1
|
Cunningham JE, Cabrera LY, Mahajan A, Aslam S, De Jesus S, Brennan R, Jimenez-Shahed J, Aquino CC, Xie T, Vaou EO, Patel N, Spindler M, Mills KA, Zhang L, Bertoni J, Sidiropoulos C, Miocinovic S, Walter BL, Panov F, Zauber SE, Sarva H. Survey of common deep brain stimulation programming practices by experts in Parkinson's Disease. J Neurol 2024; 272:49. [PMID: 39666124 DOI: 10.1007/s00415-024-12751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE Identify consensus and variability in deep brain stimulation (DBS) programming practices for Parkinson's disease. BACKGROUND DBS programming relies on the personal experience and skills of programmers. Despite consensus statements, there aren't official guidelines for DBS programming, making it likely for protocols to vary among providers. METHODS We administered an online survey to the Functional Neurosurgery Working Group of the Parkinson's Study Group to capture those actively programming DBS patients. We performed descriptive statistics and comparisons of responses based on career stage: early (0-10 years) versus later (>10 years). RESULTS Boston Scientific (n = 15/31, 48%) and Medtronic (n = 14/35, 40%) are the two DBS systems ranked as most used, with less reported frequency of Abbott devices (n = 4/32, 12.5). Traditional monopolar review ranked as the most common initial programming strategy by 23/29 (79%) respondents, regardless of the device type implanted. Monopolar omnidirectional testing was the most often used approach for contact configuration at initial programming (24/33, 73%).For treating dyskinesia, tremor, bradykinesia, rigidity, speech-related side effects, non-motor adverse effects, or swallowing-related side effects, the most likely optimization strategy selected was to modify amplitude of the active contact. When treating freezing of gait, there was a divergence between first modifying amplitude (n = 11/29, 38%) or frequency (n = 12/33, 36%). CONCLUSION Initial programming practices generally align with published recommendations, which can reassure less experienced clinicians in practices with near consensus and allow them to devote more time to areas with wider variety of practice. Our data also highlights aspects of DBS programming with less consensus, demonstrating the need for future evidence.
Collapse
Affiliation(s)
- J E Cunningham
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - L Y Cabrera
- Department of Engineering Science and Mechanics, Center for Neural Engineering, and Rock Ethics Institute, The Pennsylvania State University, W-316 Millennium Science Complex, University Park, PA, 16802, USA.
| | - A Mahajan
- Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, 40059, USA
| | - S Aslam
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - S De Jesus
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - R Brennan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - J Jimenez-Shahed
- Department of Neurology, Bonnie and Tom Strauss Movement Disorders Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - C C Aquino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4P1, Canada
| | - T Xie
- Parkinson's Disease and Movement Disorder Clinic and DBS Program, Department of Neurology, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - E O Vaou
- Parkinson's Disease and Movement Disorders Division, Department of Neurology, UTHealth San Antonio, San Antonio, TX, 78229, USA
| | - N Patel
- Department of Neurological Sciences, RUSH Parkinson's Disease and Movement Disorders Clinic, RUSH University Medical Central, Chicago, IL, 60612, USA
| | - M Spindler
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19107, USA
| | - K A Mills
- Johns Hopkins Parkinson's Disease and Movement Disorder Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - L Zhang
- Department of Neurology, The PF Center of Excellence for Movement Disorders and Neurorestoration, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - J Bertoni
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - C Sidiropoulos
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, MI, 48823, USA
| | - S Miocinovic
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - B L Walter
- Department of Neurology, Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - F Panov
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, USA
| | - S E Zauber
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - H Sarva
- Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| |
Collapse
|
2
|
Büchele F, Stieglitz L, Baumann CR. Should asleep deep brain stimulation in Parkinson's disease be preferred over the awake approach? - Cons. Swiss Med Wkly 2024; 154:3855. [PMID: 39137444 DOI: 10.57187/s.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
No abstract available.
