1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Loeffler MA, Klocke P, Cebi I, Gharabaghi A, Weiss D. Levodopa / opicapone as a complement to STN-DBS in clinical practice. A retrospective single-centre analysis. eNeurologicalSci 2024; 37:100530. [PMID: 39429501 PMCID: PMC11488416 DOI: 10.1016/j.ensci.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a well-established treatment option in Parkinson's disease with motor and non-motor fluctuations allowing for postoperative reduction of dopaminergic medication. However, evidence is scarce on optimal medication adjustments following STN-DBS implantation. Opicapone allows for long-lasting inhibition of the catechol-O-methyltransferase (COMT) thereby enabling more constant dopaminergic stimulation compared to levodopa alone. However, especially COMT inhibitors are regularly discontinued after STN-DBS surgery. In this single-centre retrospective analysis, we aimed to analyse the clinical phenotype of patients selected for opicapone treatment following STN-DBS implantation and to define clinical determinants of patients requiring more intense dopamine-stabilising strategies after STN-DBS implantation. Methods A patient cohort treated with STN-DBS + levodopa + opicapone (n = 16) was compared to an age-matched control cohort without opicapone treatment at baseline before and ≥ 5 months post-surgery. As main outcomes we assessed the MDS-UPDRS III and IV scores and reduction of the cumulative dopaminergic medication quantified by the levodopa equivalent dosages (LED). Results Whilst the MDS-UPDRS III (median [min - max]) in patients with STN-DBS as well as anatomical electrode positions did not differ significantly between the opicapone 20 [4-40] and control cohort 14 [1-44], the patients selected for opicapone treatment showed a significantly higher degree of dyskinesias already preoperatively as reflected by a UPDRS-IV A subscore of 2 [0-4] compared to controls 0 [0-4]. Postoperatively, the opicapone cohort showed stronger motor fluctuations MDS-UPDRS IV 6 [0-14] compared to the controls 0 [0-10], albeit without statistical significance. Moreover, the opicapone cohort showed significantly less reduction of dopaminergic medication (-36.4 % vs. -46.2 % in the control cohort) following STN-DBS implantation independent from the intake of dopamine agonists. Conclusion These results indicate a clinical phenotype characterised by more motor fluctuations requiring a more stable dopamine replacement therapy to address the patients' disease biology. In these cases, levodopa + COMT inhibition by opicapone represents a therapeutic approach but determination of the potential clinical benefit requires further prospective studies.
Collapse
Affiliation(s)
- Moritz A. Loeffler
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Philipp Klocke
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Idil Cebi
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076 Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076 Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Neha, Mazahir I, Khan SA, Kaushik P, Parvez S. The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson's Disease. Mol Neurobiol 2024; 61:8086-8103. [PMID: 38468113 DOI: 10.1007/s12035-024-04078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Parkinson's disease (PD) is a progressive neurological ailment with a slower rate of advancement that is more common in older adults. The biggest risk factor for PD is getting older, and those over 60 have an exponentially higher incidence of this condition. The failure of the mitochondrial electron chain, changes in the dynamics of the mitochondria, and abnormalities in calcium and ion homeostasis are all symptoms of Parkinson's disease (PD). Increased mitochondrial reactive oxygen species (mROS) and an energy deficit are linked to these alterations. Levodopa (L-DOPA) is a medication that is typically used to treat most PD patients, but because of its negative effects, additional medications have been created utilizing L-DOPA as the parent molecule. Ergot and non-ergot derivatives make up most PD medications. PD is successfully managed with the use of dopamine agonists (DA). To get around the motor issues produced by L-DOPA, these dopamine derivatives can directly excite DA receptors in the postsynaptic membrane. In the past 10 years, two non-ergoline DA with strong binding properties for the dopamine D2 receptor (D2R) and a preference for the dopamine D3 receptor (D3R) subtype, ropinirole, and pramipexole (PPx) have been developed for the treatment of PD. This review covers the most recent research on the efficacy and safety of non-ergot drugs like ropinirole and PPx as supplementary therapy to DOPA for the treatment of PD.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Iqra Mazahir
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sara Akhtar Khan
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Ranjan R, Chourey A, Kabir Y, García Mata HD, Tiepolo E, Fiallos Vinueza IL, Mohammed C, Mohammed SF, Thottakurichi AA. Role of Neurosurgical Interventions in the Treatment of Movement Disorders Like Parkinson's Disease, Dystonia, and Tourette Syndrome. Cureus 2024; 16:e72613. [PMID: 39610627 PMCID: PMC11603398 DOI: 10.7759/cureus.72613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
This article provides an overview of neurosurgical therapies for movement disorders (MDs), including Tourette syndrome, dystonia, Parkinson's disease (PD), and others. It focuses on the benefits of these treatments and suggests directions for further research. A total of 10 years' worth of English-language PubMed articles were combed through, with an emphasis on studies conducted in North America. To manage MDs like Parkinson's disease and Tourette syndrome, the results suggest that non-invasive neuromodulation techniques, closed-loop deep brain stimulation (DBS), and other advanced therapies may become the treatment of choice in the future. Research on dystonia is being focused on improving treatment methods by investigating new areas of the brain that might be stimulated through neurosurgery and looking at gene therapy. Modern technological developments, such as non-invasive neuromodulation procedures and improved imaging, provide promising substitutes for traditional surgical approaches. This study highlights the need for continuous clinical trials for better outcomes, which is why research and development in this area must continue.
