1
|
Chu J, Lin S, Fu B, Meng X, Qiang J, Zhang S. Effects of deep, air and vacuum frying on oyster quality and protein-mediated mechanism analysis via TMT quantitative proteomics. Food Chem 2024; 460:140654. [PMID: 39098219 DOI: 10.1016/j.foodchem.2024.140654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Fried oyster is a popular aquatic food product in East Asia, but nutrient loss during thermal processing become a significant concern. The goal of this research was to examine the impact of distinct frying techniques, including deep frying (DF), air frying (AF), and vacuum frying (VF), on the nutritional, textural and flavor characteristics of oysters. The VF method demonstrated superior retention of beneficial properties and flavor, and reduced protein and lipid oxidation compared to the DF and AF methods. Furthermore, proteomic analysis of oysters was attempted to explain the molecular mechanisms governing the influence of key differential proteins. 20 major differential proteins, including actin-2 protein, tryptophan 2,3-dioxygenase and 1-alph, involved in oyster protein oxidation were identified, annotated and analyzed to elucidate their influence mechanisms. This research provides a deeper understanding of intricate interactions between frying techniques and oyster biochemistry, which offers valuable implications for enhancing food quality in seafood industry.
Collapse
Affiliation(s)
- Junbo Chu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Baoshang Fu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiangning Meng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jiaxin Qiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
2
|
Geibl FF, Henrich MT, Xie Z, Zampese E, Ueda J, Tkatch T, Wokosin DL, Nasiri E, Grotmann CA, Dawson VL, Dawson TM, Chandel NS, Oertel WH, Surmeier DJ. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson's disease. Mol Neurodegener 2024; 19:69. [PMID: 39379975 PMCID: PMC11462807 DOI: 10.1186/s13024-024-00756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. METHODS aSYN PFFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell-type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser-scanning microscopy of genetically encoded sensors for bioenergetic and redox status. RESULTS In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. CONCLUSIONS Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Martin T Henrich
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Jun Ueda
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Nasiri
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Constantin A Grotmann
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US.
| |
Collapse
|
3
|
Matsui H, Takahashi R. Current trends in basic research on Parkinson's disease: from mitochondria, lysosome to α-synuclein. J Neural Transm (Vienna) 2024; 131:663-674. [PMID: 38613675 PMCID: PMC11192670 DOI: 10.1007/s00702-024-02774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra and other brain regions. A key pathological feature of PD is the abnormal accumulation of α-synuclein protein within affected neurons, manifesting as Lewy bodies and Lewy neurites. Despite extensive research efforts spanning several decades, the underlying mechanisms of PD and disease-modifying therapies remain elusive. This review provides an overview of current trends in basic research on PD. Initially, it discusses the involvement of mitochondrial dysfunction in the pathogenesis of PD, followed by insights into the role of lysosomal dysfunction and disruptions in the vesicular transport system. Additionally, it delves into the pathological and physiological roles of α-synuclein, a crucial protein associated with PD pathophysiology. Overall, the purpose of this review is to comprehend the current state of elucidating the intricate mechanisms underlying PD and to outline future directions in understanding this disease.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, 1-757, Asahimachidori, Chuoku, Niigata, 951-8585, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyoku, Kyoto, 606-8507, Japan.
