1
|
Laabs BH, Lohmann K, Vollstedt EJ, Reinberger T, Nuxoll LM, Kilic-Berkmen G, Perlmutter JS, Loens S, Cruchaga C, Franke A, Dobricic V, Hinrichs F, Grözinger A, Altenmüller E, Bellows S, Boesch S, Bressman SB, Duque KR, Espay AJ, Ferbert A, Feuerstein JS, Frank S, Gasser T, Haslinger B, Jech R, Kaiser F, Kamm C, Kollewe K, Kühn AA, LeDoux MS, Lohmann E, Mahajan A, Münchau A, Multhaupt-Buell T, Pantelyat A, Pirio Richardson SE, Raymond D, Reich SG, Saunders Pullman R, Schormair B, Sharma N, Sichani AH, Simonyan K, Volkmann J, Wagle Shukla A, Winkelmann J, Wright LJ, Zech M, Zeuner KE, Zittel S, Kasten M, Sun YV, Bäumer T, Brüggemann N, Ozelius LJ, Jinnah HA, Klein C, König IR. Genetic Risk Factors in Isolated Dystonia Escape Genome-Wide Association Studies. Mov Disord 2024; 39:2110-2116. [PMID: 39287592 DOI: 10.1002/mds.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Despite considerable heritability, previous smaller genome-wide association studies (GWASs) have not identified any robust genetic risk factors for isolated dystonia. OBJECTIVE The objective of this study was to perform a large-scale GWAS in a well-characterized, multicenter sample of >6000 individuals to identify genetic risk factors for isolated dystonia. METHODS Array-based GWASs were performed on autosomes for 4303 dystonia participants and 2362 healthy control subjects of European ancestry with subgroup analysis based on age at onset, affected body regions, and a newly developed clinical score. Another 736 individuals were used for validation. RESULTS This GWAS identified no common genome-wide significant loci that could be replicated despite sufficient power to detect meaningful effects. Power analyses imply that the effects of individual variants are likely very small. CONCLUSIONS Moderate single-nucleotide polymorphism-based heritability indicates that common variants do not contribute to isolated dystonia in this cohort. Sequence-based GWASs (eg, by whole-genome sequencing) might help to better understand the genetic basis. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | | - Lisa-Marie Nuxoll
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | | | - Joel S Perlmutter
- Department of Neurology, Radiology and Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sebastian Loens
- Institute of Systems Motor Science, CBBM, University of Lübeck, Lübeck, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analysis, University of Lübeck, Lübeck, Germany
| | - Frauke Hinrichs
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grözinger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician's Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Steven Bellows
- Parkinson's Disease Center and Movement Disorder Clinic, Baylor College of Medicine, Houston, Texas, USA
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin R Duque
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andreas Ferbert
- Department of Neurology, Kassel School of Medicine, Klinikum Kassel, Kassel, Germany
| | - Jeanne S Feuerstein
- Department of Neurology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Samuel Frank
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Gasser
- Department of Neurology, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research and DZNE, University of Tübingen, Tübingen, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Frank Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen, University Hospital Essen, Essen, Germany
| | - Christoph Kamm
- Department of Neurology, University Medical Centre Rostock, Rostock, Germany
| | - Katja Kollewe
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
| | - Andrea A Kühn
- Department of Neurology and Experimental Neurology, Charité-University Medicine, Berlin, Germany
| | - Mark S LeDoux
- Veracity Neuroscience LLC, Memphis, Tennessee, USA
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Ebba Lohmann
- Department of Neurology, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research and DZNE, University of Tübingen, Tübingen, Germany
| | - Abhimanyu Mahajan
- Department of Neurological Sciences, RUSH University, Chicago, Illinois, USA
| | - Alexander Münchau
- Institute of Systems Motor Science, CBBM, University of Lübeck, Lübeck, Germany
| | - Trisha Multhaupt-Buell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA
| | - Stephen G Reich
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rachel Saunders Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Azadeh Hamzehei Sichani
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurological Sciences, RUSH University, Chicago, Illinois, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | | | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Laura J Wright
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kirsten E Zeuner
- Clinic for Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Tobias Bäumer
- Institute of Systems Motor Science, CBBM, University of Lübeck, Lübeck, Germany
| | | | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Timsina J, Dinasarapu A, Kilic-Berkmen G, Budde J, Sung YJ, Klein AM, Cruchaga C, Jinnah HA. Blood-Based Proteomics for Adult-Onset Focal Dystonias. Ann Neurol 2024; 96:110-120. [PMID: 38578115 PMCID: PMC11186717 DOI: 10.1002/ana.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES The adult-onset focal dystonias are characterized by over-active muscles leading to abnormal movements. For most cases, the etiology and pathogenesis remain unknown. In the current study, unbiased proteomics methods were used to identify potential changes in blood plasma proteins. METHODS A large-scale unbiased proteomics screen was used to compare proteins (N = 6,345) in blood plasma of normal healthy controls (N = 49) with adult-onset focal dystonia (N = 143) consisting of specific subpopulations of cervical dystonia (N = 45), laryngeal dystonia (N = 49), and blepharospasm (N = 49). Pathway analyses were conducted to identify relevant biological pathways. Finally, protein changes were used to build a prediction model for dystonia. RESULTS After correction for multiple comparisons, 15 proteins were associated with adult-onset focal dystonia. Subgroup analyses revealed some proteins were shared across the dystonia subgroups while others were unique to 1 subgroup. The top biological pathways involved changes in the immune system, metal ion transport, and reactive oxygen species. A 4-protein model showed high accuracy in discriminating control individuals from dystonia cases [average area under the curve (AUC) = 0.89]. INTERPRETATION These studies provide novel insights into the etiopathogenesis of dystonia, as well as novel potential biomarkers. ANN NEUROL 2024;96:110-120.
