1
|
Hvingelby VS, Carra RB, Terkelsen MH, Hamani C, Capato T, Košutzká Z, Krauss JK, Moro E, Pavese N, Cury RG. A Pragmatic Review on Spinal Cord Stimulation Therapy for Parkinson's Disease Gait Related Disorders: Gaps and Controversies. Mov Disord Clin Pract 2024; 11:927-947. [PMID: 38899557 PMCID: PMC11329578 DOI: 10.1002/mdc3.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Parkinson's Disease (PD) is a progressive neurological disorder that results in potentially debilitating mobility deficits. Recently, spinal cord stimulation (SCS) has been proposed as a novel therapy for PD gait disorders. The highest levels of evidence remain limited for SCS. OBJECTIVES In this systematic review and narrative synthesis, the literature was searched using combinations of key phrases indicating spinal cord stimulation and PD. METHODS We included pre-clinical studies and all published clinical trials, case reports, conference abstracts as well as protocols for ongoing clinical trials. Additionally, we included trials of SCS applied to atypical parkinsonism. RESULTS A total of 45 human studies and trials met the inclusion criteria. Based on the narrative synthesis, a number of knowledge gaps and future avenues of potential research were identified. This review demonstrated that evidence for SCS is currently not sufficient to recommend it as an evidence-based therapy for PD related gait disorders. There remain challenges and significant barriers to widespread implementation, including issues regarding patient selection, effective outcome selection, stimulation location and mode, and in programming parameter optimization. Results of early randomized controlled trials are currently pending. SCS is prone to placebo, lessebo and nocebo as well as blinding effects which may impact interpretation of outcomes, particularly when studies are underpowered. CONCLUSION Therapies such as SCS may build on current evidence and be shown to improve specific gait features in PD. Early negative trials should be interpreted with caution, as more evidence will be required to develop effective methodologies in order to drive clinical outcomes.
Collapse
Affiliation(s)
- Victor S. Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Rafael B. Carra
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Miriam H. Terkelsen
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Tamine Capato
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Zuzana Košutzká
- Second Department of NeurologyComenius University BratislavaBratislavaSlovakia
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of NeurosciencesGrenobleFrance
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
2
|
Singh O, Carvalho DZ, Espay AJ, Benarroch EE, Grewal SS, Pagani-Estévez GL. Spinal cord stimulation for gait impairment in Parkinson Disease: scoping review and mechanistic considerations. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:S11-S17. [PMID: 37833048 DOI: 10.1093/pm/pnad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/20/2023] [Accepted: 06/27/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE Advanced Parkinson's Disease (PD) is associated with Parkinson's Disease gait impairment (PDg), which increases the risk for falls and is often treatment-refractory. Subthalamic nucleus (STN) and globus pallidus pars interna (GPi) deep brain stimulation (DBS) often fails to improve axial symptoms like PDg. Spinal cord stimulation (SCS) has been suggested to improve PDg. SCS may benefit PDg by disrupting pathologic beta-oscillations and hypersynchrony in cortico-striatal-thalamic circuits to override excessive inhibition of brainstem locomotor regions. SCS may potentially improve locomotion by acting at any of these levels, either alone or in combination. METHODS We conducted a comprehensive literature search and scoping review, identifying 106 patients in whom SCS was evaluated for PDg. RESULTS Among the identified patients, 63% carried a pain diagnosis. Overall, the most common stimulation location was thoracic (78%), most commonly T9-T10. Burst (sub-perception) was the most common stimulation modality (59%). Prior treatment with DBS was used in 25%. Motor outcomes were assessed by the Unified Parkinson Disease Rating Scale (UPDRS) III-motor, UPDRS, the Timed Up and Go (TUG), and/or 10-/20-meter walking tests.Among these patients, 95 (90%) had PDg amelioration and improved motor outcomes. CONCLUSIONS Despite small sample sizes, patient heterogeneity, and unblinded evaluations complicating interpretations of efficacy and safety, SCS may be beneficial for at least a subset of PDg. Further research is required to clarify the role of SCS for PDg and the patients most suitable to benefit from this intervention.
Collapse
Affiliation(s)
- Omesh Singh
- Department of Physical Medicine and Rehabilitation, University of Cincinnati Medical Center, Cincinnati, OH 45219, United States
| | - Diego Z Carvalho
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States
- Center for Sleep Medicine, Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Alberto J Espay
- James J and Joan A Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati Medical Center, Cincinnati, OH 45219, United States
| | | | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Gabriel L Pagani-Estévez
- Interventional and Surgical Pain Management, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45219, United States
| |
Collapse
|
3
|
Ciocca M, Seemungal BM, Tai YF. Spinal Cord Stimulation for Gait Disorders in Parkinson's Disease and Atypical Parkinsonism: A Systematic Review of Preclinical and Clinical Data. Neuromodulation 2023; 26:1339-1361. [PMID: 37452800 DOI: 10.1016/j.neurom.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Falls in extrapyramidal disorders, particularly Parkinson's disease (PD), multisystem atrophy (MSA), and progressive supranuclear palsy (PSP), are key milestones affecting patients' quality of life, incurring increased morbidity/mortality and high healthcare costs. Unfortunately, gait and balance in parkinsonisms respond poorly to currently available treatments. A serendipitous observation of improved gait and balance in patients with PD receiving spinal cord stimulation (SCS) for back pain kindled an interest in using SCS to treat gait disorders in parkinsonisms. OBJECTIVES We reviewed preclinical and clinical studies of SCS to treat gait dysfunction in parkinsonisms, covering its putative mechanisms and efficacies. MATERIALS AND METHODS Preclinical studies in animal models of PD and clinical studies in patients with PD, PSP, and MSA who received SCS for gait disorders were included. The main outcome assessed was clinical improvement in gait, together with outcome measures used and possible mechanism of actions. RESULTS We identified 500 references, and 45 met the selection criteria and have been included in this study for analysis. Despite positive results in animal models, the outcomes in human studies are inconsistent. CONCLUSIONS The lack of blind and statistically powered studies, the heterogeneity in patient selection and study outcomes, and the poor understanding of the underlying mechanisms of action of SCS are some of the limiting factors in the field. Addressing these limitations will allow us to draw more reliable conclusions on the effects of SCS on gait and balance in extrapyramidal disorders.
