1
|
Scheuerer S, Motlova L, Schäker-Hübner L, Sellmer A, Feller F, Ertl FJ, Koch P, Hansen FK, Barinka C, Mahboobi S. Biological and structural investigation of tetrahydro-β-carboline-based selective HDAC6 inhibitors with improved stability. Eur J Med Chem 2024; 276:116676. [PMID: 39067437 DOI: 10.1016/j.ejmech.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Our previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6. This led to the highly selective and potent methyl-substituted derivative S-29b, which elicited a long-lasting tubulin hyperacetylation in MV4-11 cells. Finally, a crystal structure of the HDAC6/S-29b complex provided mechanistic explanation for the high potency and stereoselectivity of synthesized compound series.
Collapse
Affiliation(s)
- Simon Scheuerer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Lucia Motlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Felix Feller
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
2
|
Caioni G, Merola C, Perugini M, Angelozzi G, Amorena M, Benedetti E, Lucon-Xiccato T, Bertolucci C. Sodium valproate effects on the morphological and neurobehavioral phenotype of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104500. [PMID: 38977114 DOI: 10.1016/j.etap.2024.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The anticonvulsant sodium valproate (SV) is frequently administered as a medicament but bears several negative effects in case of exposure during development. We analyzed extensively these early development effects of using the zebrafish model. Zebrafish embryos were exposed as eggs to two sublethal concentrations of SV, 10 and 25 mg/L. A general embryo toxicity analysis revealed extended anomalies in the cardiovascular system, and in the craniofacial and the spinal skeleton, as well as high mortality, in the embryos exposed to SV. The teratogenic potential of SV was confirmed in hacthed larvae by morphometric and cartilage profile analysis. Last, neurobehavioral impairments due to SV were highlighted in subjects' activity, anxiety, response to stimulations, habituation learning, and daily synchronization of locomotor activity, overall mirroring typical phenotypes associated with autistic spectrum disorders. In conclusion, our results confirmed the presence of extended and multifaced impacts of exposure to SV during development.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy; Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Giovanni Angelozzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Michele Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Cao X, Fan Z, Xu L, Zhao W, Zhang H, Yang Y, Ren Y, Xiao Y, Zhou N, Yin L, Zhou X, Zhu X, Guo D. Benzothiazole derivatives as histone deacetylase inhibitors for the treatment of autosomal dominant polycystic kidney disease. Eur J Med Chem 2024; 271:116428. [PMID: 38653068 DOI: 10.1016/j.ejmech.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Recent evidence suggests that histone deacetylases (HDACs) are important regulators of autosomal dominant polycystic kidney disease (ADPKD). In the present study, a series of benzothiazole-bearing compounds were designed and synthesized as potential HDAC inhibitors. Given the multiple participation of HDACs in ADPKD cyst progression, we embarked on a targeted screen using HeLa nuclear extracts to identify potent pan-HDAC inhibitors. Compound 26 emerged as the most efficacious candidate. Subsequent pharmacological characterization showed that compound 26 effectively inhibits several HDACs, notably HDAC1, HDAC2, and HDAC6 (IC50 < 150 nM), displaying a particularly high sensitivity towards HDAC6 (IC50 = 11 nM). The selected compound significantly prevented cyst formation and expansion in an in vitro cyst model and was efficacious in reducing cyst growth in both an embryonic kidney cyst model and an in vivo ADPKD mouse model. Our results provided compelling evidence that compound 26 represents a new HDAC inhibitor for the treatment of ADPKD.
Collapse
Affiliation(s)
- Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Zhiyuan Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Lingfang Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wenchao Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yunfang Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yuxian Xiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Long Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
5
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
6
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Jiang T, Xie L, Zhou S, Liu Y, Huang Y, Mei N, Ma F, Gong J, Gao X, Chen J. Metformin and histone deacetylase inhibitor based anti-inflammatory nanoplatform for epithelial-mesenchymal transition suppression and metastatic tumor treatment. J Nanobiotechnology 2022; 20:394. [PMID: 36045429 PMCID: PMC9429706 DOI: 10.1186/s12951-022-01592-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a differentiation process with aberrant changes of tumor cells, is identified as an initial and vital procedure for metastatic processes. Inflammation is a significant inducer of EMT and provides an indispensable target for blocking EMT, however, an anti-inflammatory therapeutic with highlighted safety and efficacy is deficient. Metformin is a promising anti-inflammatory agent with low side effects, but tumor monotherapy with an anti-inflammation drug could generate therapy resistance, cell adaptation or even promote tumor development. Combination therapies with various anti-inflammatory mechanisms can be favorable options improving therapeutic effects of metformin, here we develop a tumor targeting hybrid micelle based on metformin and a histone deacetylase inhibitor propofol-docosahexaenoic acid for efficient therapeutic efficacies of anti-inflammatory drugs. Triptolide is further encapsulated in hybrid micelles for orthotopic tumor therapies. The final multifunctional nanoplatforms (HAOPTs) with hyaluronic acid (HA) modification can target tumor efficiently, inhibit tumor cell EMT processes, repress metastasis establishment and suppress metastatic tumor development in a synergistic manner. Collectively, the results afford proof of concept that the tumor targeting anti-inflammatory nanoplatform can provide a potent, safe and clinical translational approach for EMT inhibition and metastatic tumor therapy.
Collapse
Affiliation(s)
- Tianze Jiang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Laozhi Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yipu Liu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yukun Huang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Ni Mei
- Shanghai Center for Drug Evaluation and Inspection, Lane 58, HaiQv Road, Shanghai, 201210, People's Republic of China
| | - Fenfen Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Jingru Gong
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China. .,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China.
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China. .,Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
8
|
Bui HTB, Nguyen PH, Pham QM, Tran HP, Tran DQ, Jung H, Hong QV, Nguyen QC, Nguyen QP, Le HT, Yang SG. Target Design of Novel Histone Deacetylase 6 Selective Inhibitors with 2-Mercaptoquinazolinone as the Cap Moiety. Molecules 2022; 27:2204. [PMID: 35408604 PMCID: PMC9000625 DOI: 10.3390/molecules27072204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations found in all human cancers are promising targets for anticancer therapy. In this sense, histone deacetylase inhibitors (HDACIs) are interesting anticancer agents that play an important role in the epigenetic regulation of cancer cells. Here, we report 15 novel hydroxamic acid-based histone deacetylase inhibitors with quinazolinone core structures. Five compounds exhibited antiproliferative activity with IC50 values of 3.4-37.8 µM. Compound 8 with a 2-mercaptoquinazolinone cap moiety displayed the highest antiproliferative efficacy against MCF-7 cells. For the HDAC6 target selectivity study, compound 8 displayed an IC50 value of 2.3 µM, which is 29.3 times higher than those of HDAC3, HDAC4, HDAC8, and HDAC11. Western blot assay proved that compound 8 strongly inhibited tubulin acetylation, a substrate of HDAC6. Compound 8 also displayed stronger inhibition activity against HDAC11 than the control drug Belinostat. The inhibitory mechanism of action of compound 8 on HDAC enzymes was then explored using molecular docking study. The data revealed a high binding affinity (-7.92 kcal/mol) of compound 8 toward HDAC6. In addition, dock pose analysis also proved that compound 8 might serve as a potent inhibitor of HDAC11.
