1
|
Liu H, McCollum A, Krishnaprakash A, Ouyang Y, Shi T, Ratovitski T, Jiang M, Duan W, Ross CA, Jin J. Roscovitine, a CDK Inhibitor, Reduced Neuronal Toxicity of mHTT by Targeting HTT Phosphorylation at S1181 and S1201 In Vitro. Int J Mol Sci 2024; 25:12315. [PMID: 39596381 PMCID: PMC11594617 DOI: 10.3390/ijms252212315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a single mutation in the huntingtin gene (HTT). Normal HTT has a CAG trinucleotide repeat at its N-terminal within the range of 36. However, once the CAG repeats exceed 37, the mutant gene (mHTT) will encode mutant HTT protein (mHTT), which results in neurodegeneration in the brain, specifically in the striatum and other brain regions. Since the mutation was discovered, there have been many research efforts to understand the mechanism and develop therapeutic strategies to treat HD. HTT is a large protein with many post-translational modification sites (PTMs) and can be modified by phosphorylation, acetylation, methylation, sumoylation, etc. Some modifications reduced mHTT toxicity both in cell and animal models of HD. We aimed to find the known kinase inhibitors that can modulate the toxicity of mHTT. We performed an in vitro kinase assay using HTT peptides, which bear different PTM sites identified by us previously. A total of 368 kinases were screened. Among those kinases, cyclin-dependent kinases (CDKs) affected the serine phosphorylation on the peptides that contain S1181 and S1201 of HTT. We explored the effect of CDK1 and CDK5 on the phosphorylation of these PTMs of HTT and found that CDK5 modified these two serine sites, while CDK5 knockdown reduced the phosphorylation of S1181 and S1201. Modifying these two serine sites altered the neuronal toxicity induced by mHTT. Roscovitine, a CDK inhibitor, reduced the p-S1181 and p-S1201 and had a protective effect against mHTT toxicity. We further investigated the feasibility of the use of roscovitine in HD mice. We confirmed that roscovitine penetrated the mouse brain by IP injection and inhibited CDK5 activity in the brains of HD mice. It is promising to move this study to in vivo for pre-clinical HD treatment.
Collapse
Affiliation(s)
- Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Ainsley McCollum
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Asvini Krishnaprakash
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Yuxiao Ouyang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Tianze Shi
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
- Department of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jing Jin
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA (Y.O.); (T.R.); (W.D.); (C.A.R.)
| |
Collapse
|
2
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
3
|
Li L, Wang M, Huang L, Zheng X, Wang L, Miao H. Ataxin-2: a powerful RNA-binding protein. Discov Oncol 2024; 15:298. [PMID: 39039334 PMCID: PMC11263328 DOI: 10.1007/s12672-024-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Ataxin-2 (ATXN2) was originally discovered in the context of spinocerebellar ataxia type 2 (SCA2), but it has become a key player in various neurodegenerative diseases. This review delves into the multifaceted roles of ATXN2 in human diseases, revealing its diverse molecular and cellular pathways. The impact of ATXN2 on diseases extends beyond functional outcomes; it mainly interacts with various RNA-binding proteins (RBPs) to regulate different stages of post-transcriptional gene expression in diseases. With the progress of research, ATXN2 has also been found to play an important role in the development of various cancers, including breast cancer, gastric cancer, pancreatic cancer, colon cancer, and esophageal cancer. This comprehensive exploration underscores the crucial role of ATXN2 in the pathogenesis of diseases and warrants further investigation by the scientific community. By reviewing the latest discoveries on the regulatory functions of ATXN2 in diseases, this article helps us understand the complex molecular mechanisms of a series of human diseases related to this intriguing protein.
