1
|
Kang M, Lee S, Seo JP, Lee EB, Ahn D, Shin J, Paik YK, Jo D. Cell-permeable bone morphogenetic protein 2 facilitates bone regeneration by promoting osteogenesis. Mater Today Bio 2024; 25:100983. [PMID: 38327977 PMCID: PMC10848039 DOI: 10.1016/j.mtbio.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
The use of the FDA-approved osteoinductive growth factor BMP2 is widespread for bone regeneration. However, its clinical application has been hindered by limitations in cell permeability and a short half-life in circulation. To address this issue, we have developed a modified version of BMP2, referred to as Cell Permeable (CP)-BMP2, which possesses improved cell permeability. CP-BMP2 incorporates an advanced macromolecular transduction domain (aMTD) to facilitate transfer across the plasma membrane, a solubilization domain, and recombinant human BMP2. Compared to traditional rhBMP2, CP-BMP2 exhibits enhanced cell permeability, solubility, and bioavailability, and activates Smad phosphorylation through binding to BMP receptor 2. The effectiveness of CP-BMP2 was evaluated in three animal studies focusing on bone regeneration. In the initial study, mice and rabbits with critical-size calvarial defects received subcutaneous (SC) injections of CP-BMP2 and rhBMP2 (7.5 mg/kg, 3 injections per week for 8 weeks).Following 8 weeks of administration, CP-BMP2 demonstrated a remarkable 65 % increase in bone formation in mice when compared to both the vehicle and rhBMP2. Moreover, rabbits exhibited faster bone formation, characterized by a filling pattern originating from the center. In a subsequent study involving injured horses, hind limb bones treated with CP-BMP2 exhibited an 85 % higher bone regeneration rate, as evidenced by Micro-CT results, in contrast to horses treated with the vehicle or rhBMP2 (administered at 150 μg/defect, subcutaneously, once a week for 8 weeks, without a scaffold). These results underscore the potential of CP-BMP2 to facilitate rapid and effective healing. No noticeable adverse effects, such as ectopic bone formation, were observed in any of the studies. Overall, our findings demonstrate that CP-BMP2 holds therapeutic potential as a novel and effective osteogenic agent.
Collapse
Affiliation(s)
- Mingu Kang
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Seokwon Lee
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Jong-pil Seo
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Eun-bee Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Daye Ahn
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Jisoo Shin
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Young-Ki Paik
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| |
Collapse
|
2
|
Rzhepakovsky I, Anusha Siddiqui S, Avanesyan S, Benlidayi M, Dhingra K, Dolgalev A, Enukashvily N, Fritsch T, Heinz V, Kochergin S, Nagdalian A, Sizonenko M, Timchenko L, Vukovic M, Piskov S, Grimm W. Anti-arthritic effect of chicken embryo tissue hydrolyzate against adjuvant arthritis in rats (X-ray microtomographic and histopathological analysis). Food Sci Nutr 2021; 9:5648-5669. [PMID: 34646534 PMCID: PMC8498067 DOI: 10.1002/fsn3.2529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Finding new, safe strategies to prevent and control rheumatoid arthritis is an urgent task. Bioactive peptides and peptide-rich protein hydrolyzate represent a new trend in the development of functional foods and nutraceuticals. The resulting tissue hydrolyzate of the chicken embryo (CETH) has been evaluated for acute toxicity and tested against chronic arthritis induced by Freund's full adjuvant (modified Mycobacterium butyricum) in rats. The antiarthritic effect of CETH was studied on the 28th day of the experiment after 2 weeks of oral administration of CETH at doses of 60 and 120 mg/kg body weight. Arthritis was evaluated on the last day of the experiment on the injected animal paw using X-ray computerized microtomography and histopathology analysis methods. The CETH effect was compared with the non-steroidal anti-inflammatory drug diclofenac sodium (5 mg/kg). Oral administration of CETH was accompanied by effective dose-dependent correction of morphological changes caused by the adjuvant injection. CETH had relatively high recovery effects in terms of parameters for reducing inflammation, inhibition of osteolysis, reduction in the inflammatory reaction of periarticular tissues, and cartilage degeneration. This study presents for the first time that CETH may be a powerful potential nutraceutical agent or bioactive component in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Igor Rzhepakovsky