Collapse
Affiliation(s)
- Hue Thi Buu Bui
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Phuong Hong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Quan Minh Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Ha Noi 100000, Vietnam;
- Faculty of Chemistry; Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ha Noi 100000, Vietnam
| | - Hoa Phuong Tran
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - De Quang Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Hosun Jung
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Quang Vinh Hong
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Quoc Cuong Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Quy Phu Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Hieu Trong Le
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| |
Collapse
|
9
|
Lu Y, Sun D, Xiao D, Shao Y, Su M, Zhou Y, Li J, Zhu S, Lu W. Design, Synthesis, and Biological Evaluation of HDAC Degraders with CRBN E3 Ligase Ligands. Molecules 2021; 26:7241. [PMID: 34885822 PMCID: PMC8658794 DOI: 10.3390/molecules26237241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) play important roles in cell growth, cell differentiation, cell apoptosis, and many other cellular processes. The inhibition of different classes of HDACs has been shown to be closely related to the therapy of cancers and other diseases. In this study, a series of novel CRBN-recruiting HDAC PROTACs were designed and synthesized by linking hydroxamic acid and benzamide with lenalidomide, pomalidomide, and CC-220 through linkers of different lengths and types. One of these PROTACs, denoted 21a, with a new benzyl alcohol linker, exhibited comparably excellent HDAC inhibition activity on different HDAC classes, acceptable degradative activity, and even better in vitro anti-proliferative activities on the MM.1S cell line compared with SAHA. Moreover, we report for the first time the benzyl alcohol linker, which could also offer the potential to be used to develop more types of potent PROTACs for targeting more proteins of interest (POI).
Collapse
Affiliation(s)
- Yingxin Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.L.); (D.X.)
| | - Danwen Sun
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China; (D.S.); (Y.S.); (M.S.); (Y.Z.)
| | - Donghuai Xiao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.L.); (D.X.)
| | - Yingying Shao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China; (D.S.); (Y.S.); (M.S.); (Y.Z.)
| | - Mingbo Su
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China; (D.S.); (Y.S.); (M.S.); (Y.Z.)
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China; (D.S.); (Y.S.); (M.S.); (Y.Z.)
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China; (D.S.); (Y.S.); (M.S.); (Y.Z.)
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.L.); (D.X.)
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.L.); (D.X.)
| |
Collapse
|
10
|
Hafez DA, Hassanin IA, Teleb M, Khattab SN, Elkhodairy KA, Elzoghby AO. Recent advances in nanomedicine-based delivery of histone deacetylase inhibitors for cancer therapy. Nanomedicine (Lond) 2021; 16:2305-2325. [PMID: 34551585 DOI: 10.2217/nnm-2021-0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are cancer therapeutics that operate at the epigenetic level and which have recently gained wide attention. However, the applications of HDACi are generally hindered by their poor physicochemical characteristics and unfavorable pharmacokinetic profile. Inspired by the approved nanomedicine-based drugs in the market, nanocarriers could provide a resort to circumvent the limitations imposed by HDACi. Enhanced tumor targeting, improved cellular uptake and reduced toxicity are major advantages offered by HDACi-loaded nanoparticles. More importantly, site-specific drug delivery can be achieved via engineered stimuli-responsive nanosystems. In this review we elucidate the anticancer mechanisms of HDACi and their structure-activity relationships, with a special focus on their nanomedicine-based delivery, different drug loading concepts and their implications.
Collapse
Affiliation(s)
- Dina A Hafez
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
11
|
Sirous H, Campiani G, Calderone V, Brogi S. Discovery of novel hit compounds as potential HDAC1 inhibitors: The case of ligand- and structure-based virtual screening. Comput Biol Med 2021; 137:104808. [PMID: 34478925 DOI: 10.1016/j.compbiomed.2021.104808] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
Histone deacetylases (HDACs) as an important family of epigenetic regulatory enzymes are implicated in the onset and progression of carcinomas. As a result, HDAC inhibition has been proven as a compelling strategy for reversing the aberrant epigenetic changes associated with cancer. However, non-selective profile of most developed HDAC inhibitors (HDACIs) leads to the occurrence of various side effects, limiting their clinical utility. This evidence provides a solid ground for ongoing research aimed at identifying isoform-selective inhibitors. Among the isoforms, HDAC1 have particularly gained increased attention as a preferred target for the design of selective HDACIs. Accordingly, in this paper, we have developed a reliable virtual screening process, combining different ligand- and structure-based methods, to identify novel benzamide-based analogs with potential HDAC1 inhibitory activity. For this purpose, a focused library of 736,160 compounds from PubChem database was first compiled based on 80% structural similarity with four known benzamide-based HDAC1 inhibitors, Mocetinostat, Entinostat, Tacedinaline, and Chidamide. Our inclusive in-house 3D-QSAR model, derived from pharmacophore-based alignment, was then employed as a 3D-query to discriminate hits with the highest predicted HDAC1 inhibitory activity. The selected hits were subjected to subsequent structure-based approaches (induced-fit docking (IFD), MM-GBSA calculations and molecular dynamics (MD) simulation) to retrieve potential compounds with the highest binding affinity for HDAC1 active site. Additionally, in silico ADMET properties and PAINS filtration were also considered for selecting an enriched set of the best drug-like molecules. Finally, six top-ranked hit molecules, CID_38265326, CID_56064109, CID_8136932, CID_55802151, CID_133901641 and CID_18150975 were identified to expose the best stability profiles and binding mode in the HDAC1 active site. The IFD and MD results cooperatively confirmed the interactions of the promising selected hits with critical residues within HDAC1 active site. In summary, the presented computational approach can provide a set of guidelines for the further development of improved benzamide-based derivatives targeting HDAC1 isoform.