Collapse
Affiliation(s)
- Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashok Dinasarapu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam M. Klein
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
3
|
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
4
|
Albanese A, Bhatia KP, Cardoso F, Comella C, Defazio G, Fung VS, Hallett M, Jankovic J, Jinnah HA, Kaji R, Krauss JK, Lang A, Tan EK, Tijssen MA, Vidailhet M. Isolated Cervical Dystonia: Diagnosis and Classification. Mov Disord 2023; 38:1367-1378. [PMID: 36989390 PMCID: PMC10528915 DOI: 10.1002/mds.29387] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
This document presents a consensus on the diagnosis and classification of isolated cervical dystonia (iCD) with a review of proposed terminology. The International Parkinson and Movement Disorder Society Dystonia Study Group convened a panel of experts to review the main clinical and diagnostic issues related to iCD and to arrive at a consensus on diagnostic criteria and classification. These criteria are intended for use in clinical research, but also may be used to guide clinical practice. The benchmark is expert clinical observation and evaluation. The criteria aim to systematize the use of terminology as well as the diagnostic process, to make it reproducible across centers and applicable by expert and non-expert clinicians. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations, which are incorporated into the current criteria. Three iCD presentations are described in some detail: idiopathic (focal or segmental) iCD, genetic iCD, and acquired iCD. The relationship between iCD and isolated head tremor is also reviewed. Recognition of idiopathic iCD has two levels of certainty, definite or probable, supported by specific diagnostic criteria. Although a probable diagnosis is appropriate for clinical practice, a higher diagnostic level may be required for specific research studies. The consensus retains elements proven valuable in previous criteria and omits aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of iCD expands, these criteria will need continuous revision to accommodate new advances. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL, Queen Square, Institute of Neurology, University College London, London, UK
| | - Francisco Cardoso
- Movement Disorders Unit Hospital das Clínicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cynthia Comella
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Giovanni Defazio
- Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Victor S.C. Fung
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, Australia
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Hyder A. Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ryuji Kaji
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan
| | - Joachim K. Krauss
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany
| | - Anthony Lang
- Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Marina A.J. Tijssen
- Expertise Center Movement Disorders Groningen, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marie Vidailhet
- Department of Neurology, Sorbonne Université, Paris, France
- Institut du Cerveau et de la Moelle épinière-Inserm U1127, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
5
|
Wadon ME, Fenner E, Kendall KM, Bailey GA, Sandor C, Rees E, Peall KJ. Clinical and genotypic analysis in determining dystonia non-motor phenotypic heterogeneity: a UK Biobank study. J Neurol 2022; 269:6436-6451. [PMID: 35925398 PMCID: PMC9618530 DOI: 10.1007/s00415-022-11307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022]
Abstract
The spectrum of non-motor symptoms in dystonia remains unclear. Using UK Biobank data, we analysed clinical phenotypic and genetic information in the largest dystonia cohort reported to date. Case-control comparison of dystonia and matched control cohort was undertaken to identify domains (psychiatric, pain, sleep and cognition) of increased symptom burden in dystonia. Whole exome data were used to determine the rate and likely pathogenicity of variants in Mendelian inherited dystonia causing genes and linked to clinical data. Within the dystonia cohort, phenotypic and genetic single-nucleotide polymorphism (SNP) data were combined in a mixed model analysis to derive genetically informed phenotypic axes. A total of 1572 individuals with dystonia were identified, including cervical dystonia (n = 775), blepharospasm (n = 131), tremor (n = 488) and dystonia, unspecified (n = 154) groups. Phenotypic patterns highlighted a predominance of psychiatric symptoms (anxiety and depression), excess pain and sleep disturbance. Cognitive impairment was limited to prospective memory and fluid intelligence. Whole exome sequencing identified 798 loss of function variants in dystonia-linked genes, 67 missense variants (MPC > 3) and 305 other forms of non-synonymous variants (including inframe deletion, inframe insertion, stop loss and start loss variants). A single loss of function variant (ANO3) was identified in the dystonia cohort. Combined SNP and clinical data identified multiple genetically informed phenotypic axes with predominance of psychiatric, pain and sleep non-motor domains. An excess of psychiatric, pain and sleep symptoms were evident across all forms of dystonia. Combination with genetic data highlights phenotypic subgroups consistent with the heterogeneity observed in clinical practice.
