1
|
Aboasali F, Castonguay CE, Medeiros M, Dion PA, Rouleau GA. Tremor in the Age of Omics: An Overview of the Transcriptomic Landscape of Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2025; 24:35. [PMID: 39853640 DOI: 10.1007/s12311-025-01793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 01/26/2025]
Abstract
Essential Tremor (ET) is the most common movement disorder and has a worldwide prevalence of 1%, including 5% of the population over 65 years old. It is characterized by an active, postural or kinetic tremor, primarily affecting the upper limbs, and is diagnosed based on clinical characteristics. The pathological mechanisms of ET, however, are mostly unknown. Moreover, despite its high heritability, genetic studies of ET genetics have yielded mixed results. Transcriptomics is a field that has the potential to reveal valuable insights about the processes and pathogenesis of ET thus providing an avenue for the development of more effective therapies. With the emergence of techniques such as single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq), molecular and cellular events can now be more closely examined, providing valuable insights into potential causal mechanisms. In this review, we review the growing literature on transcriptomic studies in ET, aiming to identify biological pathways involved and explore possible avenues for further ET research. We emphasized the convergence on shared of biological pathways across several studies, specifically axonal guidance and calcium signaling. These findings posit multiple hypotheses linking both pathways through the regulation of axonal and synaptic plasticity. We conclude that increasing the sample size is vital to uncover the subtleties of ET clinical and pathological heterogeneity. Additionally, integrating Multiomics approaches should provide a comprehensive understanding of the disease's pathophysiology.
Collapse
Affiliation(s)
- Farah Aboasali
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Charles-Etienne Castonguay
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Miranda Medeiros
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Patrick A Dion
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada.
| |
Collapse
|
2
|
Fanning A, Kuo SH. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2497-2510. [PMID: 37022657 PMCID: PMC10556200 DOI: 10.1007/s12311-023-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Essential tremor (ET) is a common movement disorder affecting millions of people. Studies of ET patients and perturbations in animal models have provided a foundation for the neural networks involved in its pathophysiology. However, ET encompasses a wide variability of phenotypic expression, and this may be the consequence of dysfunction in distinct subcircuits in the brain. The cerebello-thalamo-cortical circuit is a common substrate for the multiple subtypes of action tremor. Within the cerebellum, three sets of cerebellar cortex-deep cerebellar nuclei connections are important for tremor. The lateral hemispheres and dentate nuclei may be involved in intention, postural and isometric tremor. The intermediate zone and interposed nuclei could be involved in intention tremor. The vermis and fastigial nuclei could be involved in head and proximal upper extremity tremor. Studying distinct cerebellar circuitry will provide important framework for understanding the clinical heterogeneity of ET.
Collapse
Affiliation(s)
- Alexander Fanning
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Liu G, Yang C, Wang X, Chen X, Cai H, Le W. Cerebellum in neurodegenerative diseases: Advances, challenges, and prospects. iScience 2024; 27:111194. [PMID: 39555407 PMCID: PMC11567929 DOI: 10.1016/j.isci.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the central and/or peripheral nervous system. Historically, research on NDs has primarily focused on the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a significant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and biochemical changes may start in the early disease stages. This article provides a comprehensive update on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggesting that the cerebellum is involved in the onset and progression of NDs through various mechanisms, including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-related treatments for NDs.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
| |
Collapse
|
4
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
5
|
