1
|
Zhang H, Wang X. The Role of Protein Quantity Control in Polyglutamine Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01722-w. [PMID: 39052145 DOI: 10.1007/s12311-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
2
|
Soto-Piña AE, Pulido-Alvarado CC, Dulski J, Wszolek ZK, Magaña JJ. Specific Biomarkers in Spinocerebellar Ataxia Type 3: A Systematic Review of Their Potential Uses in Disease Staging and Treatment Assessment. Int J Mol Sci 2024; 25:8074. [PMID: 39125644 PMCID: PMC11311810 DOI: 10.3390/ijms25158074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.
Collapse
Affiliation(s)
- Alexandra E. Soto-Piña
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.E.S.-P.); (C.C.P.-A.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Caroline C. Pulido-Alvarado
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.E.S.-P.); (C.C.P.-A.)
| | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA;
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-211 Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., 80-462 Gdansk, Poland
| | | | - Jonathan J. Magaña
- Department of Genomic Medicine, Instituto Nacional de Rehabilitación—Luis Guillermo Ibarra, Ibarra, Ciudad de México 14389, Mexico;
- Department of Bioengineering, School of Engineering and Sciences, Tecnológico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| |
Collapse
|
3
|
Uebachs M, Wegner P, Schaaf S, Kugai S, Jacobi H, Kuo SH, Ashizawa T, Fluck J, Klockgether T, Faber J. SCAview: an Intuitive Visual Approach to the Integrative Analysis of Clinical Data in Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:887-895. [PMID: 37002505 PMCID: PMC10544694 DOI: 10.1007/s12311-023-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Abstract
With SCAview, we present a prompt and comprehensive tool that enables scientists to browse large datasets of the most common spinocerebellar ataxias intuitively and without technical effort. Basic concept is a visualization of data, with a graphical handling and filtering to select and define subgroups and their comparison. Several plot types to visualize all data points resulting from the selected attributes are provided. The underlying synthetic cohort is based on clinical data from five different European and US longitudinal multicenter cohorts in spinocerebellar ataxia type 1, 2, 3, and 6 (SCA1, 2, 3, and 6) comprising > 1400 patients with overall > 5500 visits. First, we developed a common data model to integrate the clinical, demographic, and characterizing data of each source cohort. Second, the available datasets from each cohort were mapped onto the data model. Third, we created a synthetic cohort based on the cleaned dataset. With SCAview, we demonstrate the feasibility of mapping cohort data from different sources onto a common data model. The resulting browser-based visualization tool with a thoroughly graphical handling of the data offers researchers the unique possibility to visualize relationships and distributions of clinical data, to define subgroups and to further investigate them without any technical effort. Access to SCAview can be requested via the Ataxia Global Initiative and is free of charge.
Collapse
Affiliation(s)
- Mischa Uebachs
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- DRK Kamillus Klinik, Asbach, Germany
| | - Philipp Wegner
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), St. Augustin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sebastian Schaaf
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Simon Kugai
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), St. Augustin, Germany
- Institute of General Practice and Family Medicine, University Hospital Bonn, Bonn, Germany
| | - Heike Jacobi
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Juliane Fluck
- ZB Med, Information Centre for Life Sciences, Cologne, Germany
- Department of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jennifer Faber
- Department of Neurology, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
4
|
Santorelli FM, McLoughlin HS, Wolter JM, Galatolo D, Synofzik M, Mengel D, Opal P. Standards of Fluid Biomarker Collection and Pre-analytical Processes in Humans and Mice: Recommendations by the Ataxia Global Initiative Working Group on Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:881-886. [PMID: 37243885 DOI: 10.1007/s12311-023-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
The Ataxia Global Initiative (AGI) aims to serve as a platform to facilitate clinical trial readiness for the hereditary ataxias. Clinical trials for these diseases have been hampered by the lack of objective measures to study disease onset, progression, and treatment efficacy. While these issues are not unique to the genetic ataxias, the relative rarity of these diseases makes the need for such measures even more pressing to achieve statistical power in clinical trials. In this report, we have described the efforts of the AGI fluid biomarker working group (WG) in developing uniform protocols for biomarker sampling and storage, both for human and preclinical studies in mice. By reducing collection variability, we anticipate reduced noise in downstream biomarker analysis that will improve statistical power and minimize the necessary sample size. The emphasis has been on defining and standardizing the sampling and pre-analytical work-up of minimal set of biological samples, specifically blood plasma and serum, keeping in mind the need for harmonization of collection and storage that can be achieved with relatively limited cost and resources. An optional package is detailed for those centers that have the resources and commitment for additional biofluids/sample processing and storage. Finally, we have delineated similar standardized protocols for mice that will be important for preclinical studies in the field.