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and SustainabilityStraubingGermany
- DIL e.V. German Institute of Food TechnologiesQuakenbrückGermany
| | - Svetlana Avanesyan
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Mehmet Benlidayi
- Faculty of DentistryDepartment of Oral and Maxillofacial SurgeryCukurova UniversitySarıçam/AdanaTurkey
| | - Kunaal Dhingra
- Division of PeriodonticsCentre for Dental Education and ResearchAll India Institute of Medical SciencesNew DelhiIndia
| | - Alexander Dolgalev
- Department of General Dentistry and Pediatric DentistryStavropol State Medical UniversityStavropolRussia
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | | | - Tilman Fritsch
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | - Volker Heinz
- DIL e.V. German Institute of Food TechnologiesQuakenbrückGermany
| | | | - Andrey Nagdalian
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Marina Sizonenko
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Lyudmila Timchenko
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Marko Vukovic
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
| | - Sergey Piskov
- Institute of Live ScienceNorth Caucasus Federal UniversityStavropolRussia
| | - Wolf‐Dieter Grimm
- Center for Innovation and Technology TransferStavropol State Medical UniversityStavropolRussian Federation
- Periodontology, School of Dental MedicineFaculty of HealthWitten/Herdecke UniversityWittenGermany
| |
Collapse
|
3
|
Nielsen JJ, Low SA, Ramseier NT, Hadap RV, Young NA, Wang M, Low PS. Analysis of the bone fracture targeting properties of osteotropic ligands. J Control Release 2021; 329:570-584. [PMID: 33031877 DOI: 10.1016/j.jconrel.2020.09.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Although more than 18,000,000 fractures occur each year in the US, methods to promote fracture healing still rely primarily on fracture stabilization, with use of bone anabolic agents to accelerate fracture repair limited to rare occasions when the agent can be applied to the fracture surface. Because management of broken bones could be improved if bone anabolic agents could be continuously applied to a fracture over the entire course of the healing process, we undertook to identify strategies that would allow selective concentration of bone anabolic agents on a fracture surface following systemic administration. Moreover, because hydroxyapatite is uniquely exposed on a broken bone, we searched for molecules that would bind with high affinity and specificity for hydroxyapatite. We envisioned that by conjugating such osteotropic ligands to a bone anabolic agent, we could acquire the ability to continuously stimulate fracture healing. RESULTS Although bisphosphonates and tetracyclines were capable of localizing small amounts of peptidic payloads to fracture surfaces 2-fold over healthy bone, their specificities and capacities for drug delivery were significantly inferior to subsequent other ligands, and were therefore considered no further. In contrast, short oligopeptides of acidic amino acids were found to localize a peptide payload to a bone fracture 91.9 times more than the control untargeted peptide payload. Furthermore acidic oligopeptides were observed to be capable of targeting all classes of peptides, including hydrophobic, neutral, cationic, anionic, short oligopeptides, and long polypeptides. We further found that highly specific bone fracture targeting of multiple peptidic cargoes can be achieved by subcutaneous injection of the construct. CONCLUSIONS Using similar constructs, we anticipate that healing of bone fractures in humans that have relied on immobilization alone can be greately enhanced by continuous stimulation of bone growth using systemic administration of fracture-targeted bone anabolic agents.