Collapse
Affiliation(s)
- Fabian Büchele
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Moscovich M, Aquino CHD, Marinho MM, Barcelos LB, Felício AC, Halverson M, Hamani C, Ferraz HB, Munhoz RP. Fundamentals of deep brain stimulation for Parkinson's disease in clinical practice: part 2. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 38653486 PMCID: PMC11039109 DOI: 10.1055/s-0044-1786037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/30/2023] [Indexed: 04/25/2024]
Abstract
The field of neuromodulation has evolved significantly over the past decade. Developments include novel indications and innovations of hardware, software, and stimulation techniques leading to an expansion in scope and role of these techniques as powerful therapeutic interventions. In this review, which is the second part of an effort to document and integrate the basic fundamentals and recent successful developments in the field, we will focus on classic paradigms for electrode placement as well as new exploratory targets, mechanisms of neuromodulation using this technique and new developments, including focused ultrasound driven ablative procedures.
Collapse
Affiliation(s)
- Mariana Moscovich
- Christian-Albrechts University, Department of Neurology, Kiel, Germany.
| | - Camila Henriques de Aquino
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Calgary, AB, Canada.
- University of Calgary, Hotchkiss Brain Institute, Calgary, AB, Canada.
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Murilo Martinez Marinho
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Lorena Broseghini Barcelos
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | | - Matthew Halverson
- University of Utah, Department of Neurology, Salt Lake City, Utah, United States.
| | - Clement Hamani
- University of Toronto, Sunnybrook Hospital, Toronto, ON, Canada.
| | - Henrique Ballalai Ferraz
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | |
Collapse
|
4
|
Remz MA, Wong JK, Hilliard JD, Tholanikunnel T, Rawls AE, Okun MS. Identification and Management of Persistent Stimulation-Induced Dyskinesia Associated with STN DBS: The See-Saw Dilemma. Tremor Other Hyperkinet Mov (N Y) 2023; 13:28. [PMID: 37663531 PMCID: PMC10473163 DOI: 10.5334/tohm.780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
Clinical vignette A 73-year-old woman with Parkinson's disease (PD) underwent implantation of bilateral subthalamic nucleus deep brain stimulators (STN-DBS) to address bilateral upper extremity medication-refractory tremor. Post-operatively, she experienced a "see-saw effect" where small increases in stimulation resulted in improvement in one symptom (tremor) with concurrent worsening in another (dyskinesia). Clinical dilemma SID is usually considered a positive predictor of DBS outcome. However, there are cases where SID cannot be optimized. Lead location and pre-operative characteristics may contribute to this adverse effect. If the combination of programming and medication adjustments fails to resolve SID, what can be done to "rescue" the outcome? Clinical solution Management of SID requires a gradual and steadfast programming approach. Post-operative lead localization can guide advanced programming and decision-making. Rescue surgical interventions may be considered. Gap in knowledge In cases where SID is persistent despite deploying persistent optimization strategies, there is limited guidance on next steps.
Collapse
Affiliation(s)
- Matthew A. Remz
- Fixel Institute for Neurological Diseases Campus, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Joshua K. Wong
- Fixel Institute for Neurological Diseases Campus, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Justin D. Hilliard
- Fixel Institute for Neurological Diseases Campus, University of Florida, Gainesville, FL, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Tracy Tholanikunnel
- Fixel Institute for Neurological Diseases Campus, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Ashley E. Rawls
- Fixel Institute for Neurological Diseases Campus, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael S. Okun
- Fixel Institute for Neurological Diseases Campus, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Najera RA, Mahavadi AK, Khan AU, Boddeti U, Del Bene VA, Walker HC, Bentley JN. Alternative patterns of deep brain stimulation in neurologic and neuropsychiatric disorders. Front Neuroinform 2023; 17:1156818. [PMID: 37415779 PMCID: PMC10320008 DOI: 10.3389/fninf.2023.1156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Deep brain stimulation (DBS) is a widely used clinical therapy that modulates neuronal firing in subcortical structures, eliciting downstream network effects. Its effectiveness is determined by electrode geometry and location as well as adjustable stimulation parameters including pulse width, interstimulus interval, frequency, and amplitude. These parameters are often determined empirically during clinical or intraoperative programming and can be altered to an almost unlimited number of combinations. Conventional high-frequency stimulation uses a continuous high-frequency square-wave pulse (typically 130-160 Hz), but other stimulation patterns may prove efficacious, such as continuous or bursting theta-frequencies, variable frequencies, and coordinated reset stimulation. Here we summarize the current landscape and potential clinical applications for novel stimulation patterns.