Collapse
Affiliation(s)
- Rachel Ranjan
- Neurology, St. John's Medical College, Bangalore, IND
| | | | - Yasmin Kabir
- Medicine, Royal College of Surgeons, Manama, BHR
| | | | | | | | - Cara Mohammed
- Orthopaedic Surgery, Sangre Grande Hospital, Sangre Grande, TTO
| | | | | |
Collapse
|
5
|
Alcalá-Zúniga D, Espinoza-Torres E, Das RK, Vargas M, Maldonado O, Benavides O, Manojkumar A, de la Garza R, Davila N, Perez I, Martinez AH, Roy D, López-Juárez A, Zarei MM, Baker KA, Gil M, Rodrigo H, de Erausquin GA, Roy U. Enriched Environment Contributes to the Recovery from Neurotoxin-Induced Parkinson's Disease Pathology. Mol Neurobiol 2024; 61:6734-6753. [PMID: 38349515 PMCID: PMC11339186 DOI: 10.1007/s12035-024-03951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/02/2024] [Indexed: 08/22/2024]
Abstract
Parkinson's disease (PD) is a neurological disorder that affects dopaminergic neurons. The lack of understanding of the underlying molecular mechanisms of PD pathology makes treating it a challenge. Several pieces of evidence support the protective role of enriched environment (EE) and exercise on dopaminergic neurons. The specific aspect(s) of neuroprotection after exposure to EE have not been identified. Therefore, we have investigated the protective role of EE on dopamine dysregulation and subsequent downregulation of DJ1 protein using in vitro and in vivo models of PD. Our study for the first time demonstrated that DJ1 expression has a direct correlation with dopamine downregulation in PD models and exposure to EE has a significant impact on improving the behavioral changes in PD mice. This research provides evidence that exercise in EE has a positive effect on PD without interfering with the current line of therapy.
Collapse
Affiliation(s)
- Daphne Alcalá-Zúniga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Erika Espinoza-Torres
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Magaly Vargas
- Department of Psychological Science, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Oscar Maldonado
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Omar Benavides
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Arvind Manojkumar
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Roberto de la Garza
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Natalia Davila
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Isaac Perez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Alejandro Hernandez Martinez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Deepa Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Masoud M Zarei
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Kelsey A Baker
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Mario Gil
- Department of Psychological Science, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Hansapani Rodrigo
- School of Mathematical and Statistical Sciences, University of Rio Grande Valley, Edinburg, TX, USA
| | - Gabriel A de Erausquin
- The Glenn Biggs Institute of Alzheimer's and Neurodegenerative Disorders, Joe and Teresa Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA.
| |
Collapse
|
6
|
Muleiro Alvarez M, Cano-Herrera G, Osorio Martínez MF, Vega Gonzales-Portillo J, Monroy GR, Murguiondo Pérez R, Torres-Ríos JA, van Tienhoven XA, Garibaldi Bernot EM, Esparza Salazar F, Ibarra A. A Comprehensive Approach to Parkinson's Disease: Addressing Its Molecular, Clinical, and Therapeutic Aspects. Int J Mol Sci 2024; 25:7183. [PMID: 39000288 PMCID: PMC11241043 DOI: 10.3390/ijms25137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.