Collapse
Affiliation(s)
- Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran.
| | - Giuseppe Campiani
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy.
| |
Collapse
|
12
|
Vystorop IV, Shilov GV, Chernyak AV, Klimanova EN, Sashenkova TE, Klochkov SG, Neganova ME, Aleksandrova YR, Allayarova UY, Mishchenko DV. Regioselective Synthesis, Structure, and Chemosensitizing Antitumor Activity of Cyclic Hydroxamic Acid Based on DL-Valine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Neganova ME, Klochkov SG, Aleksandrova YR, Osipov VN, Avdeev DV, Pukhov SA, Gromyko AV, Aliev G. New Spirocyclic Hydroxamic Acids as Effective Antiproliferative Agents. Anticancer Agents Med Chem 2021; 21:597-610. [PMID: 32459611 DOI: 10.2174/1871520620666200527132420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
AIMS The main goal of this work is to synthesize new original spirocyclic hydroxamic acids, investigate their cytotoxicity against the panel of tumor cell lines and possible mechanism of action of these active compounds. BACKGROUND Hydroxamic acids are one of the promising classes of chemical compounds with proven potential anticancer properties. This is manifested in the presence of metal chelating and antioxidant activities, the ability to inhibit histone deacetylase enzymes and a chemosensitizing effect against well known cytostatics. OBJECTIVE Original spirocyclic hydroxamic acids were synthesized and spectra of their antiproliferative activities were investigated. METHODS The cytotoxic activities on different tumor lines (SH-SY5Y, HeLa and healthy cells HEK-293) were investigated and determined possible underlying mechanisms of their activity. RESULTS New original spirocyclic hydroxamic acids were synthesized. These compounds exhibit antiproliferative properties against various tumor cultures cells and also exhibit antioxidant activity, a depolarizing effect on the mitochondrial membrane, inhibit the activity of the histone deacetylase enzyme, and also decrease of basal glycolysis and glycolytic capacity reserve of HeLa and SH-SY5Y tumor cell lines. CONCLUSION The most promising are compounds 5j-l containing two chlorine atoms as substituents in the quinazoline part of the molecule and hydroxamate function. Therefore, these compounds can be considered as hit compounds for the development on their basis multi-target anticancer agents.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr, 1. Chernogolovka, Moscow Region, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr, 1. Chernogolovka, Moscow Region, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr, 1. Chernogolovka, Moscow Region, 142432, Russian Federation
| | - Vasily N Osipov
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh., 23, Moscow, 115478, Russian Federation
| | - Dmitry V Avdeev
- National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Street 3-ja Cherepkovskaja 15A, Moscow, 121552, Russian Federation
| | - Sergey A Pukhov
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr, 1. Chernogolovka, Moscow Region, 142432, Russian Federation
| | - Alexandr V Gromyko
- JSC Pharm-Sintez, Vereyskaya Str., 29, bld. 134, Moscow, 121357, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr, 1. Chernogolovka, Moscow Region, 142432, Russian Federation
| |
Collapse
|
14
|
Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Front Oncol 2020; 10:605386. [PMID: 33312959 PMCID: PMC7708379 DOI: 10.3389/fonc.2020.605386] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.
Collapse
Affiliation(s)
- Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Marco Antonio Meraz-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
15
|
Neganova ME, Aleksandrova YR, Pukhov SA, Klochkov SG, Osipov VN. [Mechanisms of cytotoxic action of a series of directionally synthesized heterocyclic hydroxamic acids]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:332-338. [PMID: 32893823 DOI: 10.18097/pbmc20206604332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cyclic hydroxamic acids based on quinazoline-4(3H)-one and dihydroquinazoline-4(1H)-one have been synthesized. The antioxidant and iron-chelating properties of these compounds, their effect on the activity of the histone deacetylase enzyme, and their cytotoxic effect on cells of various tumor lines have been investigated. We have identified two compounds-hits, which exhibit the multipharmacological type of the antineoplastic activity. Their cytotoxic effect on cells of human lung carcinoma A549 and breast adenocarcinoma MCF-7 is obviously associated with their ability to modulate the level of reactive oxygen species and to chelate Fe(II) ions, as well as to inhibit the metalloenzymes, histone deacetylases, involved in the epigenetic regulation of tumor genesis. Thus, the synthesized hydroxamic acids may be considered as a promising basis for creating potential oncolytics.
Collapse
Affiliation(s)
- M E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Yu R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Russia
| | - S A Pukhov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Russia
| | - S G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Russia
| | - V N Osipov
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRC of Oncology), Moscow, Russia
| |
Collapse
|
16
|
Cappellacci L, Perinelli DR, Maggi F, Grifantini M, Petrelli R. Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:2449-2493. [PMID: 30332940 DOI: 10.2174/0929867325666181016163110] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Histone Deacetylase (HDAC) inhibitors are a relatively new class of anti-cancer agents that play important roles in epigenetic or non-epigenetic regulation, inducing death, apoptosis, and cell cycle arrest in cancer cells. Recently, their use has been clinically validated in cancer patients resulting in the approval by the FDA of four HDAC inhibitors, vorinostat, romidepsin, belinostat and panobinostat, used for the treatment of cutaneous/peripheral T-cell lymphoma and multiple myeloma. Many more HDAC inhibitors are at different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. Also, clinical trials of several HDAC inhibitors for use as anti-cancer drugs (alone or in combination with other anti-cancer therapeutics) are ongoing. In the intensifying efforts to discover new, hopefully, more therapeutically efficacious HDAC inhibitors, molecular modelingbased rational drug design has played an important role. In this review, we summarize four major structural classes of HDAC inhibitors (hydroxamic acid derivatives, aminobenzamide, cyclic peptide and short-chain fatty acids) that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Diego R Perinelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
17
|
Exploration of certain 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg Chem 2020; 101:103988. [PMID: 32534346 DOI: 10.1016/j.bioorg.2020.103988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/14/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Several novel series of hydroxamic acids bearing 2-benzamidooxazole/thiazole (5a-g, 6a-g) or 2-phenylsulfonamidothiazole (8a-c) were designed and synthesized. The compounds were obtained straightforwards via a two step pathway, starting from commercially available ethyl 2-aminooxazole-4-carboxylate or ethyl 2-aminothiazole-4-carboxylate. Biological evaluation showed that these hydroxamic acids generally exhibited good cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer), with IC50 values in low micromolar range and comparable to that of SAHA. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range (0.010-0.131 µM) and some compounds (e.g 5f, IC50, 0.010 µM) were even more potent than SAHA (IC50, 0.025 µM) in HDAC inhibition. Representative compounds 6a and 8a appeared to arrest the SW620 cell cycle at G2 phase and significantly induced both early and late apoptosis of SW620 colon cancer cells. Docking experiments on HDAC2 and HDAC6 isozymes revealed favorable interactions at the tunnel of the HDAC active site which positively contributed to the inhibitory activity of synthesized compound. The binding affinity predicted by docking program showed good correlation with the experimental IC50 values. This study demonstrates that simple 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids are also promising as antitumor agents and HDAC inhibitors and these results should provide valuable information for further design of more potent HDAC inhibitors and antitumor agents.