Collapse
Affiliation(s)
- Ricardo A. Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Mahavadi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U. Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor A. Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Marcelis W, Vandamme S, Goethals M, De Weweire M, Vanhauwaert D, Cortier J, Maenhoudt W, Van Damme O. Adapting STN-DBS Stimulation Pattern for the Treatment of "Choreo Dystonic Lower Limb Dyskinesia" in Parkinson's Disease. Mov Disord Clin Pract 2023; 10:323-325. [PMID: 36825065 PMCID: PMC9941931 DOI: 10.1002/mdc3.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- William Marcelis
- Department of NeurosurgeryAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
| | - Stijn Vandamme
- Department of NeurosurgeryAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
| | - Maarten Goethals
- Department of NeurosurgeryAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
- Department of NeurologyAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
| | - Mieke De Weweire
- Department of NeurosurgeryAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
- Department of NeurologyAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
| | | | - Jeroen Cortier
- Department of NeurosurgeryAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
| | - Wim Maenhoudt
- Department of NeurosurgeryAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
| | - Olivier Van Damme
- Department of NeurosurgeryAZ Delta, Roeselare‐Menen‐TorhoutRoeselareBelgium
| |
Collapse
|
7
|
Lei H, Yang C, Zhang M, Qiu Y, Wang J, Xu J, Hu X, Wu X. Optimal Contact Position of Subthalamic Nucleus Deep Brain Stimulation for Reducing Restless Legs Syndrome in Parkinson's Disease Patients: One-Year Follow-Up with 33 Patients. Brain Sci 2022; 12:brainsci12121645. [PMID: 36552106 PMCID: PMC9775276 DOI: 10.3390/brainsci12121645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives: To determine the short- and medium-term therapeutic effects of subthalamic nucleus (STN) deep brain stimulation (DBS) on restless legs syndrome (RLS) in patients with Parkinson’s disease (PD) and to study the optimal position of activated contacts for RLS symptoms. Methods: We preoperatively and postoperatively assessed PD Patients with RLS undergoing STN-DBS. Additionally, we recorded the stimulation parameters that induced RLS or relieved RLS symptoms during a follow-up. Finally, we reconstructed the activated contacts’ position that reduced or induced RLS symptoms. Results: 363 PD patients were enrolled. At the 1-year follow-up, we found that the IRLS sum significantly decreased in the RLS group (preoperative 18.758 ± 7.706, postoperative 8.121 ± 7.083, p < 0.05). The results of the CGI score, MOS sleep, and RLS QLQ all showed that the STN-DBS improved RLS symptoms after one year. Furthermore, the activated contacts that relieved RLS were mainly located in the central sensorimotor region of the STN. Activated contacts in the inferior sensorimotor part of the STN or in the substantia nigra might have induced RLS symptoms. Conclusions: STN-DBS improved RLS in patients with PD in one year, which reduced their sleep disorders and increased their quality of life. Furthermore, the central sensorimotor region part of the STN is the optimal stimulation site.
