1
|
Qiu Y, Zhai B, Bai Y, Lin H, Wu L, Luo W, Shi M, Chen S, Zhang J. In vitro and in vivo activity evaluation and mode of action of broxaldine on Toxoplasma gondii. Int J Parasitol Drugs Drug Resist 2024; 25:100552. [PMID: 38986389 PMCID: PMC11284705 DOI: 10.1016/j.ijpddr.2024.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Toxoplasma gondii (T. gondii) is a highly successful global parasite, infecting about one-third of the world's population and significantly affecting human life and the economy. However, current drugs for toxoplasmosis treatment have considerable side effects, and there is no specific drug to meet current needs. This study aims to evaluate the anti-T. gondii activity of broxaldine (BRO) in vitro and in vivo and explore its mechanism of action. Our results showed that compared to the control group, the invasion rate of tachyzoites in the 4 μg/mL BRO group was only 14.31%, and the proliferation rate of tachyzoites in host cells was only 1.23%. Furthermore, BRO disrupted the lytic cycle of T. gondii and reduced the size and number of cysts in vitro. A mouse model of acute toxoplasmosis reported a 41.5% survival rate after BRO treatment, with reduced parasite load in tissues and blood. The subcellular structure of T. gondii was observed, including disintegration of T. gondii, mitochondrial swelling, increased liposomes, and the presence of autophagic lysosomes. Further investigation revealed enhanced autophagy, increased neutral lipids, and decreased mitochondrial membrane potential in T. gondii treated with BRO. The results also showed a significant decrease in ATP levels. Overall, BRO demonstrates good anti-T. gondii activity in vitro and in vivo; therefore, it has the potential to be used as a lead compound for anti-T. gondii treatment.
Collapse
Affiliation(s)
- Yanhua Qiu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No.335 Jiangouyan, Xihu Street, Lanzhou, 730050, China; College of Veterinary Medicine, Northwest Agriculture & Forestry University, No.22, Xinong Road, Yangling Street Yangling, 712100, China
| | - Bintao Zhai
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No.335 Jiangouyan, Xihu Street, Lanzhou, 730050, China
| | - Yubin Bai
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No.335 Jiangouyan, Xihu Street, Lanzhou, 730050, China
| | - Hongling Lin
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No.335 Jiangouyan, Xihu Street, Lanzhou, 730050, China
| | - Lingyu Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No.335 Jiangouyan, Xihu Street, Lanzhou, 730050, China
| | - Wei Luo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No.335 Jiangouyan, Xihu Street, Lanzhou, 730050, China
| | - Mengyan Shi
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No.335 Jiangouyan, Xihu Street, Lanzhou, 730050, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, No.22, Xinong Road, Yangling Street Yangling, 712100, China.
| | - Jiyu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, No.335 Jiangouyan, Xihu Street, Lanzhou, 730050, China.
| |
Collapse
|
2
|
Wang M, Xu XR, Bai QX, Wu LH, Yang XP, Yang DQ, Kuang HX. Dichroa febrifuga Lour.: A review of its botany, traditional use, phytochemistry, pharmacological activities, toxicology, and progress in reducing toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118093. [PMID: 38537842 DOI: 10.1016/j.jep.2024.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dichroa febrifuga Lour., a toxic but extensively used traditional Chinese medicine with a remarkable effect, is commonly called "Changshan" in China. It has been used to treat malaria and many other parasitic diseases. AIM OF THE REVIEW The study aims to provide a current overview of the progress in the research on traditional use, phytochemistry, pharmacological activities, toxicology, and methods of toxicity reduction of D. febrifuga. Additionally, further research directions and development prospects for the plant were put forward. MATERIALS AND METHODS The article uses "Dichroa febrifuga Lour." "D. febrifuga" as the keyword and all relevant information on D. febrifuga was collected from electronic searches (Elsevier, PubMed, ACS, CNKI, Google Scholar, and Baidu Scholar), doctoral and master's dissertations and classic books about Chinese herbs. RESULTS 30 chemical compounds, including alkaloids, terpenoids, flavonoids and other kinds, were isolated and identified from D. febrifuga. Modern pharmacological studies have shown that these components have a variety of pharmacological activities, including anti-malarial activities, anti-inflammatory activities, anti-tumor activities, anti-parasitic activities and anti-oomycete activities. Meanwhile, alkaloids, as the material basis of its efficacy, are also the source of its toxicity. It can cause multiple organ damage, including liver, kidney and heart, and cause adverse reactions such as nausea and vomiting, abdominal pain and diarrhea. In the current study, the toxicity can be reduced by modifying the structure of the compound, processing and changing the dosage forms. CONCLUSIONS There are few studies on the chemical constituents of D. febrifuga, so the components and their structure characterization contained in it can become the focus of future research. In view of the toxicity of D. febrifuga, there are many methods to reduce it, but the safety and rationality of these methods need further study.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Rui Xu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Peng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
3
|
Suárez L, Kosar AJ, Dodd EL, Tazoo D, Lambert AC, Bohle DS. Soluble meso and deuteroporphyrin analogs of the malaria pigment hematin anhydride. J Inorg Biochem 2024; 252:112470. [PMID: 38218137 DOI: 10.1016/j.jinorgbio.2023.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Two soluble heme analogs of the insoluble malaria pigment hematin anhydride (HA, or β-hematin), [Fe(III)(protoporphyrin)]2, with either mesoporphyrin (MHA) or deuteroporphyrin (DHA) are characterized by elemental analysis, SEM, IR spectroscopy, electronic spectroscopy, paramagnetic 1H NMR spectroscopy and solution magnetic susceptibility. While prior single crystal and X-ray powder diffraction results indicate all three have a common propionate linked dimer motif, there is considerable solid state variation in the conformation. This is associated with enhanced solubility of MHA and DHA. As with HA, DHA undergoes thermally promoted reversible hydration/dehydration in the solid state. Solution 1H NMR studies of DHA suggest a high spin dimeric structure with the porphyrin methyls distributed between two isomers which are also present in the solid state. These soluble iron(III)porphyrin dimers allow for the first direct solution studies by NMR and UV-Vis spectroscopies of these key species. Taken together the results illustrate the importance and utility of varying the substituents on the periphery of the porphyrin for studying heme aggregation and malaria pigment formation.