Collapse
Affiliation(s)
- Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Stewart A Low
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Neal T Ramseier
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Rahul V Hadap
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Nicholas A Young
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Mingding Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Philip S Low
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America; Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|
4
|
Xue ST, Zhang L, Xie ZS, Jin J, Guo HF, Yi H, Liu ZY, Li ZR. Substituted benzothiophene and benzofuran derivatives as a novel class of bone morphogenetic Protein-2 upregulators: Synthesis, anti-osteoporosis efficacies in ovariectomized rats and a zebrafish model, and ADME properties. Eur J Med Chem 2020; 200:112465. [DOI: 10.1016/j.ejmech.2020.112465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
|
5
|
Guo D, Liu W, Zhang X, Zhao M, Zhu B, Hou T, He H. Duck Egg White–Derived Peptide VSEE (Val‐Ser‐Glu‐Glu) Regulates Bone and Lipid Metabolisms by Wnt/β‐Catenin Signaling Pathway and Intestinal Microbiota. Mol Nutr Food Res 2019; 63:e1900525. [DOI: 10.1002/mnfr.201900525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/30/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Danjun Guo
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Weiwei Liu
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Xing Zhang
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Mengge Zhao
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Biyang Zhu
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Tao Hou
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| | - Hui He
- College of Food Science and TechnologyHuazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
6
|
Aghaloo TL, Tencati E, Hadaya D. Biomimetic Enhancement of Bone Graft Reconstruction. Oral Maxillofac Surg Clin North Am 2019; 31:193-205. [DOI: 10.1016/j.coms.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Xue ST, Wang YL, Han XW, Yi H, Jiang W, Si SY, Guo HF, Li ZR. Novel cathepsin K inhibitors block osteoclasts in vitro and increase spinal bone density in zebrafish. RSC Adv 2019; 9:8600-8607. [PMID: 35518710 PMCID: PMC9061869 DOI: 10.1039/c8ra10338k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/26/2019] [Indexed: 02/03/2023] Open
Abstract
Cathepsin K (Cat K) is a predominant cysteine protease and highly potent collagenase expressed in osteoclasts. Cat K inhibitors are anti-resorptive agents to treat osteoporosis. A novel scaffold of cathepsin K inhibitors, exemplified by lead compound 1x, was used as the template for designing and synthesizing a total of 61 derivatives that have not been reported before. An exploratory structure–activity relationship analysis identified the potent Cat K inhibitor A22, which displayed an IC50 value of 0.44 μM against Cat K. A22 was very specific for Cat K and caused a significantly higher in vitro inhibition of the enzyme as compared to that of lead compound 1x. A surface plasmon resonance analysis confirmed in vitro binding of A22 to Cat K. Molecular docking studies indicated several favourable interaction sites for A22 within the active pocket of Cat K. Furthermore, A22 also blocked active osteoclasts in vitro and increased spinal bone density in zebrafish, in which it showed an activity that was higher than that of the marketed therapeutic bone metabolizer etidronate disodium. A22 represents a very promising lead compound for the development of novel antiresorptive agents functioning as orthosteric inhibitors of Cat K. Cathepsin K (Cat K) is a predominant cysteine protease and highly potent collagenase expressed in osteoclasts.![]()
Collapse
Affiliation(s)
- Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Ya-Li Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Xiao-Wan Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Hong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Wei Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Shu-Yi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Hui-Fang Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100050 China
| |
Collapse
|
8
|
Engineering PEG-fatty acid stapled, long-acting peptide agonists for G protein-coupled receptors. Methods Enzymol 2019; 622:183-200. [DOI: 10.1016/bs.mie.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Wang M, Park S, Nam Y, Nielsen J, Low SA, Srinivasarao M, Low PS. Bone-Fracture-Targeted Dasatinib-Oligoaspartic Acid Conjugate Potently Accelerates Fracture Repair. Bioconjug Chem 2018; 29:3800-3809. [PMID: 30380292 DOI: 10.1021/acs.bioconjchem.8b00660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Approximately 6.3 million bone fractures occur annually in the United States, resulting in considerable morbidity, deterioration in quality of life, loss of productivity and wages, and sometimes death (e.g., hip fractures). Although anabolic and antiresorptive agents have been introduced for treatment of osteoporosis, no systemically administered drug has been developed to accelerate the fracture-healing process. To address this need, we have undertaken to target a bone anabolic agent selectively to fracture surfaces in order to concentrate the drug's healing power directly on the fracture site. We report here that conjugation of dasatinib to a bone fracture-homing oligopeptide via a releasable linker reduces fractured femur healing times in mice by ∼60% without causing overt off-target toxicity or remodeling of nontraumatized bones. Thus, achievement of healthy bone density, normal bone volume, and healthy bone mechanical properties at the fracture site is realized after only 3-4 weeks in dasatinib-targeted mice, but it requires ∼8 weeks in PBS-treated controls. We conclude that targeting of dasatinib to bone fracture surfaces can significantly accelerate the healing process at dasatinib concentrations that are known to be safe in oncological applications.