Collapse
Affiliation(s)
- Filippo M Santorelli
- Molecular Medicine and Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy.
| | | | - Justin M Wolter
- UNC Neuroscience Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Daniele Galatolo
- Molecular Medicine and Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - David Mengel
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Raposo M, Hübener-Schmid J, Tagett R, Ferreira AF, Vieira Melo AR, Vasconcelos J, Pires P, Kay T, Garcia-Moreno H, Giunti P, Santana MM, Pereira de Almeida L, Infante J, van de Warrenburg BP, de Vries JJ, Faber J, Klockgether T, Casadei N, Admard J, Schöls L, Riess O, Costa MDC, Lima M. Blood and cerebellar abundance of ATXN3 splice variants in spinocerebellar ataxia type 3/Machado-Joseph disease. Neurobiol Dis 2024; 193:106456. [PMID: 38423193 DOI: 10.1016/j.nbd.2024.106456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.
Collapse
Affiliation(s)
- Mafalda Raposo
- IBMC - Instituto de Biologia Molecular e Celular, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal.
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Tübingen, Germany.
| | - Rebecca Tagett
- Bioinformatics Core, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ana F Ferreira
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - João Vasconcelos
- Serviço de Neurologia, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Paula Pires
- Serviço de Neurologia, Hospital do Santo Espírito da Ilha Terceira, Angra do Heroísmo, Portugal
| | - Teresa Kay
- Serviço de Genética Clínica, Hospital D. Estefânia, Lisboa, Portugal
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Bart P van de Warrenburg
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jennifer Faber
- Department of Neurology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; NGS Competence Center Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; NGS Competence Center Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department for Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Tübingen, Germany; NGS Competence Center Tübingen, Tübingen, Germany
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal.
| |
Collapse
|
6
|
Faber J, Berger M, Wilke C, Hubener-Schmid J, Schaprian T, Santana MM, Grobe-Einsler M, Onder D, Koyak B, Giunti P, Garcia-Moreno H, Gonzalez-Robles C, Lima M, Raposo M, Melo ARV, de Almeida LP, Silva P, Pinto MM, van de Warrenburg BP, van Gaalen J, de Vries J, Oz G, Joers JM, Synofzik M, Schols L, Riess O, Infante J, Manrique L, Timmann D, Thieme A, Jacobi H, Reetz K, Dogan I, Onyike C, Povazan M, Schmahmann J, Ratai EM, Schmid M, Klockgether T. Stage-Dependent Biomarker Changes in Spinocerebellar Ataxia Type 3. Ann Neurol 2024; 95:400-406. [PMID: 37962377 DOI: 10.1002/ana.26824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.
Collapse
Affiliation(s)
- Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- University of Bonn, Medical Faculty, Institute for Medical Biometry, Informatics, and Epidemiology, Bonn, Germany
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jeannette Hubener-Schmid
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tamara Schaprian
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Marcus Grobe-Einsler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Demet Onder
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Berkan Koyak
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Cristina Gonzalez-Robles
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Mafalda Raposo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Patrick Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Maria M Pinto
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Jeroen de Vries
- University Medical Center Groningen, Neurology, Groningen, the Netherlands
| | - Gulin Oz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - James M Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Ludger Schols
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Jon Infante
- University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Centro de investigación biomédica en red de enfermedades neurodegenerativas (CIBERNED), Universidad de Cantabria, Santander, Spain
| | - Leire Manrique
- University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Heike Jacobi
- Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, Aachen, Germany
| | - Chiadikaobi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michal Povazan
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeremy Schmahmann
- Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva-Maria Ratai
- Massachusetts General Hospital, Department of Radiology, A. A. Martinos Center for Biomedical Imaging and Harvard Medical School, Charlestown, MA, USA
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn, Medical Faculty, Institute for Medical Biometry, Informatics, and Epidemiology, Bonn, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Chiu C, Cheng W, Lin Y, Lin T, Chang H, Chang Y, Lee C, Chang H, Liu C. A pilot study: handgrip as a predictor in the disease progression of SCA3. Orphanet J Rare Dis 2023; 18:317. [PMID: 37817286 PMCID: PMC10565987 DOI: 10.1186/s13023-023-02948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is an inherited, autosomal, and rare neurodegenerative disease. Serum/plasma biomarkers or functional magnetic resonance imaging used to assess progression, except for neurological examinations, is either inconvenient or expensive. Handgrip strength (HGS) may be considered as a biomarker to predict the progress of SCA3 and align with the alteration of plasma neurofilament light chain (NfL) and Scale for the Assessment and Rating of Ataxia (SARA). METHODS Patients with SCA3 and healthy subjects were recruited from Changhua Christian Hospital. SARA, body mass index (BMI), and NfL were obtained for both groups. HGS was measured using a Jamar Plus + hand dynamometer. RESULTS This study recruited 31 patients and 36 controls. HGS in the SCA3 group revealed a profound decrease (P < 0.001) compared with normal subjects. HGS also had a negative correlation with SARA (r = - 0.548, P = 0.001), NfL (r = - 0.359, P = 0.048), and a positive correlation with BMI (r = 0.680, P < 0.001). Moreover, HGS/BMI ratio correlated with SARA (r = - 0.441, P = 0.013). Controlling for gender and age, HGS still correlated with the above clinical items. The initial hypothesis was also proved in SCA3 84Q transgenic mice, showing grip strength weakness compared to normal mice. CONCLUSIONS HGS can be an alternative tool to assess the clinical severity of SCA3. Further research is needed to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Chungmin Chiu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Wenling Cheng