Collapse
|
18
|
Tan Y, Wu Q, Zhou F. Targeting acute myeloid leukemia stem cells: Current therapies in development and potential strategies with new dimensions. Crit Rev Oncol Hematol 2020; 152:102993. [PMID: 32502928 DOI: 10.1016/j.critrevonc.2020.102993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
High relapse rate of acute myeloid leukemia (AML) is still a crucial problem despite considerable advances in anti-cancer therapies. One crucial cause of relapse is the existence of leukemia stem cells (LSCs) with self-renewal ability, which contribute to repeated treatment resistance and recurrence. Treatments targeting LSCs, especially in combination with existing chemotherapy regimens or hematopoietic stem cell transplantation might help achieve a higher complete remission rate and improve overall survival. Many novel agents of different therapeutic strategies that aim to modulate LSCs self-renewal, proliferation, apoptosis, and differentiation are under investigation. In this review, we summarize the latest advances of different therapies in development based on the biological characteristics of LSCs, with particular attention on natural products, synthetic compounds, antibody therapies, and adoptive cell therapies that promote the LSC eradication. We also explore the causes of AML recurrence and proposed potential strategies with new dimensions for targeting LSCs in the future.
Collapse
Affiliation(s)
- Yuxin Tan
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
19
|
Corpas-López V, Tabraue-Chávez M, Sixto-López Y, Panadero-Fajardo S, Alves de Lima Franco F, Domínguez-Seglar JF, Morillas-Márquez F, Franco-Montalbán F, Díaz-Gavilán M, Correa-Basurto J, López-Viota J, López-Viota M, Pérez del Palacio J, de la Cruz M, de Pedro N, Martín-Sánchez J, Gómez-Vidal JA. O-Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. J Med Chem 2020; 63:5734-5751. [DOI: 10.1021/acs.jmedchem.9b02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Victoriano Corpas-López
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mavys Tabraue-Chávez
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Sonia Panadero-Fajardo
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Fernando Alves de Lima Franco
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José F. Domínguez-Seglar
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Morillas-Márquez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Franco-Montalbán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mónica Díaz-Gavilán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Julián López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Margarita López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | | | | | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de la Salud, 18016 Granada, Spain
| | - Joaquina Martín-Sánchez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José A. Gómez-Vidal
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| |
Collapse
|
20
|
Multitarget Anticancer Agents Based on Histone Deacetylase and Protein Kinase CK2 inhibitors. Molecules 2020; 25:molecules25071497. [PMID: 32218358 PMCID: PMC7180456 DOI: 10.3390/molecules25071497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The design of multitarget drugs (MTDs) has become an innovative approach for the search of effective treatments in complex diseases such as cancer. In this work, we communicate our efforts in the design of multi-targeting histone deacetylase (HDAC) and protein kinase CK2 inhibitors as a novel therapeutic strategy against cancer. Using tetrabromobenzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole (DMAT) as scaffolds for CK2 inhibition, and a hydroxamate to coordinate the zinc atom present in the active site of HDAC (zinc binding group, ZBG), new multitarget inhibitors have been designed and synthesized. According to the in vitro assays, N-Hydroxy-6-(4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)hexanamide (11b) is the most interesting compound, with IC50 values of 0.66; 1.46 and 3.67 µM. for HDAC6; HDAC1 and CK2; respectively. Cellular assays on different cancer cell lines rendered promising results for N-Hydroxy-8-(4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)octanamide (11d). This inhibitor presented the highest cytotoxic activity, proapoptotic capability, and the best mitochondria-targeting and multidrug-circumventing properties, thus being the most promising drug candidate for further in vivo studies.
Collapse
|
21
|
Li P, Liu L, Dang X, Tian X. Romidepsin Induces G2/M Phase Arrest and Apoptosis in Cholangiocarcinoma Cells. Technol Cancer Res Treat 2020. [PMCID: PMC7570773 DOI: 10.1177/1533033820960754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Cholangiocarcinoma (CCA) is an extremely intractable malignancy since most patients are already in an advanced stage when firstly discovered. CCA needs more effective treatment, especially for advanced cases. Our study aimed to evaluate the effect of romidepsin on CCA cells in vitro and in vivo and explore the underlying mechanisms. Methods: The antitumor effect was determined by cell viability, cell cycle and apoptosis assays. A CCK-8 assay was performed to measure the cytotoxicity of romidepsin on CCA cells, and flow cytometry was used to evaluate the effects of romidepsin on the cell cycle and apoptosis. Moreover, the in vivo effects of romidepsin were measured in a CCA xenograft model. Results: Romidepsin could reduce the viability of CCA cells and induce G2/M cell cycle arrest and apoptosis, indicating that romidepsin has a significant antitumor effect on CCA cells in vitro. Mechanistically, the antitumor effect of romidepsin on the CCA cell lines was mediated by the induction of G2/M cell cycle arrest and promotion of cell apoptosis. The G2/M phase arrest of the CCA cells was associated with the downregulation of cyclinB and upregulation of the p-cdc2 protein, resulting in cell cycle arrest. The apoptosis of the CCA cells induced by romidepsin was attributed to the activation of caspase-3. Furthermore, romidepsin significantly inhibited the growth of the tumor volume of the CCLP-1 xenograft, indicating that romidepsin significantly inhibited the proliferation of CCA cells in vivo. Conclusions: Romidepsin suppressed the proliferation of CCA cells by inducing cell cycle arrest through cdc2/cyclinB and cell apoptosis by targeting caspase-3/PARP both in vitro and in vivo, indicating that romidepsin is a potential therapeutic agent for CCA.
Collapse
Affiliation(s)
- Pihong Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luguang Liu
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiangguo Dang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
22
|
Development of classification models for identification of important structural features of isoform-selective histone deacetylase inhibitors (class I). Mol Divers 2019; 24:1077-1094. [DOI: 10.1007/s11030-019-10013-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
|
23
|
Design, synthesis and evaluation of belinostat analogs as histone deacetylase inhibitors. Future Med Chem 2019; 11:2765-2778. [PMID: 31702394 DOI: 10.4155/fmc-2018-0587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Histone deacetylase (HDAC) is an attractive target for antitumor therapy. Therefore, the development of novel HDAC inhibitors is warranted. Materials & methods: A series of HDAC inhibitors based on N-hydroxycinnamamide fragment was designed as the clinically used belinostat analog using amide as the connecting unit. All target compounds were evaluated for their in vitro HDAC inhibitory activities and some selected compounds were tested for their antiproliferative activities. Conclusion: Among them, compound 7e showed an IC50 value of 11.5 nM in inhibiting the HDAC in a pan-HDAC assay, being the most active compound of the series.