Collapse
Affiliation(s)
- Mauricio Muleiro Alvarez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Gabriela Cano-Herrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - María Fernanda Osorio Martínez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | | | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Jorge Alejandro Torres-Ríos
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ximena A. van Tienhoven
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ernesto Marcelo Garibaldi Bernot
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
- Secretaria de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México 11200, Mexico
| |
Collapse
|
7
|
Mai AS, Lee YS, Yong JH, Teo DCYJ, Wan YM, Tan EK. Treatment of apathy in Parkinson's disease: A bayesian network meta-analysis of randomised controlled trials. Heliyon 2024; 10:e26107. [PMID: 38440294 PMCID: PMC10909723 DOI: 10.1016/j.heliyon.2024.e26107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Background Apathy is an important but unrecognised aspect of Parkinson's disease (PD). The optimal therapeutic options for apathy remain unclear. Early recognition and treatment of apathy can reduce the significant burden of disease for patients and their caregivers. Here we conducted a meta-analysis to evaluate the comparative efficacy of different treatment modalities of apathy in PD (CRD42021292099). Methods We screened Medline, Embase, and PsycINFO databases for articles on therapies for apathy in PD. The outcome of interest is the reduction in apathy scores post-intervention and is measured by standardised mean differences (SMD) with 95% credible intervals (CrI). We included only randomised controlled trials examining interventions targeted at reducing apathy. Results Nineteen studies involving 2372 patients were included in the quantitative analysis. The network meta-analysis found pharmacotherapy to be the most efficacious treatment, significantly better than brain stimulation (SMD -0.43, 95% CrI -0.78 to -0.07), exercise-based interventions (SMD -0.66, 95% CrI -1.25 to -0.08), supplements (SMD -0.33, 95% CrI -0.67 to 0), and placebo (SMD -0.38, 95% CrI -0.56 to -0.23). Subgroup analysis of pharmacotherapy versus placebo found similar efficacy of dopamine agonists (SMD -0.36, 95% CI -0.59 to -0.12, P = 0.003) and alternative medications (SMD -0.42, 95% CI -0.61 to -0.23, P < 0.001). The remaining comparisons and subgroup analyses did not demonstrate any significant treatment effects. Conclusion Our meta-analysis of randomised controlled trials showed that pharmacotherapy is the most efficacious treatment option, with dopamine agonists having similar efficacy as other medications. Further research is needed to determine the optimal management strategy.
Collapse
Affiliation(s)
- Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Siang Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Hahn Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Yi-Min Wan
- Department of Psychiatry, Ng Teng Fong General Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore
- Neuroscience and Behavioural Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
8
|
Bonizzato M, Fasano A. Implementing automation in deep brain stimulation: has the time come? Lancet Digit Health 2023; 5:e52-e53. [PMID: 36528542 DOI: 10.1016/s2589-7500(22)00229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Bonizzato
- Department of Electrical Engineering and Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Department of Neurosciences and Centre interdisciplinaire sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON M5T 2S8, Canada; Division of Neurology, University of Toronto, Toronto, ON, Canada; Krembil Brain Institute, Toronto, ON, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada.
| |
Collapse
|
9
|
Lamy F, Lagha-Boukbiza O, Wirth T, Philipps C, Longato N, Gebus O, Montaut S, Mengin A, Voirin J, Proust F, Tuzin N, Anheim M, Tranchant C. Early hyperdopaminergic state following sub-thalamic nucleus deep brain stimulation in Parkinson disease. Rev Neurol (Paris) 2022; 178:896-906. [PMID: 36153257 DOI: 10.1016/j.neurol.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/26/2022] [Accepted: 07/17/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Hyperdopaminergic state (HS), especially impulse control behaviors (ICBs), are not rare in Parkinson's disease (PD). Controversial data regarding HS prevalence one year following sub-thalamic nucleus deep brain stimulation (STN-DBS) are reported. OBJECTIVE Our objectives were to describe early postoperative HS (PoOHS) including ICBs, hypomania and psychotic symptoms during the first 3 months following STN-DBS (V1) and their prognosis at 1 year (V2). METHODS This descriptive study included 24 PD patients treated successively with bilateral STN-DBS between 2017 and 2019. The primary endpoint was prevalence of PoOHS at V1 according to the Ardouin Scale of Behaviour in Parkinson's Disease. RESULTS Prior to STN-DBS (V0), 25% patients had HS (only ICBs) whereas at V1 (during the 3 first months), 10 patients (41.7%) had one or several HS (P=0.22) (de novo in 29.2%): 7 (29.2%) ICBs, 4 (16.7%) hypomanic mood, 1 (4.7%) psychotic symptoms. At V2, all V0 and V1 HS had disappeared, while 1 patient (4.2%) presented de novo HS (P<0.01). No correlation was found between the occurrence of PoOHS at V1 and any V0 data. Higher levodopa equivalent dose of dopamine agonists at V1 was correlated with ICB at V1 (P=0.04). CONCLUSION We found that early PoOHS are frequent in PD after STN-DBS, mostly de novo, with ICBs and hypomania being the most frequent. Despite a good prognosis of PoOHS at one year, our work emphasizes the importance of both a cautious adjustment of dopamine agonist doses and a close non-motor monitoring pre- and post-STN-DBS in PD.