| |
Collapse
|
4
|
Liu J, Bao X, Huang J, Chen R, Tan Y, Zhang Z, Xiao B, Kong F, Gu C, Du J, Wang H, Qi J, Tan J, Ma D, Shi C, Xu G. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metabolism 2024; 152:155767. [PMID: 38154611 DOI: 10.1016/j.metabol.2023.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Disturbance in the differentiation process of bone marrow mesenchymal stem cells (BMSCs) leads to osteoporosis. Mitochondrial dynamics plays a pivotal role in the metabolism and differentiation of BMSCs. However, the mechanisms underlying mitochondrial dynamics and their impact on the differentiation equilibrium of BMSCs remain unclear. METHODS We investigated the mitochondrial morphology and markers related to mitochondrial dynamics during BMSCs osteogenic and adipogenic differentiation. Bioinformatics was used to screen potential genes regulating BMSCs differentiation through mitochondrial dynamics. Subsequently, we evaluated the impact of Transmembrane protein 135 (TMEM135) deficiency on bone homeostasis by comparing Tmem135 knockout mice with their littermates. The mechanism of TMEM135 in mitochondrial dynamics and BMSCs differentiation was also investigated in vivo and in vitro. RESULTS Distinct changes in mitochondrial morphology were observed between osteogenic and adipogenic differentiation of BMSCs, manifesting as fission in the late stage of osteogenesis and fusion in adipogenesis. Additionally, we revealed that TMEM135, a modulator of mitochondrial dynamics, played a functional role in regulating the equilibrium between adipogenesis and osteogenesis. The TMEM135 deficiency impaired mitochondrial fission and disrupted crucial mitochondrial energy metabolism during osteogenesis. Tmem135 knockout mice showed osteoporotic phenotype, characterized by reduced osteogenesis and increased adipogenesis. Mechanistically, TMEM135 maintained intracellular calcium ion homeostasis and facilitated the dephosphorylation of dynamic-related protein 1 at Serine 637 in BMSCs. CONCLUSIONS Our findings underscore the significant role of TMEM135 as a modulator in orchestrating the differentiation trajectory of BMSCs and promoting a shift in mitochondrial dynamics toward fission. This ultimately contributes to the osteogenesis process. This work has provided promising biological targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jian Huang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Rukun Chen
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yixuan Tan
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Bing Xiao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Changjiang Gu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jianhang Du
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Haotian Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junqiang Qi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junming Tan
- Department of Orthopedics, The 72nd Army Hospital of the People's Liberation Army, Huzhou 313099, PR China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
5
|
Silva JD, Jupiter DC, Taglialatela G. Reduced Prevalence of Parkinson's Disease in Patients Prescribed Calcineurin Inhibitors. JOURNAL OF PARKINSON'S DISEASE 2024; 14:533-543. [PMID: 38427501 DOI: 10.3233/jpd-230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Preclinical evidence suggests calcineurin inhibitors (CNIs) combat α-synuclein-induced neuronal dysfunction and motor impairments. However, whether CNIs prevent or treat Parkinson's disease (PD) in humans has never been investigated. Objective We seek to ascertain if prescription of CNIs is linked to a decreased prevalence of PD in a varied patient population and to glimpse into the mechanism(s) and target site through which CNIs might decrease PD prevalence. Methods We analyzed electronic health records (EHRs) from patients prescribed the brain penetrant CNI tacrolimus (TAC), the peripherally restricted CNI cyclosporine (CySp), or the non-CNI sirolimus (SIR). For comparison, EHRs from a diverse population from the same network served as a general population-like control. After propensity-score matching, prevalence, odds, and hazards of PD diagnoses among these cohorts were compared. Results Patients prescribed CNIs have decreased odds of PD diagnosis compared to the general population-like control, while patients prescribed SIR do not. Notably, patients prescribed TAC have a decreased prevalence of PD compared to patients prescribed SIR or CySp. Conclusions Our results suggest CNIs, especially those acting within the brain, may prevent PD. The reduced prevalence of PD in patients prescribed TAC, compared to patients prescribed SIR, suggests that mechanisms of calcineurin inhibition- other than immunosuppression, which is common to both drugs- are driving the reduction. Therefore, CNIs may provide a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Jacqueline D Silva
- Department of Neurology, Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, TX, USA
- Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel C Jupiter
- Department of Biostatistics and Data Science, University of Texas Medical Branch, Galveston, TX, USA
- Department of Orthopaedics and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
6
|
Geibl FF, Henrich MT, Xie Z, Zampese E, Tkatch T, Wokosin DL, Nasiri E, Grotmann CA, Dawson VL, Dawson TM, Chandel NS, Oertel WH, Surmeier DJ. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571045. [PMID: 38168401 PMCID: PMC10759995 DOI: 10.1101/2023.12.11.571045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. Methods aSYN PPFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell- type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser- scanning microscopy of genetically encoded sensors for bioenergetic and redox status. Results In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. Conclusions Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.
Collapse
|