Collapse
|
24
|
Zhao LM, Zhang JH. Histone Deacetylase Inhibitors in Tumor Immunotherapy. Curr Med Chem 2019; 26:2990-3008. [PMID: 28762309 DOI: 10.2174/0929867324666170801102124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/26/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND With an increasing understanding of the antitumor immune response, considerable progress has been made in the field of tumor immunotherapy in the last decade. Inhibition of histone deacetylases represents a new strategy in tumor therapy and histone deacetylase inhibitors have been recently developed and validated as potential antitumor drugs. In addition to the direct antitumor effects, histone deacetylase inhibitors have been found to have the ability to improve tumor recognition by immune cells that may contribute to their antitumor activity. These immunomodolutory effects are desirable, and their in-depth comprehension will facilitate the design of novel regimens with improved clinical efficacy. OBJECTIVE Our goal here is to review recent developments in the application of histone deacetylase inhibitors as immune modulators in cancer treatment. METHODS Systemic compilation of the relevant literature in this field. RESULTS & CONCLUSION In this review, we summarize recent advances in the understanding of how histone deacetylase inhibitors alter immune process and discuss their effects on various cytokines. We also discuss the challenges to optimize the use of these inhibitors as immune modulators in cancer treatment. Information gained from this review will be valuable to this field and may be helpful for designing tumor immunotherapy trials involving histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Jie-Huan Zhang
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
25
|
Role of Natural Products in Modulating Histone Deacetylases in Cancer. Molecules 2019; 24:molecules24061047. [PMID: 30884859 PMCID: PMC6471757 DOI: 10.3390/molecules24061047] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that can control transcription by modifying chromatin conformation, molecular interactions between the DNA and the proteins as well as the histone tail, through the catalysis of the acetyl functional sites removal of proteins from the lysine residues. Also, HDACs have been implicated in the post transcriptional process through the regulation of the proteins acetylation, and it has been found that HDAC inhibitors (HDACi) constitute a promising class of pharmacological drugs to treat various chronic diseases, including cancer. Indeed, it has been demonstrated that in several cancers, elevated HDAC enzyme activities may be associated with aberrant proliferation, survival and metastasis. Hence, the discovery and development of novel HDACi from natural products, which are known to affect the activation of various oncogenic molecules, has attracted significant attention over the last decade. This review will briefly emphasize the potential of natural products in modifying HDAC activity and thereby attenuating initiation, progression and promotion of tumors.
Collapse
|
26
|
Huang Y, Yang W, Zeng H, Hu C, Zhang Y, Ding N, Fan G, Shao L, Kuang B. Droxinostat sensitizes human colon cancer cells to apoptotic cell death via induction of oxidative stress. Cell Mol Biol Lett 2018; 23:34. [PMID: 30065760 PMCID: PMC6064062 DOI: 10.1186/s11658-018-0101-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023] Open
Abstract
Upregulation of histone acetylation plays a critical role in the dysregulation of transcription. It alters the structure of chromatin, which leads to the onset of cancer. Histone deacetylase inhibitors may therefore be a promising way to limit cancer progression. In this study, we examined the effects of droxinostat on the growth of HT-29 colon cancer cells. Our results show that droxinostat effectively inhibited cell growth and colony-forming ability by inducing cellular apoptosis and ROS production in HT-29 cells. Notably, the apoptotic inhibitor Z-VAD-FMK significantly decreased the levels of cellular apoptosis and the antioxidant γ-tocotrienol (GT3) significantly decreased ROS production induced by droxinostat treatment. Z-VAD-FMK and GT3 also partially reversed the negative growth effects of droxinstat on HT-29 cells. GT3 treatment decreased cellular apoptosis and increased colony-forming ability upon droxinostat administration. Z-VAD-FMK treatment also partially decreased droxinostat-induced ROS production. Our findings suggest that the effects of droxinostat on colon cancer cells are mediated by the induction of oxidative stress and apoptotic cell death.
Collapse
Affiliation(s)
- Ying Huang
- 1Jiangxi provincial key laboratory of preventive medicine, Nanchang University, Nanchang, 330006 China.,2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Wuping Yang
- 1Jiangxi provincial key laboratory of preventive medicine, Nanchang University, Nanchang, 330006 China.,2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Huihong Zeng
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Chuan Hu
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Yaqiong Zhang
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Nanhua Ding
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| | - Guangqin Fan
- 1Jiangxi provincial key laboratory of preventive medicine, Nanchang University, Nanchang, 330006 China.,3School of Public Health, Nanchang University, Nanchang, 330006 China
| | - Lijian Shao
- 1Jiangxi provincial key laboratory of preventive medicine, Nanchang University, Nanchang, 330006 China.,3School of Public Health, Nanchang University, Nanchang, 330006 China
| | - Bohai Kuang
- 2Medical School of Nanchang University, 461 Bayi Road, Nanchang, 330006 Jiangxi China
| |
Collapse
|
27
|
Leonhardt M, Sellmer A, Krämer OH, Dove S, Elz S, Kraus B, Beyer M, Mahboobi S. Design and biological evaluation of tetrahydro-β-carboline derivatives as highly potent histone deacetylase 6 (HDAC6) inhibitors. Eur J Med Chem 2018; 152:329-357. [PMID: 29738953 DOI: 10.1016/j.ejmech.2018.04.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
Abstract
Various diseases are related to epigenetic modifications. Histone deacetylases (HDACs) and histone acetyl transferases (HATs) determine the pattern of histone acetylation, and thus are involved in the regulation of gene expression. First generation histone deacetylase inhibitors (HDACi) are unselective, hinder all different kinds of zinc dependent HDACs and additionally cause several side effects. Subsequently, selective HDACi are gaining more and more interest. Especially, selective histone deacetylase 6 inhibitors (HDAC6i) are supposed to be less toxic. Here we present a successful optimization study of tubastatin A, the synthesis and biological evaluation of new inhibitors based on hydroxamic acids linked to various tetrahydro-β-carboline derivatives. The potency of our selective HDAC6 inhibitors, exhibiting IC50 values in a range of 1-10 nM towards HDAC6, was evaluated with the help of a recombinant human HDAC6 enzyme assay. Selectivity was proofed in cellular assays by the hyperacetylation of surrogate parameter α-tubulin in the absence of acetylated histone H3 analyzed by Western Blot. We show that all synthesized compounds, with varies modifications of the rigid cap group, were selective and potent HDAC6 inhibitors.