Collapse
Affiliation(s)
- Hongbing Lei
- Department of Neurosurgery, the First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Chunhui Yang
- Department of Neurosurgery, the First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Mingyang Zhang
- Department of Chemistry, University of Utah, 201 Presidents’ Cir, Salt Lake City, UT 8412, USA
| | - Yiqing Qiu
- Department of Neurosurgery, the First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Jiali Wang
- Department of Neurosurgery, the First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Jinyu Xu
- Department of Neurosurgery, the First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Xiaowu Hu
- Department of Neurosurgery, the First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Xi Wu
- Department of Neurosurgery, the First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Yangpu District, Shanghai 200433, China
- Correspondence: ; Tel.: +86-136-36331171
| |
Collapse
|
8
|
In vivo probabilistic atlas of white matter tracts of the human subthalamic area combining track density imaging and optimized diffusion tractography. Brain Struct Funct 2022; 227:2647-2665. [PMID: 36114861 PMCID: PMC9618529 DOI: 10.1007/s00429-022-02561-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The human subthalamic area is a region of high anatomical complexity, tightly packed with tiny fiber bundles. Some of them, including the pallidothalamic, cerebello-thalamic, and mammillothalamic tracts, are relevant targets in functional neurosurgery for various brain diseases. Diffusion-weighted imaging-based tractography has been suggested as a useful tool to map white matter pathways in the human brain in vivo and non-invasively, though the reconstruction of these specific fiber bundles is challenging due to their small dimensions and complex anatomy. To the best of our knowledge, a population-based, in vivo probabilistic atlas of subthalamic white matter tracts is still missing. In the present work, we devised an optimized tractography protocol for reproducible reconstruction of the tracts of subthalamic area in a large data sample from the Human Connectome Project repository. First, we leveraged the super-resolution properties and high anatomical detail provided by short tracks track-density imaging (stTDI) to identify the white matter bundles of the subthalamic area on a group-level template. Tracts identification on the stTDI template was also aided by visualization of histological sections of human specimens. Then, we employed this anatomical information to drive tractography at the subject-level, optimizing tracking parameters to maximize between-subject and within-subject similarities as well as anatomical accuracy. Finally, we gathered subject level tracts reconstructed with optimized tractography into a large-scale, normative population atlas. We suggest that this atlas could be useful in both clinical anatomy and functional neurosurgery settings, to improve our understanding of the complex morphology of this important brain region.
Collapse
|
9
|
Pozzi NG, Palmisano C, Reich MM, Capetian P, Pacchetti C, Volkmann J, Isaias IU. Troubleshooting Gait Disturbances in Parkinson's Disease With Deep Brain Stimulation. Front Hum Neurosci 2022; 16:806513. [PMID: 35652005 PMCID: PMC9148971 DOI: 10.3389/fnhum.2022.806513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.
Collapse
Affiliation(s)
- Nicoló G. Pozzi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Philip Capetian
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Claudio Pacchetti
- Parkinson’s Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Gaetano Pini-CTO, Milan, Italy
| |
Collapse
|
10
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Fujikawa J, Morigaki R, Yamamoto N, Oda T, Nakanishi H, Izumi Y, Takagi Y. Therapeutic Devices for Motor Symptoms in Parkinson’s Disease: Current Progress and a Systematic Review of Recent Randomized Controlled Trials. Front Aging Neurosci 2022; 14:807909. [PMID: 35462692 PMCID: PMC9020378 DOI: 10.3389/fnagi.2022.807909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pharmacotherapy is the first-line treatment option for Parkinson’s disease, and levodopa is considered the most effective drug for managing motor symptoms. However, side effects such as motor fluctuation and dyskinesia have been associated with levodopa treatment. For these conditions, alternative therapies, including invasive and non-invasive medical devices, may be helpful. This review sheds light on current progress in the development of devices to alleviate motor symptoms in Parkinson’s disease. Methods We first conducted a narrative literature review to obtain an overview of current invasive and non-invasive medical devices and thereafter performed a systematic review of recent randomized controlled trials (RCTs) of these devices. Results Our review revealed different characteristics of each device and their effectiveness for motor symptoms. Although invasive medical devices are usually highly effective, surgical procedures can be burdensome for patients and have serious side effects. In contrast, non-pharmacological/non-surgical devices have fewer complications. RCTs of non-invasive devices, especially non-invasive brain stimulation and mechanical peripheral stimulation devices, have proven effectiveness on motor symptoms. Nearly no non-invasive devices have yet received Food and Drug Administration certification or a CE mark. Conclusion Invasive and non-invasive medical devices have unique characteristics, and several RCTs have been conducted for each device. Invasive devices are more effective, while non-invasive devices are less effective and have lower hurdles and risks. It is important to understand the characteristics of each device and capitalize on these.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- *Correspondence: Ryoma Morigaki,