Zhang Y, Huang P, Wang X, Xu Q, Liu Y, Jin Z, Li Y, Cheng Z, Tang R, Chen S, He N, Yan F, Haacke EM. Visualizing the deep cerebellar nuclei using quantitative susceptibility mapping: An application in healthy controls, Parkinson's disease patients and essential tremor patients. Hum Brain Mapp 2023; 44:1810-1824. [PMID: 36502376 PMCID: PMC9921226 DOI: 10.1002/hbm.26178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022] Open
Abstract
The visualization and identification of the deep cerebellar nuclei (DCN) (dentate [DN], interposed [IN] and fastigial nuclei [FN]) are particularly challenging. We aimed to visualize the DCN using quantitative susceptibility mapping (QSM), predict the contrast differences between QSM and T2* weighted imaging, and compare the DCN volume and susceptibility in movement disorder populations and healthy controls (HCs). Seventy-one Parkinson's disease (PD) patients, 39 essential tremor patients, and 80 HCs were enrolled. The PD patients were subdivided into tremor dominant (TD) and postural instability/gait difficulty (PIGD) groups. A 3D strategically acquired gradient echo MR imaging protocol was used for each subject to obtain the QSM data. Regions of interest were drawn manually on the QSM data to calculate the volume and susceptibility. Correlation analysis between the susceptibility and either age or volume was performed and the intergroup differences of the volume and magnetic susceptibility in all the DCN structures were evaluated. For the most part, all the DCN structures were clearly visualized on the QSM data. The susceptibility increased as a function of volume for both the HC group and disease groups in the DN and IN (p < .001) but not the FN (p = .74). Only the volume of the FN in the TD-PD group was higher than that in the HCs (p = .012), otherwise, the volume and susceptibility among these four groups did not differ significantly. In conclusion, QSM provides clear visualization of the DCN structures. The results for the volume and susceptibility of the DCN can be used as baseline references in future studies of movement disorders.
Collapse
Affiliation(s)
- Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhui Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongbiao Tang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
6
|
Bédard P, Panyakaew P, Cho HJ, Hallett M, Horovitz SG. Multimodal imaging of essential tremor and dystonic tremor. Neuroimage Clin 2022; 36:103247. [PMID: 36451353 PMCID: PMC9668651 DOI: 10.1016/j.nicl.2022.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Despite recent advances in tremor and dystonia classification, it remains difficult to discriminate essential tremor from dystonic tremor as they are similar in appearance and no biomarker exists. Further, tremor can appear in the same or a different body part than the dystonia. The aim of the current study was to better understand the differential pathophysiology of these tremors. We designed a cross-sectional case-control study and recruited 16 patients with essential tremor, 16 patients with dystonic tremor, and 17 age-matched healthy volunteers. We used multi-modal imaging combining resting-state functional MRI, diffusion tensor imaging, and magnetic resonance spectroscopy. We measured functional connectivity of resting-state fMRI to assess connectivity in the tremor network, fractional anisotropy and mean diffusivity with diffusion tensor imaging, and GABA+, Glutamate/Glutamine, Choline, and N-Acetylaspartate with spectroscopy (adjusted to Creatine). Our results showed reduced functional connectivity of resting-state fMRI between the cerebellum and dentate nucleus bilaterally for the essential tremor group, but not the dystonic tremor group, compared to healthy volunteers. There was higher fractional anisotropy in the middle cerebellar peduncle bilaterally for the dystonic tremor group compared to the essential tremor group as well as for essential tremor group compared to healthy volunteers. There was also higher fractional anisotropy in the red nucleus and corticospinal tract for essential tremor and dystonic tremor groups compared to healthy volunteers. We also showed reduced mean diffusivity in the cerebellum of both essential tremor and dystonic tremor groups compared to healthy volunteers. Finally, we found elevated GABA+/Cr in the cerebellum of the essential tremor and dystonic tremor groups compared to healthy volunteers, but no difference emerged between essential tremor and dystonic tremor groups. We did not find group differences in the other metabolites. Our results indicate cerebellar alterations in essential tremor and dystonic tremor patients compared to healthy volunteers, and further changes in the cerebellum network for the dystonic tremor patients. suggesting that the cerebellum is affected differently in both tremors.