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua, Taiwan
| | - Yongshiou Lin
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua, Taiwan
| | - Tatsung Lin
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua, Taiwan
| | - Huiju Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua, Taiwan
| | - Yujun Chang
- Big Data Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chiaju Lee
- Department of Neurology, Changhua Christian Hospital, 7F., No.235, Syuguang Rd., Changhua, 500, Taiwan
| | - Henhong Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Department of Chinese Medicine, China Medical University Hospital, No.91, Xueshi Rd., North District, Taichung, 404, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| | - Chinsan Liu
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua, Taiwan.
- Department of Neurology, Changhua Christian Hospital, 7F., No.235, Syuguang Rd., Changhua, 500, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
8
|
Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 2023; 22:735-749. [PMID: 37479376 DOI: 10.1016/s1474-4422(23)00068-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 07/23/2023]
Abstract
Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Coutelier
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
9
|
Faber J, Berger M, Carlo W, Hübener-Schmid J, Schaprian T, Santana MM, Grobe-Einsler M, Onder D, Koyak B, Giunti P, Garcia-Moreno H, Gonzalez-Robles C, Lima M, Raposo M, Melo ARV, de Almeida LP, Silva P, Pinto MM, van de Warrenburg BP, van Gaalen J, de Vries J, Jeroen, Oz G, Joers JM, Synofzik M, Schöls L, Riess O, Infante J, Manrique L, Timmann D, Thieme A, Jacobi H, Reetz K, Dogan I, Onyike C, Povazan M, Schmahmann J, Ratai EM, Schmid M, Klockgether T. Stage-dependent biomarker changes in spinocerebellar ataxia type 3. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.21.23287817. [PMID: 37163081 PMCID: PMC10168503 DOI: 10.1101/2023.04.21.23287817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.
Collapse
Affiliation(s)
- Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- University of Bonn, Medical Faculty, Institute for Medical Biometry, Informatics and Epidemiology
| | - Wilke Carlo
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tamara Schaprian
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Marcus Grobe-Einsler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Dement Onder
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Berkan Koyak
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Cristina Gonzalez-Robles
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Mafalda Raposo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Patrick Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria M Pinto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bart P. van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud university medical center
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud university medical center
- Department of Neurology, Rinjstate Hospital, Arnhem, The Netherlands
| | | | - Jeroen
- University Medical Center Groningen, Neurology
| | - Gulin Oz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Jon Infante
- University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Centro de investigación biomédica en red de enfermedades neurodegenerativas (CIBERNED), Universidad de Cantabria, Santander, Spain
| | - Leire Manrique
- University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen
| | - Heike Jacobi
- Department of Neurology, University Hospital of Heidelberg, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Chiadikaobi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Michal Povazan
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Schmahmann
- Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School
| | - Eva-Maria Ratai
- Massachusetts General Hospital, Department of Radiology, A. A. Martinos Center for Biomedical Imaging and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn, Medical Faculty, Institute for Medical Biometry, Informatics and Epidemiology
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Santana MM, Gaspar LS, Pinto MM, Silva P, Adão D, Pereira D, Ribeiro JA, Cunha I, Huebener‐Schmid J, Raposo M, Ferreira AF, Faber J, Kuhs S, Garcia‐Moreno H, Reetz K, Thieme A, Infante J, van de Warrenburg BPC, Giunti P, Riess O, Schöls L, Lima M, Klockgether T, Januário C, de Almeida LP. A standardised protocol for blood and cerebrospinal fluid collection and processing for biomarker research in ataxia. Neuropathol Appl Neurobiol 2023; 49:e12892. [PMID: 36798010 PMCID: PMC10947376 DOI: 10.1111/nan.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
The European Spinocerebellar Ataxia Type 3/Machado-Joseph Disease Initiative (ESMI) is a consortium established with the ambition to set up the largest European longitudinal trial-ready cohort of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease (SCA3/MJD), the most common autosomal dominantly inherited ataxia worldwide. A major focus of ESMI has been the identification of SCA3/MJD biomarkers to enable future interventional studies. As biosample collection and processing variables significantly impact the outcomes of biomarkers studies, biosampling procedures standardisation was done previously to study visit initiation. Here, we describe the ESMI consensus biosampling protocol, developed within the scope of ESMI, that ultimately might be translated to other neurodegenerative disorders, particularly ataxias, being the first step to protocol harmonisation in the field.