Collapse
Affiliation(s)
- Liliana Suárez
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Canada
| | - Aaron J Kosar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Canada
| | - Erin L Dodd
- Département de Chimie de l'UQAM, 2101, rue Jeanne-Mance, Montréal H2X 2J6, Canada
| | - Dagobert Tazoo
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Canada
| | | | - D Scott Bohle
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Canada.
| |
Collapse
|
4
|
Gujjari L, Kalani H, Pindiprolu SK, Arakareddy BP, Yadagiri G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol Control 2022; 17:e00244. [PMID: 35243049 PMCID: PMC8866151 DOI: 10.1016/j.parepi.2022.e00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/12/2021] [Accepted: 02/13/2022] [Indexed: 12/19/2022] Open
Abstract
Malaria is one of the prevalent tropical diseases caused by the parasitic protozoan of the genus Plasmodium spp. With an estimated 228 million cases, it is a major public health concern with high incidence of morbidity and mortality worldwide. The emergence of drug-resistant parasites, inadequate vector control measures, and the non-availability of effective vaccine(s) against malaria pose a serious challenge to malaria eradication especially in underdeveloped and developing countries. Malaria treatment and control comprehensively relies on chemical compounds, which encompass various complications, including severe toxic effects, emergence of drug resistance, and high cost of therapy. To overcome the clinical failures of anti-malarial chemotherapy, a new drug development is of an immediate need. However, the drug discovery and development process is expensive and time consuming. In such a scenario, nanotechnological strategies may offer promising alternative approach for the treatment and control of malaria, with improved efficacy and safety. Nanotechnology based formulations of existing anti-malarial chemotherapeutic agents prove to exceed the limitations of existing therapies in relation to optimum therapeutic benefits, safety, and cost effectiveness, which indeed advances the patient's compliance in treatment. In this review, the shortcomings of malaria therapeutics and necessity of nanotechnological strategies for treating malaria were discussed.
Collapse
Affiliation(s)
- Lohitha Gujjari
- Centre of Infectious Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 062, India
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Hamed Kalani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sai Kiran Pindiprolu
- Department of Pharmacology, School of Pharmaceutical Sciences and Technologies, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh 533003, India
| | | | - Ganesh Yadagiri
- Department of Pharmacology, School of Pharmaceutical Sciences and Technologies, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh 533003, India
- Centre for Food Animal Health, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
5
|
A simple quinoline salt derivative is active in vitro against plasmodium Faciparum asexual blood stages and inhibits the development of cerebral malaria in murine model. Chem Biol Interact 2022; 355:109848. [PMID: 35149084 DOI: 10.1016/j.cbi.2022.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Chloroquine (CQ) was the most effective and widely used drug for the prophylaxis and treatment of severe and non-severe malaria. Although its prophylactic use has led to resistance to P. falciparum in all endemic countries, CQ still remains the drug of choice for the treatment of vivax malaria. Otherwise, the speed in which parasite resistance to available antimalarials rises and spreads in endemic regions points to the urgent need for the development of new antimalarials. Quinoline derivatives have been used as a tool in the search for new drugs and were investigated in the present study in an attempt to produce a HIT compound to avoid the cerebral malarial (CM). Seven compounds were synthesized, including three quinoline derivate salts. The cytotoxicity and antiplasmodial activity were assayed in vitro, highlighting compound 3 as a HIT, which also showed interaction with ferriprotoporphyrin IX similarly to CQ. Physicochemical and pharmacokinetic properties of absorption were found to be favorable when analyzed in silico. The in vivo assays, using the experimental cerebral malaria (ECM) model, showed important values of parasite growth inhibition on the 7th day-post infection (Q15 15 mg/kg: 76.9%, Q30 30 mg/kg: 90,1% and Q50 50 mg/kg: 92,9%). Compound 3 also showed significant protection against the development of CM, besides hepatic and renal parameters better than CQ. In conclusion, this quinoline derivative demonstrated promising activity for the treatment of malaria and was able to avoid the development of severe malaria in mice.
Collapse
|
6
|
Maiga H, Grivoyannis A, Sagara I, Traore K, Traore OB, Tolo Y, Traore A, Bamadio A, Traore ZI, Sanogo K, Doumbo OK, Plowe CV, Djimde AA. Selection of pfcrt K76 and pfmdr1 N86 Coding Alleles after Uncomplicated Malaria Treatment by Artemether-Lumefantrine in Mali. Int J Mol Sci 2021; 22:ijms22116057. [PMID: 34205228 PMCID: PMC8200001 DOI: 10.3390/ijms22116057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Artemether-lumefantrine is a highly effective artemisinin-based combination therapy that was adopted in Mali as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study was designed to measure the efficacy of artemether-lumefantrine and to assess the selection of the P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multi-drug resistance 1 (pfmdr1) genotypes that have been associated with drug resistance. Methods: A 28-day follow-up efficacy trial of artemether-lumefantrine was conducted in patients aged 6 months and older suffering from uncomplicated falciparum malaria in four different Malian areas during the 2009 malaria transmission season. The polymorphic genetic markers MSP2, MSP1, and Ca1 were used to distinguish between recrudescence and reinfection. Reinfection and recrudescence were then grouped as recurrent infections and analyzed together by PCR-restriction fragment length polymorphism (RFLP) to identify candidate markers for artemether-lumefantrine tolerance in the P. falciparum chloroquine resistance transporter (pfcrt) gene and the P. falciparum multi-drug resistance 1 (pfmdr1) gene. Results: Clinical outcomes in 326 patients (96.7%) were analyzed and the 28-day uncorrected adequate clinical and parasitological response (ACPR) rate was 73.9%. The total PCR-corrected 28-day ACPR was 97.2%. The pfcrt 76T and pfmdr1 86Y population prevalence decreased from 49.3% and 11.0% at baseline (n = 337) to 38.8% and 0% in patients with recurrent infection (n = 85); p = 0.001), respectively. Conclusion: Parasite populations exposed to artemether-lumefantrine in this study were selected toward chloroquine-sensitivity and showed a promising trend that may warrant future targeted reintroduction of chloroquine or/and amodiaquine.
Collapse
Affiliation(s)
- Hamma Maiga
- Institut National de Sante Publique, INSP, Bamako P.O. Box 1771, Mali;
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | | | - Issaka Sagara
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Karim Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Oumar B. Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Youssouf Tolo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Aliou Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Amadou Bamadio
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Zoumana I. Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Kassim Sanogo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Ogobara K. Doumbo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | | | - Abdoulaye A. Djimde
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
- Correspondence: ; Tel.: +223-2022-8109
| |
Collapse
|
7
|
Zakiah M, Syarif RA, Mustofa M, Jumina J, Fatmasari N, Sholikhah EN. In Vitro Antiplasmodial, Heme Polymerization, and Cytotoxicity of Hydroxyxanthone Derivatives. J Trop Med 2021; 2021:8866681. [PMID: 33859703 PMCID: PMC8026324 DOI: 10.1155/2021/8866681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
The previous study showed that xanthone had antiplasmodial activity. Xanthone, with additional hydroxyl groups, was synthesized to increase its antiplasmodial activity. One of the strategies to evaluate a compound that can be developed into an antimalarial drug is by testing its mechanism in inhibiting heme polymerization. In acidic condition, hematin can be polymerized to β-hematin in vitro, which is analog with hemozoin in Plasmodium. This study was conducted to evaluate the antiplasmodial activity of hydroxyxanthone derivative compounds on two strains of Plasmodium falciparum 3D-7 and FCR-3, to assess inhibition of heme polymerization activity and determine the selectivity of hydroxyxanthone derivative compounds. The antiplasmodial activity of each compound was tested on Plasmodium falciparum 3D-7 and FCR-3 with 72 hours incubation period, triplicated in three replications with the microscopic method. The compound that showed the best antiplasmodial activity underwent flow cytometry assay. Heme polymerization inhibition test was performed using the in vitro heme polymerization inhibition activity (HPIA) assay. The antiplasmodial activity and heme polymerization inhibition activity were expressed as the 50% inhibitory concentration (IC50). In vitro cytotoxicity was tested using the MTT assay method on Vero cell lines to determine its selectivity index. The results showed that among 5-hydroxyxanthone derivative compounds, the 1,6,8-trihydroxyxanthone had the best in vitro antiplasmodial activity on both 3D-7 and FCR-3 Plasmodium falciparum strains with IC50 values of 6.10 ± 2.01 and 6.76 ± 2.38 μM, respectively. The 1,6,8-trihydroxyxanthone showed inhibition activity of heme polymerization with IC50 value of 2.854 mM and showed the high selectivity with selectivity index of 502.2-556.54. In conclusion, among 5-hydroxyxanthone derivatives tested, the 1,6,8-trihydroxyxantone showed the best antiplasmodial activity and has heme polymerization inhibition activity and high selectivity.
