1
|
Wiseman JP, Scarrott JM, Alves-Cruzeiro J, Saffari A, Böger C, Karyka E, Dawes E, Davies AK, Marchi PM, Graves E, Fernandes F, Yang ZL, Coldicott I, Hirst J, Webster CP, Highley JR, Hackett N, Angyal A, Silva TD, Higginbottom A, Shaw PJ, Ferraiuolo L, Ebrahimi-Fakhari D, Azzouz M. Pre-clinical development of AP4B1 gene replacement therapy for hereditary spastic paraplegia type 47. EMBO Mol Med 2024:10.1038/s44321-024-00148-5. [PMID: 39358605 DOI: 10.1038/s44321-024-00148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Spastic paraplegia 47 (SPG47) is a neurological disorder caused by mutations in the adaptor protein complex 4 β1 subunit (AP4B1) gene leading to AP-4 complex deficiency. SPG47 is characterised by progressive spastic paraplegia, global developmental delay, intellectual disability and epilepsy. Gene therapy aimed at restoring functional AP4B1 protein levels is a rational therapeutic strategy to ameliorate the disease phenotype. Here we report that a single delivery of adeno-associated virus serotype 9 expressing hAP4B1 (AAV9/hAP4B1) into the cisterna magna leads to widespread gene transfer and restoration of various hallmarks of disease, including AP-4 cargo (ATG9A) mislocalisation, calbindin-positive spheroids in the deep cerebellar nuclei, anatomical brain defects and motor dysfunction, in an SPG47 mouse model. Furthermore, AAV9/hAP4B1-based gene therapy demonstrated a restoration of plasma neurofilament light (NfL) levels of treated mice. Encouraged by these preclinical proof-of-concept data, we conducted IND-enabling studies, including immunogenicity and GLP non-human primate (NHP) toxicology studies. Importantly, NHP safety and biodistribution study revealed no significant adverse events associated with the therapeutic intervention. These findings provide evidence of both therapeutic efficacy and safety, establishing a robust basis for the pursuit of an IND application for clinical trials targeting SPG47 patients.
Collapse
Affiliation(s)
- Jessica P Wiseman
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Joseph M Scarrott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - João Alves-Cruzeiro
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Afshin Saffari
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Cedric Böger
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Dawes
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Alexandra K Davies
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paolo M Marchi
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Graves
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Fiona Fernandes
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Adrienn Angyal
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- Sheffield NIHR Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Bartolini E, Ferrari AR, Santorelli FM, Salluce C, Astrea G, Marinella G, Papoff FMA, Orsini A, Battini R. Combined generalized and focal epilepsy with reflex features in Adaptor protein complex 4-associated hereditary spastic paraplegias: A cohort observational study. Seizure 2024; 121:186-193. [PMID: 39208719 DOI: 10.1016/j.seizure.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Patients with genetic deficiency of the adaptor protein complex 4 (AP-4) exhibit earlyonset developmental delay, spastic diplegia, intellectual disability, speech impairment. The phenotype overlaps with other hereditary spastic paraplegias and cerebral palsies. Febrile seizures are common at onset. Epilepsy has been described in more than half of cases, arising in early infancy often with status epilepticus, but no typical seizure semiology or electroencephalographic features have been identified thus far. PURPOSE We aimed to specifically investigate the epileptological characteristics of the syndrome to unveil possible biomarkers of seizure development and prognosis in AP-4 deficiency. METHODS Observational cohort study on patients with bi-allelic pathogenic variants in AP-4 subunits and epilepsy. We focused on the seizure semiology, electroencephalographic characteristics and response to antiseizure medications. RESULTS Patients harboured pathogenic variants in AP4S1 (n = 5) or AP4M1 (n = 1). The phenotype included spastic paraparesis, intellectual disability, speech/language impairment, microcephaly, and MRI evidence of hypoplasia of the corpus callosum. In 66 % of the patients, febrile seizures preceded the onset of epilepsy, which spanned from infancy to adolescence (range=14 months-13 years). Absences (66 %) and focal motor seizures (50 %) were common. No patient met the criteria for drug-resistance. Peculiar electroencephalographic features arose after the epilepsy onset and persisted at long-term follow-up: bilateral and asynchronous focal discharges combined with independent diffuse spike-wave-discharges (100 %) and reflex abnormalities (66 %). CONCLUSION In AP-4 complex disease, epilepsy could arise beyond early infancy, until adolescence, with variable combination of generalized and focal seizures. The prognosis was favourable. We observed a common electroencephalographic signature - combined focal/generalized and reflex abnormalities - which may constitute a biomarker of AP-4 deficiency with epilepsy, applicable to inform genetic testing and disentangle the differential diagnosis.
Collapse
MESH Headings
- Humans
- Male
- Female
- Child
- Adolescent
- Child, Preschool
- Electroencephalography
- Spastic Paraplegia, Hereditary/genetics
- Spastic Paraplegia, Hereditary/physiopathology
- Spastic Paraplegia, Hereditary/diagnosis
- Adaptor Protein Complex 4/genetics
- Adaptor Protein Complex 4/deficiency
- Cohort Studies
- Epilepsy, Generalized/genetics
- Epilepsy, Generalized/physiopathology
- Infant
- Epilepsies, Partial/genetics
- Epilepsies, Partial/physiopathology
- Epilepsies, Partial/drug therapy
- Epilepsies, Partial/diagnosis
Collapse
Affiliation(s)
- Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy; Tuscany PhD Programme in Neurosciences, Florence, Italy.