Collapse
Affiliation(s)
- Matteo Ciocca
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Yen F Tai
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
4
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|
5
|
Fujikawa J, Morigaki R, Yamamoto N, Oda T, Nakanishi H, Izumi Y, Takagi Y. Therapeutic Devices for Motor Symptoms in Parkinson’s Disease: Current Progress and a Systematic Review of Recent Randomized Controlled Trials. Front Aging Neurosci 2022; 14:807909. [PMID: 35462692 PMCID: PMC9020378 DOI: 10.3389/fnagi.2022.807909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pharmacotherapy is the first-line treatment option for Parkinson’s disease, and levodopa is considered the most effective drug for managing motor symptoms. However, side effects such as motor fluctuation and dyskinesia have been associated with levodopa treatment. For these conditions, alternative therapies, including invasive and non-invasive medical devices, may be helpful. This review sheds light on current progress in the development of devices to alleviate motor symptoms in Parkinson’s disease. Methods We first conducted a narrative literature review to obtain an overview of current invasive and non-invasive medical devices and thereafter performed a systematic review of recent randomized controlled trials (RCTs) of these devices. Results Our review revealed different characteristics of each device and their effectiveness for motor symptoms. Although invasive medical devices are usually highly effective, surgical procedures can be burdensome for patients and have serious side effects. In contrast, non-pharmacological/non-surgical devices have fewer complications. RCTs of non-invasive devices, especially non-invasive brain stimulation and mechanical peripheral stimulation devices, have proven effectiveness on motor symptoms. Nearly no non-invasive devices have yet received Food and Drug Administration certification or a CE mark. Conclusion Invasive and non-invasive medical devices have unique characteristics, and several RCTs have been conducted for each device. Invasive devices are more effective, while non-invasive devices are less effective and have lower hurdles and risks. It is important to understand the characteristics of each device and capitalize on these.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- *Correspondence: Ryoma Morigaki,
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
di Biase L, Tinkhauser G, Martin Moraud E, Caminiti ML, Pecoraro PM, Di Lazzaro V. Adaptive, personalized closed-loop therapy for Parkinson's disease: biochemical, neurophysiological, and wearable sensing systems. Expert Rev Neurother 2021; 21:1371-1388. [PMID: 34736368 DOI: 10.1080/14737175.2021.2000392] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Motor complication management is one of the main unmet needs in Parkinson's disease patients. AREAS COVERED Among the most promising emerging approaches for handling motor complications in Parkinson's disease, adaptive deep brain stimulation strategies operating in closed-loop have emerged as pivotal to deliver sustained, near-to-physiological inputs to dysfunctional basal ganglia-cortical circuits over time. Existing sensing systems that can provide feedback signals to close the loop include biochemical-, neurophysiological- or wearable-sensors. Biochemical sensing allows to directly monitor the pharmacokinetic and pharmacodynamic of antiparkinsonian drugs and metabolites. Neurophysiological sensing relies on neurotechnologies to sense cortical or subcortical brain activity and extract real-time correlates of symptom intensity or symptom control during DBS. A more direct representation of the symptom state, particularly the phenomenological differentiation and quantification of motor symptoms, can be realized via wearable sensor technology. EXPERT OPINION Biochemical, neurophysiologic, and wearable-based biomarkers are promising technological tools that either individually or in combination could guide adaptive therapy for Parkinson's disease motor symptoms in the future.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy.,Brain Innovations Lab, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (Chuv) and University of Lausanne (Unil), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.neurorestore), Lausanne University Hospital and Swiss Federal Institute of Technology (Epfl), Lausanne, Switzerland
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| |
Collapse
|
7
|
Cury RG, Moro E. New developments for spinal cord stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:129-151. [PMID: 34446244 DOI: 10.1016/bs.irn.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spinal cord stimulation (SCS) is a well-established therapy for the treatment of chronic neuropathic pain. Newer SCS waveforms have improved patient outcomes, leading to its increased utilization among many pain conditions. More recently, SCS has been used to treat some symptoms in several movement disorders because of its good profile tolerability and capacity to stimulate local and distant areas of the central nervous system. After the original experimental findings in animal models of Parkinson's disease (PD) in the late 2000s, several studies have reported the beneficial clinical effects of SCS stimulation on gait in PD patients. Additionally, the spinal cord has emerged as a potential therapeutic target to treat essential and orthostatic tremor, some forms of ataxia, and atypical parkinsonisms. In this chapter, we describe the most recent advances in SCS for pain and the rationale and potential mechanism of action of stimulating the spinal cord for treating movement disorders, focusing on its network modulation. We also summarize the main clinical studies performed to date as well as their limitations and future perspectives.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble, France; INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|