Collapse
Affiliation(s)
- Mistika Zakiah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
- Faculty of Medicine, Universitas Tanjungpura, Pontianak 78115, Indonesia
| | - Rul Afiyah Syarif
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| | - Jumina Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| | - Nela Fatmasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Sekip Utara, Indonesia
| |
Collapse
|
8
|
Aguiar L, Biosca A, Lantero E, Gut J, Vale N, Rosenthal PJ, Nogueira F, Andreu D, Fernàndez-Busquets X, Gomes P. Coupling the Antimalarial Cell Penetrating Peptide TP10 to Classical Antimalarial Drugs Primaquine and Chloroquine Produces Strongly Hemolytic Conjugates. Molecules 2019; 24:molecules24244559. [PMID: 31842498 PMCID: PMC6943437 DOI: 10.3390/molecules24244559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
Recently, we disclosed primaquine cell penetrating peptide conjugates that were more potent than parent primaquine against liver stage Plasmodium parasites and non-toxic to hepatocytes. The same strategy was now applied to the blood-stage antimalarial chloroquine, using a wide set of peptides, including TP10, a cell penetrating peptide with intrinsic antiplasmodial activity. Chloroquine-TP10 conjugates displaying higher antiplasmodial activity than the parent TP10 peptide were identified, at the cost of an increased hemolytic activity, which was further confirmed for their primaquine analogues. Fluorescence microscopy and flow cytometry suggest that these drug-peptide conjugates strongly bind, and likely destroy, erythrocyte membranes. Taken together, the results herein reported put forward that coupling antimalarial aminoquinolines to cell penetrating peptides delivers hemolytic conjugates. Hence, despite their widely reported advantages as carriers for many different types of cargo, from small drugs to biomacromolecules, cell penetrating peptides seem unsuitable for safe intracellular delivery of antimalarial aminoquinolines due to hemolysis issues. This highlights the relevance of paying attention to hemolytic effects of cell penetrating peptide-drug conjugates.
Collapse
Affiliation(s)
- Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Arnau Biosca
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; (A.B.); (E.L.); (X.F.-B.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Elena Lantero
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; (A.B.); (E.L.); (X.F.-B.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jiri Gut
- School of Medicine, University of California at San Francisco, 1001 Potrero Avenue, San Francisco, San Francisco, CA 94110, USA; (J.G.); (P.J.R.)
| | - Nuno Vale
- Departamento de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Philip J. Rosenthal
- School of Medicine, University of California at San Francisco, 1001 Potrero Avenue, San Francisco, San Francisco, CA 94110, USA; (J.G.); (P.J.R.)
| | - Fátima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal;
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; (A.B.); (E.L.); (X.F.-B.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
- Correspondence:
| |
Collapse
|
9
|
Jyoti, Gaur R, Kumar Y, Cheema HS, Kapkoti DS, Darokar MP, Khan F, Bhakuni RS. Synthesis, molecular modelling studies of indolyl chalcone derivatives and their antimalarial activity evaluation. Nat Prod Res 2019; 35:3261-3268. [DOI: 10.1080/14786419.2019.1696788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jyoti
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rashmi Gaur
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Yogesh Kumar
- Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Harveer Singh Cheema
- Molecular Bio-Prospection Department Metabolic, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Deepak Singh Kapkoti
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Mahendra P. Darokar
- Molecular Bio-Prospection Department Metabolic, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Feroz Khan
- Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rajendra Singh Bhakuni
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
10
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
11
|
Lunga MJ, Chisango RL, Weyers C, Isaacs M, Taylor D, Edkins AL, Khanye SD, Hoppe HC, Veale CGL. Expanding the SAR of Nontoxic Antiplasmodial Indolyl-3-ethanone Ethers and Thioethers. ChemMedChem 2018; 13:1353-1362. [PMID: 29756273 DOI: 10.1002/cmdc.201800235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/06/2018] [Indexed: 11/07/2022]
Abstract
Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1-(5-chloro-1H-indol-3-yl)-2-[(4-cyanophenyl)thio]ethanone (13) and 1-(5-chloro-1H-indol-3-yl)-2-[(4-nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain. Furthermore, these compounds were found to be nontoxic to HeLa cells as well as being non-haemolytic to uninfected red blood cells. Intriguingly, several of our most promising compounds were found to be less active against the isogenic NF54 strain, highlighting possible issues with long-term dependability of malarial strains. Finally compound 14 displayed similar activity against both the NF54 and K1 strains, suggesting that it inhibits a pathway that is uncompromised by K1 resistance.
Collapse
Affiliation(s)
| | | | - Carli Weyers
- Faculty of Pharmacy, Rhodes University, Grahamstown, 6140, South Africa
| | - Michelle Isaacs
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Dale Taylor
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Adrienne L Edkins
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Clinton G L Veale
- Faculty of Pharmacy, Rhodes University, Grahamstown, 6140, South Africa.,Current address: School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
12
|
Coghi P, Yaremenko IA, Prommana P, Radulov PS, Syroeshkin MA, Wu YJ, Gao JY, Gordillo FM, Mok S, Wong VKW, Uthaipibull C, Terent'ev AO. Novel Peroxides as Promising Anticancer Agents with Unexpected Depressed Antimalarial Activity. ChemMedChem 2018; 13:902-908. [PMID: 29469179 DOI: 10.1002/cmdc.201700804] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Indexed: 12/23/2022]
Abstract
Twenty six peroxides belonging to bridged 1,2,4,5-tetraoxanes, bridged 1,2,4-trioxolanes (ozonides), and tricyclic monoperoxides were evaluated for their in vitro antimalarial activity against Plasmodium falciparum (3D7) and for their cytotoxic activities against immortalized human normal fibroblast (CCD19Lu), liver (LO2 ), and lung (BEAS-2B) cell lines as well as human liver (HepG2) and lung (A549) cancer-cell lines. Synthetic ozonides were shown to have the highest cytotoxicity on HepG2 (IC50 =0.19-0.59 μm), and some of these compounds selectively targeted liver cancer (selectivity index values for compounds 13 a and 14 a are 20 and 28, respectively) at levels that, in some cases, were higher than those of paclitaxel, artemisinin, and artesunic acid. In contrast some ozonides showed only moderate antimalarial activity against the chloroquine-sensitive 3D7 strain of P. falciparum (IC50 from 2.76 to 24.2 μm; 12 b, IC50 =2.76 μm; 13 a, IC50 =20.14 μm; 14 a, IC50 =6.32 μm). These results suggest that these derivatives have divergent mechanisms of action against cancer cells and malaria-infected cells. A cyclic voltammetry study of the peroxides was performed, but most of the compounds did not show direct correlation in oxidative capacity-activity. Our findings offer a new source of antimalarial and anticancer agents through structural modification of peroxide compounds.