Collapse
Affiliation(s)
- Lulu Li
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Meng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Lai Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Xiaoli Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Costa RG, Conceição A, Matos CA, Nóbrega C. The polyglutamine protein ATXN2: from its molecular functions to its involvement in disease. Cell Death Dis 2024; 15:415. [PMID: 38877004 PMCID: PMC11178924 DOI: 10.1038/s41419-024-06812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
A CAG repeat sequence in the ATXN2 gene encodes a polyglutamine (polyQ) tract within the ataxin-2 (ATXN2) protein, showcasing a complex landscape of functions that have been progressively unveiled over recent decades. Despite significant progresses in the field, a comprehensive overview of the mechanisms governed by ATXN2 remains elusive. This multifaceted protein emerges as a key player in RNA metabolism, stress granules dynamics, endocytosis, calcium signaling, and the regulation of the circadian rhythm. The CAG overexpansion within the ATXN2 gene produces a protein with an extended poly(Q) tract, inducing consequential alterations in conformational dynamics which confer a toxic gain and/or partial loss of function. Although overexpanded ATXN2 is predominantly linked to spinocerebellar ataxia type 2 (SCA2), intermediate expansions are also implicated in amyotrophic lateral sclerosis (ALS) and parkinsonism. While the molecular intricacies await full elucidation, SCA2 presents ATXN2-associated pathological features, encompassing autophagy impairment, RNA-mediated toxicity, heightened oxidative stress, and disruption of calcium homeostasis. Presently, SCA2 remains incurable, with patients reliant on symptomatic and supportive treatments. In the pursuit of therapeutic solutions, various studies have explored avenues ranging from pharmacological drugs to advanced therapies, including cell or gene-based approaches. These endeavours aim to address the root causes or counteract distinct pathological features of SCA2. This review is intended to provide an updated compendium of ATXN2 functions, delineate the associated pathological mechanisms, and present current perspectives on the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Rafael G Costa
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- PhD program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
| | - André Conceição
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Carlos A Matos
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve (UAlg), Faro, Portugal.
| |
Collapse
|
6
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
- Federica Pilotto
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
7
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
8
|
Rafehi H, Bennett MF, Bahlo M. Detection and discovery of repeat expansions in ataxia enabled by next-generation sequencing: present and future. Emerg Top Life Sci 2023; 7:349-359. [PMID: 37733280 PMCID: PMC10754322 DOI: 10.1042/etls20230018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Hereditary cerebellar ataxias are a heterogenous group of progressive neurological disorders that are disproportionately caused by repeat expansions (REs) of short tandem repeats (STRs). Genetic diagnosis for RE disorders such as ataxias are difficult as the current gold standard for diagnosis is repeat-primed PCR assays or Southern blots, neither of which are scalable nor readily available for all STR loci. In the last five years, significant advances have been made in our ability to detect STRs and REs in short-read sequencing data, especially whole-genome sequencing. Given the increasing reliance of genomics in diagnosis of rare diseases, the use of established RE detection pipelines for RE disorders is now a highly feasible and practical first-step alternative to molecular testing methods. In addition, many new pathogenic REs have been discovered in recent years by utilising WGS data. Collectively, genomes are an important resource/platform for further advancements in both the discovery and diagnosis of REs that cause ataxia and will lead to much needed improvement in diagnostic rates for patients with hereditary ataxia.