Collapse
Affiliation(s)
- Patrick Bédard
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA
| | - Pattamon Panyakaew
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA,Chulalongkorn Center of Excellence for Parkinson’s Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Hyun-Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA
| | - Silvina G. Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA,Corresponding author.
| |
Collapse
|
7
|
Ondo W. Enhancing GABA inhibition is the next generation of medications for essential tremor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:317-334. [PMID: 35750368 DOI: 10.1016/bs.irn.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory CNS neurotransmitter. Activating GABA-A receptors hyperpolarizes cells via Cl- influx, which inhibits action potentials. Although the exact pathophysiologies of tremor are incompletely understood, proposed neuroanatomy extensively implicates GABA pathways. Pathological studies and imaging studies also show GABA abnormalities in patients with ET. Most importantly, medications that activate GABA-A receptors, such as primidone, often improve tremor. Ongoing clinical trials and physiology research should further refine potential future GABAergic targets and treatments, which are currently the most promising targets for pharmacological intervention.
Collapse
Affiliation(s)
- William Ondo
- Houston Methodist Hospital, Weill Cornel Medical School, Houston, TX, United States.
| |
Collapse
|
8
|
Pan MK, Kuo SH. Essential tremor: Clinical perspectives and pathophysiology. J Neurol Sci 2022; 435:120198. [PMID: 35299120 PMCID: PMC10363990 DOI: 10.1016/j.jns.2022.120198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Essential tremor (ET) is one of the most common neurological disorders and can be highly disabling. In recent years, studies on the clinical perspectives and pathophysiology have advanced our understanding of ET. Specifically, clinical heterogeneity of ET, with co-existence of tremor and other neurological features such as dystonia, ataxia, and cognitive dysfunction, has been identified. The cerebellum has been found to be the key brain region for tremor generation, and structural alterations of the cerebellum have been extensively studied in ET. Finally, four main ET pathophysiologies have been proposed: 1) environmental exposures to β-carboline alkaloids and the consequent olivocerebellar hyper-excitation, 2) cerebellar GABA deficiency, 3) climbing fiber synaptic pathology with related cerebellar oscillatory activity, 4) extra-cerebellar oscillatory activity. While these four theories are not mutually exclusive, they can represent distinctive ET subtypes, indicating multiple types of abnormal brain circuitry can lead to action tremor. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.
Collapse
|
9
|
Is essential tremor a degenerative disorder or an electric disorder? Degenerative disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:65-101. [PMID: 35750370 PMCID: PMC9846862 DOI: 10.1016/bs.irn.2022.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Essential tremor (ET) is a highly prevalent neurologic disease and is the most common of the many tremor disorders. ET is a progressive condition with marked clinical heterogeneity, associated with a spectrum of both motor and non-motor features. However, its disease mechanisms remain poorly understood. Much debate has centered on whether ET should be considered a degenerative disorder, with underlying pathological changes in brain causing progressive disease manifestations, or an electric disorder, with overactivity of intrinsically oscillatory motor networks that occur without underlying structural brain abnormalities. Converging data from clinical, neuroimaging and pathological studies in ET now provide considerable evidence for the neurodegenerative hypothesis. A major turning point in this debate is that rigorous tissue-based studies have recently identified a series of structural changes in the ET cerebellum. Most of these pathological changes are centered on the Purkinje cell and connected neuronal populations, which can result in partial loss of Purkinje cells and circuitry reorganizations that would disturb cerebellar function. There is significant overlap in clinical and pathological features of ET with other disorders of cerebellar degeneration, and an increased risk of developing other degenerative diseases in ET. The combined implication of these studies is that ET could be degenerative. The evidence in support of the degenerative hypothesis is presented.