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Thaker AA, Reddy KM, Thompson JA, Gerecht PD, Brown MS, Abosch A, Ojemann SG, Kern DS. Coronal Gradient Echo MRI to Visualize the Zona Incerta for Deep Brain Stimulation Targeting in Parkinson's Disease. Stereotact Funct Neurosurg 2021; 99:443-450. [PMID: 33902054 DOI: 10.1159/000515772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Deep brain stimulation of the zona incerta is effective at treating tremor and other forms of parkinsonism. However, the structure is not well visualized with standard MRI protocols making direct surgical targeting unfeasible and contributing to inconsistent clinical outcomes. In this study, we applied coronal gradient echo MRI to directly visualize the rostral zona incerta in Parkinson's disease patients to improve targeting for deep brain stimulation. METHODS We conducted a prospective study to optimize and evaluate an MRI sequence to visualize the rostral zona incerta in patients with Parkinson's disease (n = 31) and other movement disorders (n = 13). We performed a contrast-to-noise ratio analysis of specific regions of interest to quantitatively assess visual discrimination of relevant deep brain structures in the optimized MRI sequence. Regions of interest were independently assessed by 2 neuroradiologists, and interrater reliability was assessed. RESULTS Rostral zona incerta and subthalamic nucleus were well delineated in our 5.5-min MRI sequence, indicated by excellent interrater agreement between neuroradiologists for region-of-interest measurements (>0.90 intraclass coefficient). Mean contrast-to-noise ratio was high for both rostral zona incerta (6.39 ± 3.37) and subthalamic nucleus (17.27 ± 5.61) relative to adjacent white matter. There was no significant difference between mean signal intensities or contrast-to-noise ratio for Parkinson's and non-Parkinson's patients for either structure. DISCUSSION/CONCLUSION Our optimized coronal gradient echo MRI sequence delineates subcortical structures relevant to traditional and novel deep brain stimulation targets, including the zona incerta, with high contrast-to-noise. Future studies will prospectively apply this sequence to surgical planning and postimplantation outcomes.
Collapse
Affiliation(s)
- Ashesh A Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kartik M Reddy
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pamela David Gerecht
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Li J, Mei S, Jia X, Zhang Y. Evaluation of the Direct Effect of Bilateral Deep Brain Stimulation of the Subthalamic Nucleus on Levodopa-Induced On-Dyskinesia in Parkinson's Disease. Front Neurol 2021; 12:595741. [PMID: 33912121 PMCID: PMC8072270 DOI: 10.3389/fneur.2021.595741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/01/2021] [Indexed: 01/22/2023] Open
Abstract
Objective: This study aimed to evaluate the direct anti-dyskinesia effect of deep brain stimulation (DBS) of subthalamic nucleus (STN) on levodopa-induced on-dyskinesia in Parkinson's disease (PD) patients during the early period after surgery without reducing the levodopa dosage. Methods: We retrospectively reviewed PD patients who underwent STN-DBS from January 2017 to October 2019 and enrolled patients with levodopa-induced on-dyskinesia before surgery and without a history of thalamotomy or pallidotomy. The Unified Dyskinesia Rating Scale (UDysRS) parts I+III+IV and the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) were monitored prior to surgery, and at the 3-month follow-up, the location of active contacts was calculated by postoperative CT–MRI image fusion to identify stimulation sites with good anti-dyskinesia effect. Results: There were 41 patients enrolled. The postoperative levodopa equivalent daily dose (LEDD) (823.1 ± 201.5 mg/day) was not significantly changed from baseline (844.6 ± 266.1 mg/day, P = 0.348), while the UDysRS on-dyskinesia subscores significantly decreased from 24 (10–58) to 0 (0–18) [median (range)] after STN stimulation (P < 0.0001). The levodopa-induced on-dyskinesia recurred in stimulation-off/medication-on state in all the 41 patients and disappeared in 39 patients when DBS stimulation was switched on at 3 months of follow-up. The active contacts which correspond to good effect for dyskinesia were located above the STN, and the mean coordinate was 13.05 ± 1.24 mm lateral, −0.13 ± 1.16 mm posterior, and 0.72 ± 0.78 mm superior to the midcommissural point. Conclusions: High-frequency electrical stimulation of the area above the STN can directly suppress levodopa-induced on-dyskinesia.