Collapse
Affiliation(s)
- Magda M. Santana
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal
| | - Laetitia S. Gaspar
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal
| | - Maria M. Pinto
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of Coimbra (FFUC)CoimbraPortugal
| | - Patrick Silva
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal
- Faculty of PharmacyUniversity of Coimbra (FFUC)CoimbraPortugal
| | - Diana Adão
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Dina Pereira
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal
| | - Joana Afonso Ribeiro
- Neurology Department, Child Development CentreCoimbra's Hospital and University Centre (CHUC)CoimbraPortugal
| | - Inês Cunha
- Department of NeurologyCoimbra University Hospital Center (CHUC)CoimbraPortugal
| | - Jeannette Huebener‐Schmid
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Centre for Rare DiseasesUniversity of TübingenTübingenGermany
| | - Mafalda Raposo
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
- Faculdade de Ciências e Tecnologia (FCT)Universidade dos Açores (UAc)Ponta DelgadaPortugal
| | - Ana F. Ferreira
- Faculdade de Ciências e Tecnologia (FCT)Universidade dos Açores (UAc)Ponta DelgadaPortugal
| | - Jennifer Faber
- DZNE, German Center for Neurodegenerative DiseasesBonnGermany
- Department of NeurologyUniversity Hospital BonnBonnGermany
| | - Sandra Kuhs
- DZNE, German Center for Neurodegenerative DiseasesBonnGermany
| | - Hector Garcia‐Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurogenetics, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Kathrin Reetz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Andreas Thieme
- Department of NeurologyEssen University HospitalEssenGermany
- Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), Essen University HospitalUniversity of Duisburg‐EssenEssenGermany
| | - Jon Infante
- Service of NeurologyUniversity Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)SantanderSpain
| | - Bart P. C. van de Warrenburg
- Department of Neurology, Radboud University Medical CentreDonders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurogenetics, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Olaf Riess
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Centre for Rare DiseasesUniversity of TübingenTübingenGermany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases and Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Centre for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia (FCT)Universidade dos Açores (UAc)Ponta DelgadaPortugal
| | - Thomas Klockgether
- DZNE, German Center for Neurodegenerative DiseasesBonnGermany
- Department of NeurologyUniversity Hospital BonnBonnGermany
| | - Cristina Januário
- Department of NeurologyCoimbra University Hospital Center (CHUC)CoimbraPortugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of Coimbra (FFUC)CoimbraPortugal
| |
Collapse
|
11
|
TR-FRET-Based Immunoassay to Measure Ataxin-2 as a Target Engagement Marker in Spinocerebellar Ataxia Type 2. Mol Neurobiol 2023; 60:3553-3567. [PMID: 36894829 PMCID: PMC10122633 DOI: 10.1007/s12035-023-03294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.