Collapse
Affiliation(s)
- Michel Leonhardt
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, 55131, Mainz, Germany
| | - Stefan Dove
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Birgit Kraus
- Institute of Pharmacy, Department of Pharmaceutical Biology, University of Regensburg, 93040, Regensburg, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, 55131, Mainz, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
28
|
Sellmer A, Stangl H, Beyer M, Grünstein E, Leonhardt M, Pongratz H, Eichhorn E, Elz S, Striegl B, Jenei-Lanzl Z, Dove S, Straub RH, Krämer OH, Mahboobi S. Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors. J Med Chem 2018; 61:3454-3477. [DOI: 10.1021/acs.jmedchem.7b01593] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Hubert Stangl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Elisabeth Grünstein
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Michel Leonhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Herwig Pongratz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Emerich Eichhorn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Birgit Striegl
- Technical University of Applied Sciences (OTH) Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), OTH and University Regensburg, 93053 Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, 60528 Frankfurt/Main, Germany
| | - Stefan Dove
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Rainer H. Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
| | - Oliver H. Krämer
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
29
|
Xie R, Tang P, Yuan Q. Rational design and characterization of a DNA/HDAC dual-targeting inhibitor containing nitrogen mustard and 2-aminobenzamide moieties. MEDCHEMCOMM 2018; 9:344-352. [PMID: 30108928 PMCID: PMC6083786 DOI: 10.1039/c7md00476a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) play a key role not only in gene expression but also in DNA repair. Herein, we report the rational design and characterization of a compound named chlordinaline containing nitrogen mustard and 2-aminobenzamide moieties as a DNA/HDAC dual-targeting inhibitor. Chlordinaline exhibited moderate total HDAC inhibitory activity. The HDAC isoform selectivity assay indicated that chlordinaline mostly inhibits HDAC3. Chlordinaline exhibited both DNA and HDAC inhibitory activities and showed potent antiproliferative activity against all the six test cancer cell lines with IC50 values of as low as 3.1-14.2 μM, which is significantly more potent than reference drugs chlorambucil and tacedinaline. Chlordinaline could induce the apoptosis and G2/M phase cell cycle arrest of A375 cancer cells. This study demonstrates that combining nitrogen mustard and 2-aminobenzamide moieties into one molecule is an effective method to obtain DNA/HDAC dual-targeting inhibitors as potent antitumor agents. Chlordinaline as the first example of such DNA/HDAC dual-targeting inhibitors could be a promising candidate for cancer therapy and could also be a lead compound for further optimization.
Collapse
Affiliation(s)
- Rui Xie
- Beijing Laboratory of Biomedical Materials , College of Life Science and Technology , Beijing University of Chemical Technology , 15 Beisanhuan East Road , Beijing 100029 , China .
| | - Pingwah Tang
- Beijing Laboratory of Biomedical Materials , College of Life Science and Technology , Beijing University of Chemical Technology , 15 Beisanhuan East Road , Beijing 100029 , China .
| | - Qipeng Yuan
- Beijing Laboratory of Biomedical Materials , College of Life Science and Technology , Beijing University of Chemical Technology , 15 Beisanhuan East Road , Beijing 100029 , China .
| |
Collapse
|
30
|
Pham-The H, Casañola-Martin G, Diéguez-Santana K, Nguyen-Hai N, Ngoc NT, Vu-Duc L, Le-Thi-Thu H. Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:199-220. [PMID: 28332438 DOI: 10.1080/1062936x.2017.1294198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/08/2017] [Indexed: 05/22/2023]
Abstract
Histone deacetylases (HDAC) are emerging as promising targets in cancer, neuronal diseases and immune disorders. Computational modelling approaches have been widely applied for the virtual screening and rational design of novel HDAC inhibitors. In this study, different machine learning (ML) techniques were applied for the development of models that accurately discriminate HDAC2 inhibitors form non-inhibitors. The obtained models showed encouraging results, with the global accuracy in the external set ranging from 0.83 to 0.90. Various aspects related to the comparison of modelling techniques, applicability domain and descriptor interpretations were discussed. Finally, consensus predictions of these models were used for screening HDAC2 inhibitors from four chemical libraries whose bioactivities against HDAC1, HDAC3, HDAC6 and HDAC8 have been known. According to the results of virtual screening assays, structures of some hits with pair-isoform-selective activity (between HDAC2 and other HDACs) were revealed. This study illustrates the power of ML-based QSAR approaches for the screening and discovery of potent, isoform-selective HDACIs.
Collapse
Affiliation(s)
- H Pham-The
- a Hanoi University of Pharmacy , Hanoi , Vietnam
| | - G Casañola-Martin
- b Department of Systems and Computer Engineering , Carleton University , Ottawa , ON , Canada
| | - K Diéguez-Santana
- c Faculty of Life Sciences , Amazonian State University , Puyo , Pastaza , Ecuador
| | - N Nguyen-Hai
- a Hanoi University of Pharmacy , Hanoi , Vietnam
| | - N T Ngoc
- a Hanoi University of Pharmacy , Hanoi , Vietnam
| | - L Vu-Duc
- d School of Medicine and Pharmacy, Vietnam National University , Hanoi , Vietnam
| | - H Le-Thi-Thu
- d School of Medicine and Pharmacy, Vietnam National University , Hanoi , Vietnam
| |
Collapse
|
31
|
Zang J, Shi B, Liang X, Gao Q, Xu W, Zhang Y. Development of N-hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg Med Chem 2016; 25:2666-2675. [PMID: 28336407 DOI: 10.1016/j.bmc.2016.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/22/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) are promising in the treatment of various diseases, among which cancer treatment has achieved the most success. We have previously developed series of HDACIs combining N-hydroxycinnamamide bioactive fragment and indole bioactive fragment, which showed moderate to potent antitumor activities. Herein, further structural derivatization based on our previous structure-activity relationship (SAR) got 25 novel compounds. Most compounds showed much more potent histone deacetylases (HDACs) inhibitory activity than their parent compound 1 and even the positive control SAHA. What's more, compared with the approved HDACs inhibitor SAHA, compounds 6i, 6k, 6q and 6t displayed better in vitro antiproliferation against multiple tumor cell lines. It is worth noting that though the 4-hydroxycinnamic acid-based compound 2 showed HDAC1/3 dual selectivity, its 4-hydroxy-3-methoxycinnamic acid-based analog 6t turned out to be a pan-HDACs inhibitor as SAHA, indicating that the 3-methoxy group on the N-hydroxycinnamamide fragment could dramatically influence the HDACs isoform selectivity of this series of compounds.