Collapse
Affiliation(s)
- Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Jia
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Cognitive effects of theta frequency bilateral subthalamic nucleus stimulation in Parkinson's disease: A pilot study. Brain Stimul 2021; 14:230-240. [PMID: 33418095 DOI: 10.1016/j.brs.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND There is significant evidence for cognitive decline following deep brain stimulation (DBS). Current stimulation paradigms utilize gamma frequency stimulation for optimal motor benefits; however, little has been done to optimize stimulation parameters for cognition. Recent evidence implicates subthalamic nucleus (STN) theta oscillations in executive function, and theta oscillations are well-known to relate to episodic memory, suggesting that theta frequency stimulation could potentially improve cognition in Parkinson's disease (PD). OBJECTIVE To evaluate the acute effects of theta frequency bilateral STN stimulation on executive function in PD versus gamma frequency and off, as well as investigate the differential effects on episodic versus nonepisodic verbal fluency. METHODS Twelve patients (all males, mean age 60.8) with bilateral STN DBS for PD underwent a double-blinded, randomized cognitive testing during stimulation at (1) 130-135 Hz (gamma), (2) 10 Hz (theta) and (3) off. Executive functions and processing speed were evaluated using verbal fluency tasks (letter, episodic category, nonepisodic category, and category switching), color-word interference task, and random number generation task. Performance at each stimulation frequency was compared within subjects. RESULTS Theta frequency significantly improved episodic category fluency compared to gamma, but not compared to off. There were no significant differences between stimulation frequencies in other tests. CONCLUSION In this pilot trial, our results corroborate the role of theta oscillations in episodic retrieval, although it is unclear whether this reflects direct modulation of the medial temporal lobe and whether similar effects can be found with more canonical memory paradigms. Further work is necessary to corroborate our findings and investigate the possibility of interleaving theta and gamma frequency stimulation for concomitant motor and cognitive effects.
Collapse
|
15
|
Elias GJB, Boutet A, Joel SE, Germann J, Gwun D, Neudorfer C, Gramer RM, Algarni M, Paramanandam V, Prasad S, Beyn ME, Horn A, Madhavan R, Ranjan M, Lozano CS, Kühn AA, Ashe J, Kucharczyk W, Munhoz RP, Giacobbe P, Kennedy SH, Woodside DB, Kalia SK, Fasano A, Hodaie M, Lozano AM. Probabilistic Mapping of Deep Brain Stimulation: Insights from 15 Years of Therapy. Ann Neurol 2020; 89:426-443. [PMID: 33252146 DOI: 10.1002/ana.25975] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) depends on precise delivery of electrical current to target tissues. However, the specific brain structures responsible for best outcome are still debated. We applied probabilistic stimulation mapping to a retrospective, multidisorder DBS dataset assembled over 15 years at our institution (ntotal = 482 patients; nParkinson disease = 303; ndystonia = 64; ntremor = 39; ntreatment-resistant depression/anorexia nervosa = 76) to identify the neuroanatomical substrates of optimal clinical response. Using high-resolution structural magnetic resonance imaging and activation volume modeling, probabilistic stimulation maps (PSMs) that delineated areas of above-mean and below-mean response for each patient cohort were generated and defined in terms of their relationships with surrounding anatomical structures. Our results show that overlap between PSMs and individual patients' activation volumes can serve as a guide to predict clinical outcomes, but that this is not the sole determinant of response. In the future, individualized models that incorporate advancements in mapping techniques with patient-specific clinical variables will likely contribute to the optimization of DBS target selection and improved outcomes for patients. ANN NEUROL 2021;89:426-443.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | | | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Robert M Gramer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Musleh Algarni
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Vijayashankar Paramanandam