Collapse
Affiliation(s)
- Mingding Wang
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Soie Park
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Yoonhee Nam
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Jeffery Nielsen
- College of Pharmacy , Purdue University , 575 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States
| | - Stewart A Low
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Madduri Srinivasarao
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Philip S Low
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States.,Institute for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
10
|
Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A 2018; 106:2552-2562. [PMID: 29689623 DOI: 10.1002/jbm.a.36433] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Depending on the duration of healing process, 5-10% of bone fractures may result in either nonunion or delayed union. Because nonunions remain a clinically important problem, there is interest in the utilization of tissue engineering strategies to augment bone fracture repair. Three basic biologic elements that are required for bone regeneration include cells, extracellular matrix scaffolds and biological adjuvants for growth, differentiation and angiogenesis. Mesenchymal stem cells (MSCs) are capable to differentiate into various types of the cells including chondrocytes, myoblasts, osteoblasts, and adipocytes. Due to their potential for multilineage differentiation, MSCs are considered important contributors in bone tissue engineering research. In this review we highlight the progress in the application of biomaterials, stem cells and tissue engineering in promoting nonunion bone fracture healing. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2551-2561, 2018.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Behravan
- Exceptionally Talented Students Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Li S, Xu Y, Yu J, Becker ML. Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials 2017; 141:176-187. [DOI: 10.1016/j.biomaterials.2017.06.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 12/28/2022]
|
12
|
Park YE, Musson DS, Naot D, Cornish J. Cell–cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017; 34:21-35. [DOI: 10.1016/j.coph.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
13
|
Amso Z, Kowalczyk R, Watson M, Park YE, Callon KE, Musson DS, Cornish J, Brimble MA. Structure activity relationship study on the peptide hormone preptin, a novel bone-anabolic agent for the treatment of osteoporosis. Org Biomol Chem 2016; 14:9225-9238. [PMID: 27488745 DOI: 10.1039/c6ob01455k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preptin is a 34-residue pancreatic hormone shown to be anabolic to bone in vitro and in vivo. The bone activity of preptin resides within the (1-16) N-terminal fragment. Due to its peptidic nature, the truncated fragment of preptin is enzymatically unstable; however it provides an attractive framework for the creation of stable analogues using various peptidomimetic techniques. An alanine scan of preptin (1-16) was undertaken which showed that substitution of Ser at position 3 or Pro at position 14 did not inhibit the proliferative activity of preptin in primary rat osteoblasts (bone-forming cells). Importantly, Ser-3 to Ala substitution also showed a significant activity on osteoblast differentiation in vitro and increased the formation of mineralised bone matrix. Additional modifications with non-proteinogenic amino acids at position 3 improved the stability in liver microsomes, but diminished the osteoblast proliferative activity. In addition, to provide greater structural diversity, a series of macrocyclic preptin (1-16) analogues was synthesised using head-to-tail and head-to-side chain macrolactamisation as well as ring-closing metathesis. However, a detrimental effect on osteoblast activity was observed upon macrocyclisation.
Collapse
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Amso Z, Kowalczyk R, Park YE, Watson M, Lin JM, Musson DS, Cornish J, Brimble MA. Synthesis and in vitro bone cell activity of analogues of the cyclohexapeptide dianthin G. Org Biomol Chem 2016; 14:6231-43. [PMID: 27264279 DOI: 10.1039/c6ob00983b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cyclohexapeptide natural product dianthin G promotes osteoblast (bone-forming cell) proliferation in vitro at nanomolar concentrations, and is therefore considered a promising candidate for the treatment of osteoporosis. An N(α)-methyl amide bond scan of dianthin G was performed to probe the effect of modifying amide bonds on osteoblast proliferation. In addition, to provide greater structural diversity, a series of dicarba dianthin G analogues was synthesised using ring closing metathesis. Dianthin G and one novel dicarba analogue increased the number of human osteoblasts and importantly they did not increase osteoclast (bone-resorbing cell) differentiation in bone marrow cells.
Collapse
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|