Collapse
Affiliation(s)
- F Lamy
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France; Département de neurologie fonctionnelle et d'épileptologie, hospices civils de Lyon, université de Lyon, Lyon, France
| | - O Lagha-Boukbiza
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - T Wirth
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - C Philipps
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - N Longato
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - O Gebus
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - S Montaut
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - A Mengin
- Clinique psychiatrique, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, Strasbourg cedex, France
| | - J Voirin
- Service de neurochirurgie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - F Proust
- Service de neurochirurgie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - N Tuzin
- Département de santé publique, hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - M Anheim
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France; Inserm-U964/CNRS-UMR7104, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), université de Strasbourg, Illkirch, France; Fédération de médecine translationnelle de Strasbourg (FMTS), université de Strasbourg, Strasbourg, France
| | - C Tranchant
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France; Inserm-U964/CNRS-UMR7104, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), université de Strasbourg, Illkirch, France; Fédération de médecine translationnelle de Strasbourg (FMTS), université de Strasbourg, Strasbourg, France.
| |
Collapse
|
10
|
Golfrè Andreasi N, Romito LM, Telese R, Cilia R, Elia AE, Novelli A, Tringali G, Messina G, Levi V, Devigili G, Rinaldo S, Franzini AA, Eleopra R. Short- and long-term motor outcome of STN-DBS in Parkinson's Disease: focus on sex differences. Neurol Sci 2021; 43:1769-1781. [PMID: 34499244 DOI: 10.1007/s10072-021-05564-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Subthalamic nucleus deep brain stimulation (STN-DBS) is an established treatment for patients with Parkinson's disease (PD) with motor complications; the contribution of sex in determining the outcome is still not understood. METHODS We included 107 patients (71 males) with PD consecutively implanted with STN-DBS at our center. We reviewed patient charts from our database and retrospectively collected demographical and clinical data at baseline and at three follow-up visits (1, 5 and 10 years). RESULTS We found a long-lasting effect of DBS on motor complications, despite a progressive worsening of motor performances in the ON medication condition. Bradykinesia and non-dopaminergic features seem to be the major determinant of this progression. Conversely to males, females showed a trend towards worsening in bradykinesia already at 1-year follow-up and poorer scores in non-dopaminergic features at 10-year follow-up. Levodopa Equivalent Daily Dose (LEDD) was significantly reduced after surgery compared to baseline values; however, while in males LEDD remained significantly lower than baseline even 10 years after surgery, in females LEDD returned at baseline values. Males showed a sustained effect on dyskinesias, but this benefit was less clear in females; the total electrical energy delivered was consistently lower in females compared to males. The profile of adverse events did not appear to be influenced by sex. CONCLUSION Our data suggest that there are no major differences on the motor effect of STN-DBS between males and females. However, there may be some slight differences that should be specifically investigated in the future and that may influence therapeutic decisions in the chronic follow-up.
Collapse
Affiliation(s)
- Nico Golfrè Andreasi
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy.
| | - Luigi Michele Romito
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Roberta Telese
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Roberto Cilia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Antonio Emanuele Elia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Alessio Novelli
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Giovanni Tringali
- Neurosurgery Department, Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Giuseppe Messina
- Neurosurgery Department, Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Vincenzo Levi
- Neurosurgery Department, Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Grazia Devigili
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Sara Rinaldo
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Angelo Amato Franzini
- Neurosurgery Department, Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Roberto Eleopra
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| |
Collapse
|