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Carmen Salluce
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Gemma Marinella
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Francesca Maria Agostina Papoff
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Papoff FMA, Astrea G, Mero S, Chicca L, Satolli S, Pasquariello R, Battini R, Tessa A, Santorelli FM. Early Diagnosis of AP5Z1/SPG48 Spastic Paraplegia: Case Report and Review of the Literature. Neuropediatrics 2024; 55:341-346. [PMID: 39059408 DOI: 10.1055/s-0044-1788729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hereditary spastic paraplegias (HSPs) are a genetically heterogeneous group of neurodegenerative disorders clinically characterized by progressive lower limb spasticity with pyramidal weakness. Around a dozen potential molecular mechanisms are recognized. Childhood HSP is a significant diagnostic challenge in clinical practice. Mutations in AP5Z1, which are associated with spastic paraplegia type 48 (SPG48), are extremely rare and seldom described in children.We report the clinical, radiologic, and molecular studies performed in a child harboring novel biallelic mutations in AP5Z1.The child presented a neurodevelopmental disorder with slight lower limb pyramidal signs. Brain magnetic resonance imaging (MRI) showed minimal white matter changes in the frontal horns of the lateral ventricles and a normally shaped corpus callosum. Western blotting in cultured skin fibroblasts indicated reduced protein expression, which confirmed the genetic diagnosis and framed this as a case of protein reduction in a context of impaired autophagy.Our findings expand the spectrum of phenotypes associated with mutations in AP5Z1, highlighting their clinical and pathophysiologic overlap with lysosomal storage disorders. SPG48 should be considered in the differential diagnosis of neurodevelopmental disorders even when pyramidal signs are minimal and brain MRI not fully informative.
Collapse
Affiliation(s)
- Francesca M A Papoff
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Serena Mero
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Laura Chicca
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Satolli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
4
|
Krumm L, Winkler J, Winner B, Regensburger M. Plasma Neurofilaments: Potential Biomarkers of SPG11-Related Hereditary Spastic Paraplegia. Mov Disord 2024; 39:755-757. [PMID: 38379518 DOI: 10.1002/mds.29755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Laura Krumm
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Li Y, Zhang C, Peng G. Ap4s1 truncation leads to axonal defects in a zebrafish model of spastic paraplegia 52. Int J Dev Neurosci 2023; 83:753-764. [PMID: 37767851 DOI: 10.1002/jdn.10303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Biallelic mutations in AP4S1, the σ4 subunit of the adaptor protein complex 4 (AP-4), lead to autosomal recessive spastic paraplegia 52 (SPG52). It is a subtype of AP-4-associated hereditary spastic paraplegia (AP-4-HSP), a complex childhood-onset neurogenetic disease characterized by progressive spastic paraplegia of the lower limbs. This disease has so far lacked effective treatment, in part due to a lack of suitable animal models. Here, we used CRISPR/Cas9 technology to generate a truncation mutation in the ap4s1 gene in zebrafish. The ap4s1 truncation led to motor impairment, delayed neurodevelopment, and distal axonal degeneration. This animal model is useful for further research into AP-4 and AP-4-HSP.
Collapse
Affiliation(s)
- Yiduo Li
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Siow SF, Yeow D, Rudaks LI, Jia F, Wali G, Sue CM, Kumar KR. Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review. Genes (Basel) 2023; 14:1756. [PMID: 37761896 PMCID: PMC10530989 DOI: 10.3390/genes14091756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb spasticity. There is no disease-modifying treatment currently available. Therefore, standardized, validated outcome measures to facilitate clinical trials are urgently needed. We performed a scoping review of outcome measures and biomarkers for HSP to provide recommendations for future studies and identify areas for further research. We searched Embase, Medline, Scopus, Web of Science, and the Central Cochrane database. Seventy studies met the inclusion criteria, and eighty-three outcome measures were identified. The Spastic Paraplegia Rating Scale (SPRS) was the most widely used (27 studies), followed by the modified Ashworth Scale (18 studies) and magnetic resonance imaging (17 studies). Patient-reported outcome measures (PROMs) were infrequently used to assess treatment outcomes (28% of interventional studies). Diffusion tensor imaging, gait analysis and neurofilament light chain levels were the most promising biomarkers in terms of being able to differentiate patients from controls and correlate with clinical disease severity. Overall, we found variability and inconsistencies in use of outcome measures with a paucity of longitudinal data. We highlight the need for (1) a standardized set of core outcome measures, (2) validation of existing biomarkers, and (3) inclusion of PROMs in HSP clinical trials.
Collapse
Affiliation(s)
- Sue-Faye Siow
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards 2065, Australia
| | - Dennis Yeow
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick 2031, Australia
| | - Laura I. Rudaks
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards 2065, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
| | - Fangzhi Jia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
| | - Gautam Wali
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
| | - Carolyn M. Sue
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick 2031, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Kensington 2052, Australia
| | - Kishore R. Kumar
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Kensington 2052, Australia
| |
Collapse
|