Collapse
Affiliation(s)
- Paolo Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Ivan A Yaremenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation.,Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Peter S Radulov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation.,All Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Mikhail A Syroeshkin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| | - Yu Jun Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Jia Ying Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Floria M Gordillo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Simon Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation.,Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| |
Collapse
|
13
|
Brandão GC, Rocha Missias FC, Arantes LM, Soares LF, Roy KK, Doerksen RJ, Braga de Oliveira A, Pereira GR. Antimalarial naphthoquinones. Synthesis via click chemistry, in vitro activity , docking to Pf DHODH and SAR of lapachol-based compounds. Eur J Med Chem 2018; 145:191-205. [DOI: 10.1016/j.ejmech.2017.12.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/29/2022]
|
14
|
Vijayaraghavan S, Mahajan S. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives. Bioorg Med Chem Lett 2017; 27:1693-1697. [PMID: 28318947 DOI: 10.1016/j.bmcl.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022]
Abstract
A series of 4-anilinoquinoline triazine derivatives were designed, synthesized and screened for in vivo antimalarial activity against a chloroquine-sensitive strain of Plasmodium berghei. The compounds were further subjected to in vitro antimalarial activity against chloroquine-resistant W2 strain of Plasmodium falciparum and β-haematin inhibition studies. All the compounds exhibited in vivo antimalarial activity better than that shown by the standard drug, chloroquine. Twelve out of fifteen compounds showed better inhibition than that of chloroquine against chloroquine-resistant W2 strain of Plasmodium falciparum. Ten compounds showed β-haematin inhibition, better than that of chloroquine, with IC50 values in the range of 18-25µM. One compound, 3k, was found to be better than artemisinin against W2 strain of Plasmodium falciparum and also displayed the best β-haematin inhibitory activity, thereby becoming eligible to be explored as a potential lead for antimalarial chemotherapy.
Collapse
Affiliation(s)
- Shilpa Vijayaraghavan
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Sir Vithaldas Vidyavihar, Santacruz (W), Mumbai 400049, India.
| | - Supriya Mahajan
- Department of Pharmaceutical Chemistry, C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Sir Vithaldas Vidyavihar, Santacruz (W), Mumbai 400049, India
| |
Collapse
|
15
|
Overcoming chloroquine resistance in malaria: Design, synthesis and structure–activity relationships of novel chemoreversal agents. Eur J Med Chem 2016; 119:231-49. [DOI: 10.1016/j.ejmech.2016.04.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022]
|
16
|
Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds. Antimicrob Agents Chemother 2016; 60:3076-89. [PMID: 26953199 DOI: 10.1128/aac.02476-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria.
Collapse
|
17
|
Callaghan PS, Siriwardana A, Hassett MR, Roepe PD. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology. Malar J 2016; 15:186. [PMID: 27036417 PMCID: PMC4815217 DOI: 10.1186/s12936-016-1238-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). METHODS The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. RESULTS During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. CONCLUSION These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.
Collapse
Affiliation(s)
- Paul S Callaghan
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Amila Siriwardana
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Matthew R Hassett
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA. .,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.
| |
Collapse
|
18
|
Ekengard E, Kumar K, Fogeron T, de Kock C, Smith PJ, Haukka M, Monari M, Nordlander E. Pentamethylcyclopentadienyl-rhodium and iridium complexes containing (N^N and N^O) bound chloroquine analogue ligands: synthesis, characterization and antimalarial properties. Dalton Trans 2016; 45:3905-17. [DOI: 10.1039/c5dt03739e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium and iridium cyclopentadienyl complexes have been examined for anti-malarial activity. Three rhodium complexes are especially active.
Collapse
Affiliation(s)
- Erik Ekengard
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Kamlesh Kumar
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Thibault Fogeron
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Carmen de Kock
- Division of Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- Observatory 7925
- South Africa
| | - Peter J. Smith
- Division of Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- Observatory 7925
- South Africa
| | - Matti Haukka
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Magda Monari
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| |
Collapse
|
19
|
Ladani GG, Patel MP. Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: synthesis, characterization and biological evaluation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities. NEW J CHEM 2015. [DOI: 10.1039/c5nj02566d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinoline–oxadiazole hybrids: a new class of antimicrobial, antitubercular and antimalarial compounds.
Collapse
Affiliation(s)
- Gaurav G. Ladani
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar-388120
- India
| | - Manish P. Patel
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar-388120
- India
| |
Collapse
|
20
|
A whole cell pathway screen reveals seven novel chemosensitizers to combat chloroquine resistant malaria. Sci Rep 2014; 3:1734. [PMID: 23615863 PMCID: PMC3635055 DOI: 10.1038/srep01734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 11/09/2022] Open
Abstract
Due to the widespread prevalence of resistant parasites, chloroquine (CQ) was removed from front-line antimalarial chemotherapy in the 1990s despite its initial promise of disease eradication. Since then, resistance-conferring mutations have been identified in transporters such as the PfCRT, that allow for the efflux of CQ from its primary site of action, the parasite digestive vacuole. Chemosensitizing/chemoreversing compounds interfere with the function of these transporters thereby sensitizing parasites to CQ once again. However, compounds identified thus far have disappointing in vivo efficacy and screening for alternative candidates is required to revive this strategy. In this study, we propose a simple and direct means to rapidly screen for such compounds using a fluorescent-tagged CQ molecule. When this screen was applied to a small library, seven novel chemosensitizers (octoclothepin, methiothepin, metergoline, loperamide, chlorprothixene, L-703,606 and mibefradil) were quickly elucidated, including two which showed greater potency than the classical chemosensitizers verapamil and desipramine.