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Sreeram Prasad
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Manish Ranjan
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Christopher S Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Jeff Ashe
- GE Global Research, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - D Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Goftari M, Kim J, Johnson E, Patriat R, Palnitkar T, Harel N, Johnson MD, Schrock LE. Pallidothalamic tract activation predicts suppression of stimulation-induced dyskinesias in a case study of Parkinson's disease. Brain Stimul 2020; 13:1821-1823. [PMID: 33035724 DOI: 10.1016/j.brs.2020.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Mojgan Goftari
- Department of Biomedical Engineering, University of Minnesota, USA
| | - Jiwon Kim
- Department of Chemical Engineering, University of Minnesota, USA
| | | | - Remi Patriat
- Department of Radiology/CMRR, University of Minnesota, USA
| | - Tara Palnitkar
- Department of Neurology, University of Minnesota, USA; Department of Radiology/CMRR, University of Minnesota, USA
| | - Noam Harel
- Department of Radiology/CMRR, University of Minnesota, USA
| | | | | |
Collapse
|
17
|
Tsuboi T, Charbel M, Peterside DT, Rana M, Elkouzi A, Deeb W, Ramirez‐Zamora A, Lemos Melo Lobo Jofili Lopes J, Almeida L, Zeilman PR, Eisinger RS, Foote KD, Okromelidze L, Grewal SS, Okun MS, Middlebrooks EH. Pallidal Connectivity Profiling of Stimulation‐Induced Dyskinesia in Parkinson's Disease. Mov Disord 2020; 36:380-388. [DOI: 10.1002/mds.28324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Marc Charbel
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida Gainesville Florida USA
| | - David T. Peterside
- Department of Biological Engineering University of Florida Gainesville Florida USA
| | - Mohit Rana
- Institute of Medical Psychology and Behavioural Neurobiology University of Tübingen Tübingen Germany
| | - Ahmad Elkouzi
- Department of Neurology Southern Illinois University School of Medicine Springfield Illinois USA
| | - Wissam Deeb
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Adolfo Ramirez‐Zamora
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | | | - Leonardo Almeida
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Pamela R. Zeilman
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Robert S. Eisinger
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Kelly D. Foote
- Department of Neurosurgery Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | | | | | - Michael S. Okun
- Department of Neurology Norman Fixel Institute for Neurological Diseases, University of Florida Gainesville Florida USA
| | - Erik H. Middlebrooks
- Department of Radiology Mayo Clinic Jacksonville Florida USA
- Department of Neurosurgery Mayo Clinic Jacksonville Florida USA
| |
Collapse
|
18
|
Middlebrooks EH, Domingo RA, Vivas-Buitrago T, Okromelidze L, Tsuboi T, Wong JK, Eisinger RS, Almeida L, Burns MR, Horn A, Uitti RJ, Wharen RE, Holanda VM, Grewal SS. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. AJNR Am J Neuroradiol 2020; 41:1558-1568. [PMID: 32816768 DOI: 10.3174/ajnr.a6693] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation is an established therapy for multiple brain disorders, with rapidly expanding potential indications. Neuroimaging has advanced the field of deep brain stimulation through improvements in delineation of anatomy, and, more recently, application of brain connectomics. Older lesion-derived, localizationist theories of these conditions have evolved to newer, network-based "circuitopathies," aided by the ability to directly assess these brain circuits in vivo through the use of advanced neuroimaging techniques, such as diffusion tractography and fMRI. In this review, we use a combination of ultra-high-field MR imaging and diffusion tractography to highlight relevant anatomy for the currently approved indications for deep brain stimulation in the United States: essential tremor, Parkinson disease, drug-resistant epilepsy, dystonia, and obsessive-compulsive disorder. We also review the literature regarding the use of fMRI and diffusion tractography in understanding the role of deep brain stimulation in these disorders, as well as their potential use in both surgical targeting and device programming.