Collapse
Affiliation(s)
- Jie Zang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Baowen Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Xuewu Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Qianwen Gao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China.
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
32
|
Biological Activity of Spirocyclic Hydroxamic Acids. Bull Exp Biol Med 2016; 162:228-230. [DOI: 10.1007/s10517-016-3582-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 10/20/2022]
|
33
|
Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochem Res 2016; 42:876-890. [PMID: 27882448 PMCID: PMC5357501 DOI: 10.1007/s11064-016-2110-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Sirtuins (SIRT1-SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD+ levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD+-dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer's disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Przemysław Wencel
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland.
| | - Joanna B Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| |
Collapse
|
34
|
Goracci L, Deschamps N, Randazzo GM, Petit C, Dos Santos Passos C, Carrupt PA, Simões-Pires C, Nurisso A. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors. Sci Rep 2016; 6:29086. [PMID: 27404291 PMCID: PMC4941420 DOI: 10.1038/srep29086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.
Collapse
Affiliation(s)
- Laura Goracci
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland.,Laboratory for Cheminformatics and Molecular Modeling, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Nathalie Deschamps
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Giuseppe Marco Randazzo
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Charlotte Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Carolina Dos Santos Passos
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Claudia Simões-Pires
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland.,Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| |
Collapse
|
35
|
Li J, Li X, Wang X, Hou J, Zang J, Gao S, Xu W, Zhang Y. PXD101 analogs with L-phenylglycine-containing branched cap as histone deacetylase inhibitors. Chem Biol Drug Des 2016; 88:574-84. [PMID: 27235003 DOI: 10.1111/cbdd.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs) allow histones to wrap DNA more tightly and finally lead to the repression of some tumor suppressor genes. Histone deacetylase inhibitors (HDACIs) have been proved to have effects on tumorigenesis and tumor progression. In this study, we reported the design, synthesis, and in vitro activity evaluation of novel PXD101 analogs with L-phenylglycine-containing cap as HDACIs. Our results showed that HDACs inhibitory activities of compounds 10k, 10r, and 10s were not only superior to the first approved HDACI SAHA, but also comparable to their parent compound PXD101, a recently approved HDACI in 2014. However, all 6 selected PXD101 analogs exhibited moderate in vitro antiproliferative activities, less potent than PXD101 and SAHA. Representative compound 10s showed similar HDACs isoform selective profile to PXD101, which demonstrated that introduction of L-phenylglycine-containing branched cap group could not change the isoform selectivity of PXD101 dramatically.
Collapse
Affiliation(s)
- Jingyao Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | - Xiaoyang Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | - Xue Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | - Jinning Hou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | - Jie Zang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | - Shuai Gao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China.
| |
Collapse
|
36
|
Purwin M, Hernández-Toribio J, Coderch C, Panchuk R, Skorokhyd N, Filipiak K, de Pascual-Teresa B, Ramos A. Design and synthesis of novel dual-target agents for HDAC1 and CK2 inhibition. RSC Adv 2016. [DOI: 10.1039/c6ra09717k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drug entities able to address multiple targets can be more effective than those directed to just one biological target.
Collapse
Affiliation(s)
- M. Purwin
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - J. Hernández-Toribio
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - C. Coderch
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - R. Panchuk
- Institute of Cell Biology
- NAS of Ukraine
- 79005 Lviv
- Ukraine
| | - N. Skorokhyd
- Institute of Cell Biology
- NAS of Ukraine
- 79005 Lviv
- Ukraine
| | - K. Filipiak
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - B. de Pascual-Teresa
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - A. Ramos
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| |
Collapse
|
37
|
Itoh Y, Suzuki M, Matsui T, Ota Y, Hui Z, Tsubaki K, Suzuki T. False HDAC Inhibition by Aurone Compound. Chem Pharm Bull (Tokyo) 2016; 64:1124-8. [DOI: 10.1248/cpb.c16-00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Miki Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Taiji Matsui
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University
| | - Yosuke Ota
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Zi Hui
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kazunori Tsubaki
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
38
|
Leoni A, Locatelli A, Morigi R, Rambaldi M. 2-Indolinone a versatile scaffold for treatment of cancer: a patent review (2008-2014). Expert Opin Ther Pat 2015; 26:149-73. [PMID: 26561198 DOI: 10.1517/13543776.2016.1118059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION 2-Indolinone is a well-known aromatic heterocyclic organic compound. A lot of work has been done on this bicyclic structure by academic and company researchers to synthesize compounds directed to a plethora of molecular targets in order to discover new drug leads. This review presents up-to-date information in the field of cancer therapy research based on this small building block. AREAS COVERED The present review gives an account of the recent patent literature (2008-2014) describing the discovery of 2-indolinone derivatives with selected therapeutic activities. In this period, a large amount of patents were published on this topic. We have limited the analysis to 37 patents on 2-indolinone derivatives having potential clinical application as chemotherapeutic agents. In this review, the therapeutic applications of 2-indolinone derivatives for the treatment of cancer reported in international patents have been discussed. EXPERT OPINION 2-Indolinone is the scaffold of the compounds considered from a medicinal chemistry perspective. Many of them have been developed and marketed for therapeutic use. In cancer chemotherapy, progress has been made in designing selective 2-indolinone derivatives. Some of them show preclinical efficacy. However, 2-indolinone has not exhausted all of its potential in the development of new compounds for clinical applications and remains a great tool for future research.