Collapse
|
21
|
Olasehinde GI, Ojurongbe O, Adeyeba AO, Fagade OE, Valecha N, Ayanda IO, Ajayi AA, Egwari LO. In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts. Malar J 2014; 13:63. [PMID: 24555525 PMCID: PMC3996087 DOI: 10.1186/1475-2875-13-63] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/29/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The resistance of human malaria parasites to anti-malarial compounds has become considerable concern, particularly in view of the shortage of novel classes of anti-malarial drugs. One way to prevent resistance is by using new compounds that are not based on existing synthetic antimicrobial agents. RESULTS Sensitivity of 100 Plasmodium falciparum isolates to chloroquine, quinine, amodiaquine, mefloquine, sulphadoxine/pyrimethamine, artemisinin, Momordica charantia ('Ejirin') Diospyros monbuttensis ('Egun eja') and Morinda lucida ('Oruwo') was determined using the in vitro microtest (Mark III) technique to determine the IC50 of the drugs. All the isolates tested were sensitive to quinine, mefloquine and artesunate. Fifty-one percent of the isolates were resistant to chloroquine, 13% to amodiaquine and 5% to sulphadoxine/pyrimethamine. Highest resistance to chloroquine (68.9%) was recorded among isolates from Yewa zone while highest resistance to amodiaquine (30%) was observed in Ijebu zone. Highest resistance to sulphadoxine/pyrimethamine was recorded in Yewa and Egba zones, respectively. A positive correlation was observed between the responses to artemisinin and mefloquine (P<0.05), artemisinin and quinine (P<0.05) and quinine and mefloquine (P<0.05). A negative correlation was observed between the responses to chloroquine and mefloquine (P>0.05). Highest anti-plasmodial activity was obtained with the ethanolic extract of D. monbuttensis (IC50 = 3.2 nM) while the lowest was obtained from M. lucida (IC50 = 25 nM). CONCLUSIONS Natural products isolated from plants used in traditional medicine, which have potent anti-plasmodial action in vitro, represent potential sources of new anti-malarial drugs.
Collapse
Affiliation(s)
- Grace I Olasehinde
- Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Olusola Ojurongbe
- Department of Medical Parasitology, LAUTECH Teaching Hospital, Osogbo, Osun State, Nigeria
| | - Adegboyega O Adeyeba
- Department of Medical Parasitology, LAUTECH Teaching Hospital, Osogbo, Osun State, Nigeria
| | - Obasola E Fagade
- Department of Botany, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Neena Valecha
- National Institute of Malaria Research, New Delhi, India
| | - Isaac O Ayanda
- Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Adesola A Ajayi
- Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Louis O Egwari
- Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
22
|
Pereira GR, Brandão GC, Arantes LM, de Oliveira HA, de Paula RC, do Nascimento MFA, dos Santos FM, da Rocha RK, Lopes JCD, de Oliveira AB. 7-Chloroquinolinotriazoles: Synthesis by the azide–alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies. Eur J Med Chem 2014; 73:295-309. [DOI: 10.1016/j.ejmech.2013.11.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 11/16/2022]
|
23
|
Marchal E, Smithen DA, Uddin MI, Robertson AW, Jakeman DL, Mollard V, Goodman CD, MacDougall KS, McFarland SA, McFadden GI, Thompson A. Synthesis and antimalarial activity of prodigiosenes. Org Biomol Chem 2014; 12:4132-42. [DOI: 10.1039/c3ob42548g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Gorka AP, de Dios A, Roepe PD. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem 2013; 56:5231-46. [PMID: 23586757 DOI: 10.1021/jm400282d] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Historically, the most successful molecular target for antimalarial drugs has been heme biomineralization within the malarial parasite digestive vacuole. Heme released from catabolized host red blood cell hemoglobin is toxic, so malarial parasites crystallize heme to nontoxic hemozoin. For years it has been accepted that a number of effective quinoline antimalarial drugs (e.g., chloroquine, quinine, amodiaquine) function by preventing hemozoin crystallization. However, recent studies over the past decade have revealed a surprising molecular diversity in quinoline-heme molecular interactions. This diversity shows that even closely related quinoline drugs may have quite different molecular pharmacology. This paper reviews the molecular diversity and highlights important implications for understanding quinoline antimalarial drug resistance and for future drug design.
Collapse
Affiliation(s)
- Alexander P Gorka
- Department of Chemistry, Department of Biochemistry, Cellular, and Molecular Biology, and Center for Infectious Diseases, Georgetown University , 37th and O Streets, NW, Washington, D.C. 20057, United States
| | | | | |
Collapse
|
25
|
Azide-alkyne cycloaddition en route to 1 H -1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur J Med Chem 2013; 62:590-6. [DOI: 10.1016/j.ejmech.2013.01.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/22/2013] [Accepted: 01/26/2013] [Indexed: 11/21/2022]
|
26
|
Gambino D, Otero L. Perspectives on what ruthenium-based compounds could offer in the development of potential antiparasitic drugs. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.05.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Glans L, Ehnbom A, de Kock C, Martínez A, Estrada J, Smith PJ, Haukka M, Sánchez-Delgado RA, Nordlander E. Ruthenium(II) arene complexes with chelating chloroquine analogue ligands: synthesis, characterization and in vitro antimalarial activity. Dalton Trans 2012; 41:2764-73. [PMID: 22249579 PMCID: PMC3303165 DOI: 10.1039/c2dt12083f] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η(6)-cym)(L(1))Cl]Cl (1, cym = p-cymene, L(1) = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η(6)-cym)(L(2))Cl]Cl (2, L(2) = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η(6)-cym)(L(3))Cl] (3, L(3) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1-3 and ligands L(1), L(2) and L(3), as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L(4)), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L(2) also shows good activity against both the chloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR(50)) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR(50) properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L(3) to ruthenium, to give a metal complex (3) with promising antimalarial activity.
Collapse
Affiliation(s)
- Lotta Glans
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Andreas Ehnbom
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Carmen de Kock
- Division of Pharmacology, Department of Medicine, University of Cape Town Medical School, Observatory 7925, South Africa
| | - Alberto Martínez
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210, U.S.A
| | - Jesús Estrada
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210, U.S.A
| | - Peter J. Smith
- Division of Pharmacology, Department of Medicine, University of Cape Town Medical School, Observatory 7925, South Africa
| | - Matti Haukka
- Department of Chemistry, University of Eastern Finland, Box 111, FIN-80101 Joensuu, Finland
| | - Roberto A. Sánchez-Delgado
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210, U.S.A
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
28
|
Gordey EE, Yadav PN, Merrin MP, Davies J, Ward SA, Woodman GM, Sadowy AL, Smith TG, Gossage RA. Synthesis and biological activities of 4-N-(anilinyl-n-[oxazolyl])-7-chloroquinolines (n=3′ or 4′) against Plasmodium falciparum in in vitro models. Bioorg Med Chem Lett 2011; 21:4512-5. [DOI: 10.1016/j.bmcl.2011.05.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
29
|
Kumar A, Srivastava K, Raja Kumar S, Siddiqi M, Puri SK, Sexana JK, Chauhan PM. 4-Anilinoquinoline triazines: A novel class of hybrid antimalarial agents. Eur J Med Chem 2011; 46:676-90. [DOI: 10.1016/j.ejmech.2010.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/26/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
|
30
|
Abstract
A wide range of drug transport studies using intact infected red blood cells, isolated malarial parasites, heterologous expression systems, and purified protein, combined with elegant genetic experiments, have suggested that chloroquine transport by the Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key aspect of the molecular mechanism of quinoline antimalarial drug resistance. However, many questions remain. This short review summarizes data that have led to drug channel versus drug pump hypotheses for PfCRT and suggests ways in which recent contrasting interpretations might be reconciled.