Collapse
|
10
|
Lenka A, Pandey S. Essential Tremor: Five New Things. Neurol Clin Pract 2021; 12:183-186. [PMID: 35747894 PMCID: PMC9208407 DOI: 10.1212/cpj.0000000000001145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
ABSTRACTPurpose of the review:To highlight five new things in the research and clinical aspects of essential tremor (ET).Recent findings:The introduction of a new definition of ET and a new category “ET plus” were the major themes of the recent consensus statement. This new change demands a change in the approach to the clinical diagnosis of ET and related diseases. From the pathogenesis standpoint, the cerebellar neurodegenerative model seems to have numerous evidence in its favor compared to the olivary model which has largely fallen out of favor. From the standpoint of therapeutics, magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has enriched the therapeutic armamentarium.Summary:There has been considerable progress in the field of ET. We discuss five new things in this article which include- (i) new definition (ii) ET plus (iii) approach to the diagnosis of ET, (iv) cerebellar degeneration, and (v) MRgFUS thalamotomy.
Collapse
Affiliation(s)
- Abhishek Lenka
- MedStar Georgetown University Hospital (AL), Washington, DC; and G.B. Pant Institute of Postgraduate Medical Education and Research (SP), New Delhi, India
| | - Sanjay Pandey
- MedStar Georgetown University Hospital (AL), Washington, DC; and G.B. Pant Institute of Postgraduate Medical Education and Research (SP), New Delhi, India
| |
Collapse
|
11
|
Abstract
Essential tremor (ET) is one of the most common movement disorders, with a reported >60 million affected individuals worldwide. The definition and underlying pathophysiology of ET are contentious. Patients present primarily with motor features such as postural and action tremors, but may also have other non-motor features, including cognitive impairment and neuropsychiatric symptoms. Genetics account for most of the ET risk but environmental factors may also be involved. However, the variable penetrance and challenges in validating data make gene-environment analysis difficult. Structural changes in cerebellar Purkinje cells and neighbouring neuronal populations have been observed in post-mortem studies, and other studies have found GABAergic dysfunction and dysregulation of the cerebellar-thalamic-cortical circuitry. Commonly prescribed medications include propranolol and primidone. Deep brain stimulation and ultrasound thalamotomy are surgical options in patients with medically intractable ET. Further research in post-mortem studies, and animal and cell-based models may help identify new pathophysiological clues and therapeutic targets and, together with advances in omics and machine learning, may facilitate the development of precision medicine for patients with ET.
Collapse
|
12
|
Lopez AM, Trujillo P, Hernandez AB, Lin YC, Kang H, Landman BA, Englot DJ, Dawant BM, Konrad PE, Claassen DO. Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor. Mov Disord 2020; 35:1181-1188. [PMID: 32343870 DOI: 10.1002/mds.28044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) and essential tremor (ET) are commonly encountered movement disorders. Pathophysiologic processes that localize to the cerebellum are described in both. There are limited studies investigating cerebellar structural changes in these conditions, largely because of inherent challenges in the efficiency of segmentation. METHODS We applied a novel multiatlas cerebellar segmentation method to T1-weighted images in 282 PD and 111 essential tremor patients to define 26 cerebellar lobule volumes. The severity of postural and resting tremor in both populations and gait and postural instability in PD patients were defined using subscores of the UPDRS and Washington Heights-Inwood Genetic Study motor scales. These clinical measurements were related to lobule volume size. Multiple comparisons were controlled using a false discovery rate method. RESULTS Group differences were identified between ET and PD patients, with reductions in deep cerebellar nucleus volume in ET versus reduced lobule VI volume in PD. In ET patients, lobule VIII was negatively correlated with the severity of postural tremor. In PD patients, lobule IV was positively correlated with resting tremor and total tremor severity. We observed differences in cerebellar structure that localized to sensorimotor lobules of the cerebellum. Lobule volumes appeared to differentially relate to clinical symptoms, suggesting important clinicopathologic distinctions between these conditions. These results emphasize the role of the cerebellum in tremor symptoms and should foster future clinical and pathologic investigations of the sensorimotor lobules of the cerebellum. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexander M Lopez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adreanna B Hernandez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ya-Chen Lin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bennett A Landman
- Department of Radiology/Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benoit M Dawant
- Department of Radiology/Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter E Konrad
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|