Collapse
Affiliation(s)
- Alberto Leoni
- a Dipartimento di Farmacia e Biotecnologie , Università degli Studi di Bologna , Bologna , Italy
| | - Alessandra Locatelli
- a Dipartimento di Farmacia e Biotecnologie , Università degli Studi di Bologna , Bologna , Italy
| | - Rita Morigi
- a Dipartimento di Farmacia e Biotecnologie , Università degli Studi di Bologna , Bologna , Italy
| | - Mirella Rambaldi
- a Dipartimento di Farmacia e Biotecnologie , Università degli Studi di Bologna , Bologna , Italy
| |
Collapse
|
39
|
Gupta SP. QSAR Studies on Hydroxamic Acids: A Fascinating Family of Chemicals with a Wide Spectrum of Activities. Chem Rev 2015; 115:6427-90. [DOI: 10.1021/cr500483r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Satya P. Gupta
- Department of Applied Sciences, National Institute of Technical Teachers’ Training and Research, Shamla
Hills, Bhopal-462002, India
| |
Collapse
|
40
|
A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells. Biomed Pharmacother 2015; 71:70-8. [DOI: 10.1016/j.biopha.2015.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022] Open
|
41
|
Li X, Cai Q, Mei H, Zhou X, Shen Y, Li D, Liu W. The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans. J Antimicrob Chemother 2015; 70:1993-2003. [DOI: 10.1093/jac/dkv070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
|
42
|
Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2015; 20:3898-941. [PMID: 25738536 PMCID: PMC4372801 DOI: 10.3390/molecules20033898] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/04/2023] Open
Abstract
Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Madhusoodanan Mottamal
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Tien L Huang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|
43
|
Trichostatin A effectively induces apoptosis in chronic lymphocytic leukemia cells via inhibition of Wnt signaling and histone deacetylation. J Cancer Res Clin Oncol 2014; 140:1283-93. [PMID: 24793644 DOI: 10.1007/s00432-014-1689-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/17/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND The ontogenetic Wnt pathway shows almost no activity in adult tissues. In contrast, chronic lymphocytic leukemia (CLL) cells show constitutionally active Wnt signaling, which is associated with upregulated levels of pathway members such as Wnt3 and lymphoid enhancer-binding factor-1. Functionally, this results in increased resistance to apoptosis. We therefore assumed that targeting members of the pathway could reveal new therapeutic options for the treatment of CLL. METHODS Screening a Wnt compound library with 75 Wnt modulators via ATP assay revealed Trichostatin A as an outstanding substance with strong viability decreasing effects on CLL cells and little effect on healthy peripheral blood mononuclear cells (PBMCs). Further survival analysis was performed via fluorescence-activated cell sorting analysis. RESULTS A maximum effect was achieved after 48 h with a wide therapeutic window in contrast to PBMCs (CLL cells: 0.253 µM, PBMCs: 145.22 µM). Trichostatin A induced caspases and acted via a dual mechanism to reveal histone and non-histone targets. Histone targets were displayed in deacetylation inhibition at DNA level, and non-histone targeting was demonstrated by elevated levels of Dickkopf-related protein 1 mRNA. Primary cells of patients with critical mutations such as TP53 or those who had already undergone extensive previous treatment responded well to the treatment. Moreover, the approved histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA) was not as effective as Trichostatin A (Trichostatin A: 0.253 µM, SAHA: 7.88 µM). Combining Trichostatin A with established CLL drugs fludarabine or bendamustine showed an additive effect in vitro. CONCLUSION Taken together, Trichostatin A appears to act via a dual anti-HDAC/Wnt mechanism with a high selectivity and efficacy in CLL and therefore warrants further investigation.
Collapse
|
44
|
Lu W, Wang F, Zhang T, Dong J, Gao H, Su P, Shi Y, Zhang J. Search for novel histone deacetylase inhibitors. Part II: Design and synthesis of novel isoferulic acid derivatives. Bioorg Med Chem 2014; 22:2707-13. [DOI: 10.1016/j.bmc.2014.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
45
|
Acetylation regulates Jun protein turnover in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1218-24. [PMID: 23891849 DOI: 10.1016/j.bbagrm.2013.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022]
Abstract
C-Jun is a major transcription factor belonging to the activating protein 1 (AP-1) family. Phosphorylation has been shown to be critical for c-Jun activation and stability. Here, we report that Jra, the Drosophila Jun protein, is acetylated in vivo. We demonstrate that the acetylation of Jra leads to its rapid degradation in response to osmotic stress. Intriguingly, we also found that Jra phosphorylation antagonized its acetylation, indicating the opposite roles of acetylation and phosphorylation in Jra degradation process under osmotic stress. Our results provide new insights into how c-Jun proteins are precisely regulated by the interplay of different posttranslational modifications.
Collapse
|
46
|
Marastoni E, Bartoli S, Berettoni M, Cipollone A, Ettorre A, Fincham CI, Mauro S, Paris M, Porcelloni M, Bigioni M, Binaschi M, Nardelli F, Parlani M, Maggi CA, Fattori D. Benzofused hydroxamic acids: Useful fragments for the preparation of histone deacetylase inhibitors. Part 1: Hit identification. Bioorg Med Chem Lett 2013; 23:4091-5. [DOI: 10.1016/j.bmcl.2013.05.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/26/2022]
|
47
|
Abstract
Histone deacetylases (HDACs) have emerged as important drug targets in epigenetics. The most common HDAC inhibitors use hydroxamic acids as zinc binding groups despite unfavorable pharmacokinetic properties. A two-stage protocol of M05-2X calculations of a library of 48 fragments in a small model active site, followed by QM/MM hybrid calculations of the full enzyme with selected binders, is used to prospectively select potential bidentate zinc binders. The energetics and interaction patterns of several zinc binders not previously used for the inhibition of HDACs are discussed.
Collapse
Affiliation(s)
- Kai Chen
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liping Xu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Olaf Wiest
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| |
Collapse
|
48
|
|
49
|
Saha A, Pandian GN, Sato S, Taniguchi J, Hashiya K, Bando T, Sugiyama H. Synthesis and biological evaluation of a targeted DNA-binding transcriptional activator with HDAC8 inhibitory activity. Bioorg Med Chem 2013; 21:4201-9. [PMID: 23719282 DOI: 10.1016/j.bmc.2013.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/30/2022]
Abstract
Development of multifunctional transcriptional activators is of increasing importance as they could trigger complicated gene networks. Recently, we developed a differential gene activating multifunctional small molecule SAHA-PIP (Sδ) by conjugating a histone deacetylase (HDAC) inhibitor, SAHA, to a selective DNA-binding pyrrole-imidazole polyamide (PIP). Epigenetic activity of Sδ was attributed to the active metal-binding (-NHOH) domain of SAHA. We synthesized a derivative of Sδ, called Jδ to evaluate the role of surface recognition domain (-phenyl) of SAHA in Sδ-mediated transcriptional activation. In vitro studies revealed that Jδ displayed potent inhibitory activity against HDAC8. Jδ retained the pluripotency gene-inducing ability of Sδ when used alone and in combination with Sδ; a notable increase in the pluripotency gene expression was observed. Interestingly, Jδ significantly induced the expression of HDAC8-controlled Otx2 and Lhx1. Our results suggest that the epigenetic activity of our multifunctional molecule could be altered to improve its efficiency as a transcriptional activator for intricate gene network(s).
Collapse
Affiliation(s)
- Abhijit Saha
- Department of Science, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2013; 1:192-8. [PMID: 23514803 PMCID: PMC3559235 DOI: 10.1089/biores.2012.0223] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
Collapse
Affiliation(s)
- Kosta Steliou
- PhenoMatriX, Inc. , Boston, Massachusetts. ; Cancer Research Center, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|