Collapse
Affiliation(s)
- Paul D Roepe
- Department of Chemistry, Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC 20057, United States.
| |
Collapse
|
31
|
Kumar A, Srivastava K, Kumar SR, Puri SK, Chauhan PMS. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorg Med Chem Lett 2010; 20:7059-63. [PMID: 20951034 DOI: 10.1016/j.bmcl.2010.09.107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Despite emergence of resistance to CQ and other 4-aminoquinoline drugs in most of the endemic regions, research findings provide considerable support that there is still significant potential to discover new affordable, safe, and efficacious 4-aminoquinoline antimalarials. In present study, new side chain modified 4-aminoquinoline derivatives and quinoline-acridine hybrids were synthesized and evaluated in vitro against NF 54 strain of Plasmodium falciparum. Among the evaluated compounds, compound 17 (MIC=0.125 μg/mL) was equipotent to standard drug CQ (MIC=0.125 μg/mL) and compound 21 (MIC=0.031 μg/mL) was four times more potent than CQ. Compound 17 showed the curative response to all the treated swiss mice infected with CQ-resistant N-67 strain of Plasmodium yoelii at the doses 50 mg/kg and 25 mg/kg for four days by intraperitoneal route and was found to be orally active at the dose of 100 mg/kg for four days. The promising antimalarial potency of compound 17 highlights the significance of exploring the privileged 4-aminoquinoline class for new antimalarials.
Collapse
Affiliation(s)
- Ashok Kumar
- Division of Medicinal & Process Chemistry, Central Drug Research Institute, Lucknow, India
| | | | | | | | | |
Collapse
|
32
|
Frosch T, Popp J. Structural analysis of the antimalarial drug halofantrine by means of Raman spectroscopy and density functional theory calculations. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041516. [PMID: 20799794 DOI: 10.1117/1.3432656] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The structure of the antimalarial drug halofantrine is analyzed by means of density functional theory (DFT) calculations, IR, and Raman spectroscopy. Strong, selective enhancements of the Raman bands of halofantrine at 1621 and 1590 cm(-1) are discovered by means of UV resonance Raman spectroscopy with excitation wavelength lambda(exc)=244 nm. These signal enhancements can be exploited for a localization of small concentrations of halofantrine in a biological environment. The Raman spectrum of halofantrine is calculated by means of DFT calculations [B3LYP/6-311+G(d,p)]. The calculation is very useful for a thorough mode assignment of the Raman bands of halofantrine. The strong bands at 1621 and 1590 cm(-1) in the UV Raman spectrum are assigned to combined C[Double Bond]C stretching vibrations in the phenanthrene ring of halofantrine. These bands are considered as putative marker bands for pipi interactions with the biological target molecules. The calculation of the electron density demonstrates a strong distribution across the phenanthrene ring of halofantrine, besides the electron withdrawing effect of the Cl and CF(3) substituents. This strong and even electron density distribution supports the hypothesis of pipi stacking as a possible mode of action of halofantrine. Complementary IR spectroscopy is performed for an investigation of vibrations of polar functional groups of the halofantrine molecule.
Collapse
Affiliation(s)
- Torsten Frosch
- Friedrich-Schiller-Universitat Jena, Institut fur Physikalische Chemie, Jena, Germany.
| | | |
Collapse
|
33
|
Roepe PD. Molecular and physiologic basis of quinoline drug resistance in Plasmodium falciparum malaria. Future Microbiol 2009; 4:441-55. [PMID: 19416013 PMCID: PMC2724744 DOI: 10.2217/fmb.09.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
30 years before the discovery of the pfcrt gene, altered cellular drug accumulation in drug-resistant malarial parasites had been well documented. Heme released from catabolized hemoglobin was thought to be a key target for quinoline drugs, and additional modifications to quinoline drug structure in order to improve activity against chloroquine-resistant malaria were performed in a few laboratories. However, parasite cell culture methods were still in their infancy, assays for drug susceptibility were not well standardized, and the power of malarial genetics was decades away. The last 10 years have witnessed explosive progress in elucidation of the biochemistry of chloroquine resistance. This review briefly summarizes that progress, and discusses where additional work is needed.
Collapse
Affiliation(s)
- Paul D Roepe
- Department of Chemistry and Department of Biochemistry, Cellular & Molecular Biology, and Center for Infectious Disease, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
34
|
Rohrbach P. Imaging ion flux and ion homeostasis in blood stage malaria parasites. Biotechnol J 2009; 4:812-25. [DOI: 10.1002/biot.200900084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Assessment of malaria in vitro drug combination screening and mixed-strain infections using the malaria Sybr green I-based fluorescence assay. Antimicrob Agents Chemother 2009; 53:2557-63. [PMID: 19349518 DOI: 10.1128/aac.01370-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several drug development strategies, including optimization of new antimalarial drug combinations, have been used to counter malaria drug resistance. We evaluated the malaria Sybr green I-based fluorescence (MSF) assay for its use in in vitro drug combination sensitivity assays. Drug combinations of previously published synergistic (atovaquone and proguanil), indifferent (chloroquine and azithromycin), and antagonistic (chloroquine and atovaquone) antimalarial drug interactions were tested against Plasmodium falciparum strains D6 and W2 using the MSF assay. Fifty percent inhibitory concentrations (IC(50)s) were calculated for individual drugs and in fixed ratio combinations relative to their individual IC(50)s. Subsequent isobologram analysis and fractional inhibitory concentration determinations demonstrated the expected drug interaction pattern for each combination tested. Furthermore, we explored the ability of the MSF assay to examine mixed parasite population dynamics, which are commonly seen in malaria patient isolates. Specifically, the capacity of the MSF assay to discern between single and mixed parasite populations was determined. To simulate mixed infections in vitro, fixed ratios of D6 and W2 strains were cocultured with antimalarial drugs and IC(50)s were determined using the MSF assay. Dichotomous concentration curves indicated that the sensitive and resistant parasites composing the genetically heterogeneous population were detectable. Biphasic analysis was performed to obtain subpopulation IC(50)s for comparison to those obtained for the individual malaria strains alone. In conclusion, the MSF assay allows for reliable antimalarial drug combination screening and provides an important method to discern between homogenous and heterogeneous parasite populations.