Collapse
Affiliation(s)
- Megan E Wadon
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK.
| | - Eilidh Fenner
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Kimberley M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Grace A Bailey
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Cynthia Sandor
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Kathryn J Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK.
| |
Collapse
|
6
|
D'Onofrio G, Riva A, Di Rosa G, Cali' E, Efthymiou S, Gitto E, Madia F, Accogli A, Zara F, Houlden H, Salpietro V, Striano P, Soler D. Paroxysmal limb dystonias associated with GABBR2 pathogenic variant: A case-based literature review. Brain Dev 2022; 44:469-473. [PMID: 35414446 DOI: 10.1016/j.braindev.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND De novo mutations in the GABBR2 (Gamma-Aminobutyric acid Type B Receptor Subunit 2) gene have recently been reported to be associated with a form of early-infantile epileptic encephalopathy (EIEE59; OMIM# 617904), as well as a Rett syndrome (RTT)-like disorder defined as a neurodevelopmental disorder with poor language and loss of hand skills (NDPLHS; OMIM# 617903). METHODS We describe a pediatric case carrying a de novo GABBR2 pathogenic variant and showing a phenotype encompassing RTT, epilepsy, generalized hypotonia with a paroxysmal limb dystonia. RESULTS A 11-year-old girl, born to non-consanguineous parents after an uneventful pregnancy, had developmental delay and generalized hypotonia. At age 3.5 months she presented with infantile spasms with an electroencephalographic pattern of hypsarrhythmia. After treatment with clonazepam and prednisolone, she became seizure-free with a slow background electrical activity. Brain magnetic resonance imaging was normal. Paroxysmal dystonic posturing of the extremities, especially the upper limbs, have been observed since the age of 3 years. Motor stereotypies, non-epileptic episodes of hyperventilation and breath-holding were also reported. The girl suffered from feeding difficulties requiring gastrostomy at the age of 8. Exome sequencing (ES) revealed a de novo GABBR2 pathogenic variant (NM_005458:c.G2077T:p.G693W). CONCLUSION Paroxysmal limb dystonias, especially in the context of neurodevelopmental disorder featuring epilepsy, generalized hypotonia and RTT-like features should lead to the suspect of GABBR2 mutations.
Collapse
Affiliation(s)
- Gianluca D'Onofrio
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Gabriella Di Rosa
- Child Neuropsychiatry Unit, Department of Pediatrics, University of Messina, Messina 98100, Italy
| | - Elisa Cali'
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Gower Street, London WC1E 6BT, United Kingdom
| | - Eloisa Gitto
- Intensive Neonatal and Pediatric Care Unit, Department of Pediatrics, University of Messina, Messina 98100, Italy
| | - Francesca Madia
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Federico Zara
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Gower Street, London WC1E 6BT, United Kingdom
| | - Vincenzo Salpietro
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Gower Street, London WC1E 6BT, United Kingdom
| | - Pasquale Striano
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Doriette Soler
- Department of Paediatrics, Mater dei Hospital, Msida, Malta.
| |
Collapse
|
7
|
Yang WY, Jiang SS, Pu JL, Jin CY, Gao T, Zheng R, Tian J, Zhang BR. Association Between Dystonia-Related Genetic Loci and Parkinson's Disease in Eastern China. Front Neurol 2022; 12:711050. [PMID: 35273550 PMCID: PMC8901603 DOI: 10.3389/fneur.2021.711050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Background Parkinson's disease (PD) and dystonia are closely related in terms of pathophysiology and clinical manifestations, but their common genetic characteristics remain unclear. Some genome-wide association studies (GWASs) and replication studies have revealed correlations between single nucleotide polymorphisms (SNPs) of the ARSG, BDNF, NALCN, OR4X2, KIAA1715, and OR4B1 genes and dystonia. This study was conducted to assess the association between these genetic loci and PD in a population from Eastern China. Methods We genotyped the SNPs (rs11655081 of ARSG; rs6265 of BDNF; rs61973742, rs1338051, rs9518384, and rs9518385 of NALCN; rs67863238 of OR4X2; rs10930717 of KIAA1715; and rs35875350 of OR4B1) in a cohort of 474 patients with PD and 439 healthy controls from East China. To determine the genotypes of these SNPs, we used an Agena MassARRAY Typer 4.0. Odds ratios (ORs) and 95% CIs were computed to evaluate the correlations between these SNPs and the risk of PD. Results There were significant differences in the genotype distribution (OR = 0.649, 95% CI = 0.478–0.880) and minor allele frequency (MAF) (OR = 0.703, 95% CI = 0.533–0.929) of SNP rs61973742 (NALCN) between patients with PD and healthy controls. A significant difference was detected in the genotype distribution of rs11655081 (ARSG) (OR = 1.486, 95% CI = 1.080–2.045). Conclusion Single nucleotide polymorphisms rs11655081 (ARSG) and rs61973742 (NALCN) may be associated with PD. The C allele of rs11655081 may increase the risk of PD, whereas the G allele of rs61973742 may be a protective factor.
Collapse
Affiliation(s)
- Wen-Yi Yang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Si Jiang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chong-Yao Jin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|