Collapse
|
12
|
Ding Y, Zhang Y, Liu X. Combinational treatments of RNA interference and extracellular vesicles in the spinocerebellar ataxia. Front Mol Neurosci 2022; 15:1043947. [PMID: 36311034 PMCID: PMC9606576 DOI: 10.3389/fnmol.2022.1043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is an autosomal dominant neurodegenerative disease (ND) with a high mortality rate. Symptomatic treatment is the only clinically adopted treatment. However, it has poor effect and serious complications. Traditional diagnostic methods [such as magnetic resonance imaging (MRI)] have drawbacks. Presently, the superiority of RNA interference (RNAi) and extracellular vesicles (EVs) in improving SCA has attracted extensive attention. Both can serve as the potential biomarkers for the diagnosing and monitoring disease progression. Herein, we analyzed the basis and prospect of therapies for SCA. Meanwhile, we elaborated the development and application of miRNAs, siRNAs, shRNAs, and EVs in the diagnosis and treatment of SCA. We propose the combination of RNAi and EVs to avoid the adverse factors of their respective treatment and maximize the benefits of treatment through the technology of EVs loaded with RNA. Obviously, the combinational therapy of RNAi and EVs may more accurately diagnose and cure SCA.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
13
|
Hanna Al-Shaikh R, Jansen-West KR, Petrucelli L, Wszolek ZK, Prudencio M. Comment on: Polyglutamine-Expanded Ataxin-3: A Target Engagement Marker for Spinocerebellar Ataxia Type 3 in Peripheral Blood. Mov Disord 2022; 37:1120-1121. [PMID: 35587620 DOI: 10.1002/mds.29008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/07/2022] Open
|
14
|
Hübener-Schmid J, Kuhlbrodt K, Peladan J, Rieß O. Reply to: "Comment on: Polyglutamine-Expanded Ataxin-3: A Target Engagement Marker for Spinocerebellar Ataxia Type 3 in Peripheral Blood". Mov Disord 2022; 37:1121-1122. [PMID: 35587632 DOI: 10.1002/mds.29003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | | | | | | | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Jansen-West K, Todd TW, Daughrity LM, Yue M, Tong J, Carlomagno Y, Del Rosso G, Kurti A, Jones CY, Dunmore JA, Castanedes-Casey M, Dickson DW, Wszolek ZK, Fryer JD, Petrucelli L, Prudencio M. Plasma PolyQ-ATXN3 Levels Associate With Cerebellar Degeneration and Behavioral Abnormalities in a New AAV-Based SCA3 Mouse Model. Front Cell Dev Biol 2022; 10:863089. [PMID: 35386195 PMCID: PMC8977414 DOI: 10.3389/fcell.2022.863089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited cerebellar ataxia caused by the expansion of a polyglutamine (polyQ) repeat in the gene encoding ATXN3. The polyQ expansion induces protein inclusion formation in the neurons of patients and results in neuronal degeneration in the cerebellum and other brain regions. We used adeno-associated virus (AAV) technology to develop a new mouse model of SCA3 that recapitulates several features of the human disease, including locomotor defects, cerebellar-specific neuronal loss, polyQ-expanded ATXN3 inclusions, and TDP-43 pathology. We also found that neurofilament light is elevated in the cerebrospinal fluid (CSF) of the SCA3 animals, and the expanded polyQ-ATXN3 protein can be detected in the plasma. Interestingly, the levels of polyQ-ATXN3 in plasma correlated with measures of cerebellar degeneration and locomotor deficits in 6-month-old SCA3 mice, supporting the hypothesis that this factor could act as a biomarker for SCA3.
Collapse
Affiliation(s)
- Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | | | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Giulia Del Rosso
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Caroline Y. Jones
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Judith A. Dunmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | | | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | | | - John D. Fryer
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
16
|
Ghanekar SD, Kuo SH, Staffetti JS, Zesiewicz TA. Current and Emerging Treatment Modalities for Spinocerebellar Ataxias. Expert Rev Neurother 2022; 22:101-114. [PMID: 35081319 DOI: 10.1080/14737175.2022.2029703] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCA) are a group of rare neurodegenerative diseases that dramatically affect the lives of affected individuals and their families. Despite having a clear understanding of SCA's etiology, there are no current symptomatic or neuroprotective treatments approved by the FDA. AREAS COVERED Research efforts have greatly expanded the possibilities for potential treatments, including both pharmacological and non-pharmacological interventions. Great attention is also being given to novel therapeutics based in gene therapy, neurostimulation, and molecular targeting. This review article will address the current advances in the treatment of SCA and what potential interventions are on the horizon. EXPERT OPINION SCA is a highly complex and multifaceted disease family with the majority of research emphasizing symptomatic pharmacologic therapies. As pre-clinical trials for SCA and clinical trials for other neurodegenerative conditions illuminate the efficacy of disease modifying therapies such as AAV-mediated gene therapy and ASOs, the potential for addressing SCA at the pre-symptomatic stage is increasingly promising.
Collapse
Affiliation(s)
- Shaila D Ghanekar
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, New York, New York, USA
| | - Joseph S Staffetti
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| | - Theresa A Zesiewicz
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| |
Collapse
|