Collapse
|
36
|
|
37
|
Structure–activity relationships of 4-N-substituted ferroquine analogues: Time to re-evaluate the mechanism of action of ferroquine. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2008.09.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Frosch T, Koncarevic S, Becker K, Popp J. Morphology-sensitive Raman modes of the malaria pigment hemozoin. Analyst 2009; 134:1126-32. [DOI: 10.1039/b821705j] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents. Bioorg Med Chem Lett 2008; 18:6530-3. [DOI: 10.1016/j.bmcl.2008.10.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/11/2008] [Accepted: 10/10/2008] [Indexed: 11/18/2022]
|
40
|
Magnetic susceptibility of iron in malaria-infected red blood cells. Biochim Biophys Acta Mol Basis Dis 2008; 1792:93-9. [PMID: 19056489 DOI: 10.1016/j.bbadis.2008.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/24/2008] [Accepted: 11/03/2008] [Indexed: 02/02/2023]
Abstract
During intra-erythrocytic maturation, malaria parasites catabolize up to 80% of cellular haemoglobin. Haem is liberated inside the parasite and converted to haemozoin, preventing haem iron from participating in cell-damaging reactions. Several experimental techniques exploit the relatively large paramagnetic susceptibility of malaria-infected cells as a means of sorting cells or investigating haemoglobin degradation, but the source of the dramatic increase in cellular magnetic susceptibility during parasite growth has not been unequivocally determined. Plasmodium falciparum cultures were enriched using high-gradient magnetic fractionation columns and the magnetic susceptibility of cell contents was directly measured. The forms of haem iron in the erythrocytes were quantified spectroscopically. In the 3D7 laboratory strain, the parasites converted approximately 60% of host cell haemoglobin to haemozoin and this product was the primary source of the increase in cell magnetic susceptibility. Haemozoin iron was found to have a magnetic susceptibility of (11.0+/-0.9)x10(-3) mL mol(-1). The calculated volumetric magnetic susceptibility (SI units) of the magnetically enriched cells was (1.88+/-0.60)x10(-6) relative to water while that of uninfected cells was not significantly different from water. Magnetic enrichment of parasitised cells can therefore be considered dependent primarily on the magnetic susceptibility of the parasitised cells.
Collapse
|
41
|
Natarajan JK, Alumasa JN, Yearick K, Ekoue-Kovi KA, Casabianca LB, de Dios AC, Wolf C, Roepe PD. 4-N-, 4-S-, and 4-O-chloroquine analogues: influence of side chain length and quinolyl nitrogen pKa on activity vs chloroquine resistant malaria. J Med Chem 2008; 51:3466-79. [PMID: 18512900 DOI: 10.1021/jm701478a] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.
Collapse
Affiliation(s)
- Jayakumar K Natarajan
- Department of Chemistry, Center for Infectious Disease, Georgetown University, 37th and O Streets, Washington, DC 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schwedhelm KF, Horstmann M, Faber JH, Reichert Y, Bringmann G, Faber C. The novel antimalarial compound dioncophylline C forms a complex with heme in solution. ChemMedChem 2008; 2:541-8. [PMID: 17315144 DOI: 10.1002/cmdc.200600263] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A structural model of the complex formed between the novel antimalarial compound dioncophylline C (DioC) and its presumed target ferriprotoporphyrin IX heme (FPIX) is presented. The complex structure was calculated with molecular dynamics (MD) simulations using intermolecular distance restraints between DioC and the iron center in FPIX, determined from NMR paramagnetic relaxation. Besides the spin state of the iron and longitudinal relaxation rates of hydrogen nuclei in DioC, the effective correlation time of paramagnetic relaxation was determined from NMR measurements at three different magnetic field strengths. The derived structural model shows high similarity to complexes formed by FPIX and antimalarials of the quinoline family (chloroquine, quinine, quinidine, and amodiaquine). The conformation of DioC is sterically stabilized by a water molecule coordinated to iron in FPIX. This structural feature may provide an important hint at possibilities for a further optimization of novel naphthylisoquinoline alkaloid (NIQ) antimalarial drugs.
Collapse
Affiliation(s)
- Kai F Schwedhelm
- Department of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Microwave-assisted synthesis of 4-quinolylhydrazines followed by nickel boride reduction: a convenient approach to 4-aminoquinolines and derivatives. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.01.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Gemma S, Campiani G, Butini S, Kukreja G, Coccone SS, Joshi BP, Persico M, Nacci V, Fiorini I, Novellino E, Fattorusso E, Taglialatela-Scafati O, Savini L, Taramelli D, Basilico N, Parapini S, Morace G, Yardley V, Croft S, Coletta M, Marini S, Fattorusso C. Clotrimazole scaffold as an innovative pharmacophore towards potent antimalarial agents: design, synthesis, and biological and structure-activity relationship studies. J Med Chem 2008; 51:1278-94. [PMID: 18278860 DOI: 10.1021/jm701247k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe herein the design, synthesis, biological evaluation, and structure-activity relationship (SAR) studies of an innovative class of antimalarial agents based on a polyaromatic pharmacophore structurally related to clotrimazole and easy to synthesize by low-cost synthetic procedures. SAR studies delineated a number of structural features able to modulate the in vitro and in vivo antimalarial activity. A selected set of antimalarials was further biologically investigated and displayed low in vitro toxicity on a panel of human and murine cell lines. In vitro, the novel compounds proved to be selective for free heme, as demonstrated in the beta-hematin inhibitory activity assay, and did not show inhibitory activity against 14-alpha-lanosterol demethylase (a fungal P450 cytochrome). Compounds 2, 4e, and 4n exhibited in vivo activity against P. chabaudi after oral administration and thus represent promising antimalarial agents for further preclinical development.
Collapse
|
45
|
Fattorusso C, Campiani G, Kukreja G, Persico M, Butini S, Romano MP, Altarelli M, Ros S, Brindisi M, Savini L, Novellino E, Nacci V, Fattorusso E, Parapini S, Basilico N, Taramelli D, Yardley V, Croft S, Borriello M, Gemma S. Design, Synthesis, and Structure–Activity Relationship Studies of 4-Quinolinyl- and 9-Acrydinylhydrazones as Potent Antimalarial Agents. J Med Chem 2008; 51:1333-43. [DOI: 10.1021/jm7012375] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caterina Fattorusso
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Gagan Kukreja
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Marco Persico
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Stefania Butini
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Maria Pia Romano
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Maria Altarelli
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Sindu Ros
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Margherita Brindisi
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Luisa Savini
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Ettore Novellino
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Vito Nacci
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Ernesto Fattorusso
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Silvia Parapini
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Nicoletta Basilico
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Donatella Taramelli
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Vanessa Yardley
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Simon Croft
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Marianna Borriello
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| | - Sandra Gemma
- European Research Centre for Drug Discovery & Development and Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, Università di Siena, 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali and Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Sanità Pubblica- Microbiologia- Virologia, Universitá di Milano, Via Pascal 36, 20133, Milano, Italy, Department of Infectious and Tropical Diseases,
| |
Collapse
|
46
|
Hemozoin: oil versus water. Parasitol Int 2007; 57:89-96. [PMID: 18373972 DOI: 10.1016/j.parint.2007.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 11/23/2022]
Abstract
Because the quinolines inhibit heme crystallization within the malaria parasite much work has focused on mechanism of formation and inhibition of hemozoin. Here we review the recent evidence for heme crystallization within lipids in diverse parasites and the new implications of a lipid site of crystallization for drug targeting. Within leukocytes hemozoin can generate toxic radical lipid metabolites, which may alter immune function or reduce deformability of uninfected erythrocytes.