Collapse
Affiliation(s)
- Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mark F Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Zhou C, Liu HB, Jahanbakhsh F, Deng L, Wu B, Ying M, Margolis RL, Li PP. Bidirectional Transcription at the PPP2R2B Gene Locus in Spinocerebellar Ataxia Type 12. Mov Disord 2023; 38:2230-2240. [PMID: 37735923 PMCID: PMC10840700 DOI: 10.1002/mds.29605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene. OBJECTIVE In this study, we tested the hypothesis that the PPP2R2B antisense (PPP2R2B-AS1) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific reverse transcription polymerase chain reaction. The tendency of expanded PPP2R2B-AS1 (expPPP2R2B-AS1) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The apoptotic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS The repeat region in the PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts induce apoptosis in SK-N-MC cells, and the apoptotic effect may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the alanine open reading frame (ORF) via repeat-associated non-ATG translation, which is diminished by single-nucleotide interruptions within the CUG repeat and MBNL1 overexpression. CONCLUSIONS These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis and may therefore provide a novel therapeutic target for the disease. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fatemeh Jahanbakhsh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leon Deng
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Russell L. Margolis
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pan P. Li
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Zhou C, Liu HB, Bakhsh FJ, Wu B, Ying M, Margolis RL, Li PP. Bidirectional transcription at the PPP2R2B gene locus in spinocerebellar ataxia type 12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535298. [PMID: 37066173 PMCID: PMC10103964 DOI: 10.1101/2023.04.02.535298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene . Here we tested the hypothesis that the PPP2R2B antisense ( PPP2R2B-AS1 ) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific RT-PCR (SS-RT-PCR). The tendency of expanded PPP2R2B-AS1 ( expPPP2R2B-AS1 ) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The toxic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated (RAN) translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS The repeat region in PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts are toxic to SK-N-MC cells, and the toxicity may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the Alanine ORF via repeat-associated non-ATG (RAN) translation, which is diminished by single nucleotide interruptions within the CUG repeat, and MBNL1 overexpression. INTERPRETATION These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis, and may therefore provide a novel therapeutic target for the disease.
Collapse
|
11
|
Suárez-Sánchez R, Ávila-Avilés RD, Hernández-Hernández JM, Sánchez-Celis D, Azotla-Vilchis CN, Gómez-Macías ER, Leyva-García N, Ortega A, Magaña JJ, Cisneros B, Hernández-Hernández O. RNA Foci Formation in a Retinal Glial Model for Spinocerebellar Ataxia Type 7. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010023. [PMID: 36675972 PMCID: PMC9861853 DOI: 10.3390/life13010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder characterized by cerebellar ataxia and retinopathy. SCA7 is caused by a CAG expansion in the ATXN7 gene, which results in an extended polyglutamine (polyQ) tract in the encoded protein, the ataxin-7. PolyQ expanded ataxin-7 elicits neurodegeneration in cerebellar Purkinje cells, however, its impact on the SCA7-associated retinopathy remains to be addressed. Since Müller glial cells play an essential role in retinal homeostasis, we generate an inducible model for SCA7, based on the glial Müller MIO-M1 cell line. The SCA7 pathogenesis has been explained by a protein gain-of-function mechanism, however, the contribution of the mutant RNA to the disease cannot be excluded. In this direction, we found nuclear and cytoplasmic foci containing mutant RNA accompanied by subtle alternative splicing defects in MIO-M1 cells. RNA foci were also observed in cells from different lineages, including peripheral mononuclear leukocytes derived from SCA7 patient, suggesting that this molecular mark could be used as a blood biomarker for SCA7. Collectively, our data showed that our glial cell model exhibits the molecular features of SCA7, which makes it a suitable model to study the RNA toxicity mechanisms, as well as to explore therapeutic strategies aiming to alleviate glial dysfunction.
Collapse
Affiliation(s)
- Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Rodolfo Daniel Ávila-Avilés
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - J. Manuel Hernández-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Daniel Sánchez-Celis
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Cuauhtli N. Azotla-Vilchis
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Enue R. Gómez-Macías
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Norberto Leyva-García
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del, Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey-Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Correspondence: or ; Tel.: +52-(55)-5999-1000 (ext. 14710)
| |
Collapse
|
12
|
Skariah G, Albin RL. Repeat RNA Toxicity Drives Ribosomal RNA Processing Defects in SCA2. Mov Disord 2021; 36:2464-2467. [PMID: 34783387 DOI: 10.1002/mds.28795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger Lee Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Neurology Service and GRECC, VAAAHS, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Vázquez-Mojena Y, León-Arcia K, González-Zaldivar Y, Rodríguez-Labrada R, Velázquez-Pérez L. Gene Therapy for Polyglutamine Spinocerebellar Ataxias: Advances, Challenges, and Perspectives. Mov Disord 2021; 36:2731-2744. [PMID: 34628681 DOI: 10.1002/mds.28819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.
Collapse
|