Lastly, we will relate our current understanding of the role of axonal trafficking concerning anterograde trafficking of mRNA and its involvement in the maintenance of the axonal compartment and disease.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Miki Otsuki
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
17
|
Nakano M, Riku Y, Nishioka K, Hasegawa M, Washimi Y, Arahata Y, Takeda A, Horibe K, Yamaoka A, Suzuki K, Tsujimoto M, Li Y, Yoshino H, Hattori N, Akagi A, Miyahara H, Iwasaki Y, Yoshida M. Unclassified four-repeat tauopathy associated with familial parkinsonism and progressive respiratory failure. Acta Neuropathol Commun 2020; 8:148. [PMID: 32854784 PMCID: PMC7450700 DOI: 10.1186/s40478-020-01025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023] Open
Abstract
We describe an autopsied patient with familial parkinsonism and unclassified four repeat-tau (4R-tau) aggregation. She presented with bradykinesia, truncal dystonia, and mild amnesia at the age of 61 and then exhibited body weight loss (15 kg over 8 months), sleep disturbances, and progressive respiratory failure with CO2 narcosis. She died of respiratory failure at the age of 62, 14 months after disease onset. Her brother also showed parkinsonism at the age of 58 and suddenly died 6 months later. Postmortem examination revealed 4R-tau aggregation, which was characterized by neuronal globose-type tangles or pretangles, bush-like or miscellaneous astrocytic inclusions, and coiled bodies. The temporal tip, the striatum, the substantia nigra, the tegmentum of the midbrain, the medullary reticular formation, and the spinal cord were severely involved with tau aggregation. Argyrophilic grains and ballooned neurons were also found in the medial temporal structures, however, extensions of the 4R-aggregations in the case were clearly broader than those of the argyrophilic grains. Western blot analysis of sarkosyl-insoluble fractions from brain lysates revealed prominent bands of tau at both 33 kDa and 37 kDa. Genetic examinations did not reveal any known pathogenic mutations in MAPT, DCTN-1, PSEN-1, or familial or young-onset parkinsonism-related genes. The clinical manifestations, pathologic findings, and biochemical properties of aggregated tau in our patient cannot be explained by argyrophilic grain disease or other known 4R-tauopathies alone. Our results further extend the clinical and neuropathologic spectra of 4R-tauopathy.
Collapse
|
18
|
Whitwell JL. FTD spectrum: Neuroimaging across the FTD spectrum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:187-223. [PMID: 31481163 DOI: 10.1016/bs.pmbts.2019.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia is a complex and heterogeneous neurodegenerative disease that encompasses many clinical syndromes, pathological diseases, and genetic mutations. Neuroimaging has played a critical role in our understanding of the underlying pathophysiology of frontotemporal dementia and provided biomarkers to aid diagnosis. Early studies defined patterns of neurodegeneration and hypometabolism associated with the clinical, pathological and genetic aspects of frontotemporal dementia, with more recent studies highlighting how the breakdown of structural and functional brain networks define frontotemporal dementia. Molecular positron emission tomography ligands allowing the in vivo imaging of tau proteins have also provided important insights, although more work is needed to understand the biology of the currently available ligands.
Collapse
|
19
|
|