Collapse
|
47
|
Gunasekera AM, Myrick A, Le Roch K, Winzeler E, Wirth DF. Plasmodium falciparum: Genome wide perturbations in transcript profiles among mixed stage cultures after chloroquine treatment. Exp Parasitol 2007; 117:87-92. [PMID: 17475254 DOI: 10.1016/j.exppara.2007.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
A genomic approach was taken to study the effect of chloroquine (CQ) on Plasmodium falciparum cultures in multiple cell states, following short and long exposures to drug at varying concentrations. Six hundred genes from numerous functional groups were responsive to CQ amongst all cell states assayed in a micro-array analysis; however, the amplitude of fold-change was low in the majority of cases. Moreover, alterations in specific, functionally related cascades could not be discerned, leading us to believe there is no single signature response to CQ at the transcript level in P. falciparum. Instead, cell cycle changes appear to have a more pronounced effect on gene expression; only a fraction of the drug responsive loci (approximately 5%) were shared between two separate starting cultures that varied in staging profile in the current study, as well as a previous published analysis using SAGE technology [Gunasekera, A.M., Patankar, S., Schug, J., Eisen, G.,Wirth, D.F., 2003. Drug-induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum. Molecular Microbiology 50, 1229-1239]. These findings are important to report, given the striking contrast to similar studies in other model eukaryotic organisms.
Collapse
Affiliation(s)
- Anusha M Gunasekera
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Harvard University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Frosch T, Koncarevic S, Zedler L, Schmitt M, Schenzel K, Becker K, Popp J. In Situ Localization and Structural Analysis of the Malaria Pigment Hemozoin. J Phys Chem B 2007; 111:11047-56. [PMID: 17718555 DOI: 10.1021/jp071788b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman microspectroscopy was applied for an in situ localization of the malaria pigment hemozoin in Plasmodium falciparum-infected erythrocytes. The Raman spectra (lambdaexc=633 nm) of hemozoin show very intense signals with a very good signal-to-noise ratio. These in situ Raman signals of hemozoin were compared to Raman spectra of extracted hemozoin, of the synthetic analogue beta-hematin, and of hematin and hemin. beta-Hematin was synthesized according to the acid-catalyzed dehydration of hematin and the anhydrous dehydrohalogenation of hemin which lead to good crystals with lengths of about 5-30 microm. The Raman spectra (lambdaexc=1064 nm) of hemozoin and beta-hematin show almost identical behaviors, while some low wavenumber modes might be used to distinguish between the morphology of differently synthesized beta-hematin samples. The intensity pattern of the resonance Raman spectra (lambdaexc=568 nm) of hemozoin and beta-hematin differ significantly from those of hematin and hemin. The most striking difference is an additional band at 1655 cm(-1) which was only observed in the spectra of hemozoin and beta-hematin and cannot be seen in the spectra of hematin and hemin. Raman spectra of the beta-hematin dimer were calculated ab initio (DFT) for the first time and used for an assignment of the experimentally derived Raman bands. The calculated atomic displacements provide valuable insight into the most important molecular vibrations of the hemozoin dimer. With help from these DFT calculations, it was possible to assign the Raman band at 1655 cm(-1) to a mode located at the propionic acid side chain, which links the hemozoin dimers to each other. The Raman band at 1568 cm(-1), which has been shown to be influenced by an attachment of the antimalarial drug chloroquine in an earlier study, could be assigned to a C=C stretching mode spread across one of the porphyrin rings and is therefore expected to be influenced by a pi-pi-stacking to the drug.
Collapse
Affiliation(s)
- Torsten Frosch
- Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Kuhn Y, Rohrbach P, Lanzer M. Quantitative pH measurements in Plasmodium falciparum-infected erythrocytes using pHluorin. Cell Microbiol 2007; 9:1004-13. [PMID: 17381432 DOI: 10.1111/j.1462-5822.2006.00847.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The digestive vacuole of the malaria parasite Plasmodium falciparum is the site of action of several antimalarial drugs, such as chloroquine, which accumulate in this organelle due to their properties as amphiphilic weak bases that inhibit haem detoxification. It has been suggested that changes in the pH of the digestive vacuole, affecting either drug partitioning or haem solubility and/or biomineralization rates, would correlate with reduced intracellular chloroquine accumulation and, hence, would determine the chloroquine-resistance phenotype. The techniques previously used to quantify digestive vacuolar pH mainly relied on lysed or isolated parasites, with unpredictable consequences on internal pH homeostasis. In this study, we have investigated the baseline steady-state pH of the cytoplasm and digestive vacuole of a chloroquine-sensitive (HB3) and a chloroquine-resistant (Dd2) parasite using a pH-sensitive green fluorescent protein, termed pHluorin. This non-invasive technique allows for in vivo pH measurements in intact P. falciparum-infected erythrocytes under physiological conditions. The data suggest that the pH of the cytoplasm is approximately 7.15 +/- 0.07 and that of the digestive vacuole approximately 5.18 +/- 0.05. No significant differences in baseline pH values were recorded for the chloroquine-sensitive and chloroquine-resistant parasites.
Collapse
Affiliation(s)
- Yvonne Kuhn
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
50
|
Sanchez CP, Rohrbach P, McLean JE, Fidock DA, Stein WD, Lanzer M. Differences in trans-stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum. Mol Microbiol 2007; 64:407-20. [PMID: 17493125 PMCID: PMC2944662 DOI: 10.1111/j.1365-2958.2007.05664.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum has remained controversial. Currently discussed models include a carrier or a channel for chloroquine, the former actively expelling the drug, the latter facilitating its passive diffusion, out of the parasite's food vacuole, where chloroquine accumulates and inhibits haem detoxification. Here we have challenged both models using an established trans-stimulation efflux protocol. While carriers may demonstrate trans-stimulation, channels do not. Our data reveal that extracellular chloroquine stimulates chloroquine efflux in the presence and absence of metabolic energy in both chloroquine-sensitive and -resistant parasites, resulting in a hyperbolic increase in the apparent initial efflux rates as the concentration of external chloroquine increases. In the absence of metabolic energy, the apparent initial efflux rates were comparable in both parasites. Significant differences were only observed in the presence of metabolic energy, where consistently higher apparent initial efflux rates were found in chloroquine-resistant parasites. As trans-stimulation is characteristic of a carrier, and not a channel, we interpret our data in favour of a carrier for chloroquine being present in both chloroquine-sensitive and -resistant parasites, however, with different transport modalities.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Petra Rohrbach
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jeremy E. McLean
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - David A. Fidock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wilfred D. Stein
- Biological Chemistry, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Michael Lanzer
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- For correspondence. ; Tel. (+49) 6221 567845; Fax (+49) 6221 564643
| |
Collapse
|