Collapse
Affiliation(s)
- E H Middlebrooks
- From the Departments of Radiology (E.H.M., L.O.) .,Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | - R A Domingo
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | | | | | - T Tsuboi
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida.,Department of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - J K Wong
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - R S Eisinger
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - L Almeida
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - M R Burns
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - A Horn
- Department of Neurology (T.T.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - R J Uitti
- Department for Neurology (A.H.), Charité, University Medicine Berlin, Berlin, Germany
| | - R E Wharen
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | - V M Holanda
- Center of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - S S Grewal
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| |
Collapse
|
19
|
Bledsoe IO, Dodenhoff KA, San Luciano M, Volz MM, Starr PA, Markun LC, Ostrem JL. Phenomenology and Management of Subthalamic Stimulation-Induced Dyskinesia in Patients With Isolated Dystonia. Mov Disord Clin Pract 2020; 7:548-551. [PMID: 32626800 PMCID: PMC7328432 DOI: 10.1002/mdc3.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The pallidum has been the preferred DBS target for dystonia, but recent studies have shown equal or greater improvement in patients implanted in the STN.1 Transient stimulation-induced dyskinesia (SID) is frequently observed when stimulating this novel target, and there are no previously published video case reports of this phenomenon. CASES We describe in detail the SID phenomenology experienced by 4 patients who had been implanted with STN DBS for isolated dystonia. CONCLUSIONS SID can occur in focal, segmental, axial, or generalized distribution, can resemble levodopa-induced dyskinesia choreiform or dystonic movements observed in Parkinson's disease, and is generally transient and resolves with customized DBS programming. Providers should be aware that SID can occur after STN DBS when treating isolated dystonia and not assume movements are the result of worsening or spread of the underlying dystonia.
Collapse
Affiliation(s)
- Ian O. Bledsoe
- Department of NeurologyUniversity of California San Francisco, San Francisco, California, USA; Movement Disorders and Neuromodulation CenterSan Francisco, CaliforniaUSA
| | | | - Marta San Luciano
- Department of NeurologyUniversity of California San Francisco, San Francisco, California, USA; Movement Disorders and Neuromodulation CenterSan Francisco, CaliforniaUSA
| | - Monica M. Volz
- Department of NeurologyUniversity of California San Francisco, San Francisco, California, USA; Movement Disorders and Neuromodulation CenterSan Francisco, CaliforniaUSA
| | - Philip A. Starr
- Department of Neurological SurgeryUniversity of California San FranciscoSan Francisco, CaliforniaUSA
- Parkinson’s Disease Research, Education, and Clinical Center, San Francisco Veterans Affairs Medical CenterSan Francisco, CaliforniaUSA
| | - Leslie C. Markun
- Department of NeurologyUniversity of California DavisSacramento, CaliforniaUSA
| | - Jill L. Ostrem
- Department of NeurologyUniversity of California San Francisco, San Francisco, California, USA; Movement Disorders and Neuromodulation CenterSan Francisco, CaliforniaUSA
- Parkinson’s Disease Research, Education, and Clinical Center, San Francisco Veterans Affairs Medical CenterSan Francisco, CaliforniaUSA
| |
Collapse
|
20
|
Tuning Frequencies Across Leads with Interleaving Deep Brain Stimulation to Treat Asymmetric Tremor in Parkinson’s Disease. Can J Neurol Sci 2020. [DOI: 10.1017/cjn.2020.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|