1
|
Sanchis-Juan A, Megy K, Stephens J, Armirola Ricaurte C, Dewhurst E, Low K, French CE, Grozeva D, Stirrups K, Erwood M, McTague A, Penkett CJ, Shamardina O, Tuna S, Daugherty LC, Gleadall N, Duarte ST, Hedrera-Fernández A, Vogt J, Ambegaonkar G, Chitre M, Josifova D, Kurian MA, Parker A, Rankin J, Reid E, Wakeling E, Wassmer E, Woods CG, Raymond FL, Carss KJ. Genome sequencing and comprehensive rare-variant analysis of 465 families with neurodevelopmental disorders. Am J Hum Genet 2023; 110:1343-1355. [PMID: 37541188 PMCID: PMC10432178 DOI: 10.1016/j.ajhg.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023] Open
Abstract
Despite significant progress in unraveling the genetic causes of neurodevelopmental disorders (NDDs), a substantial proportion of individuals with NDDs remain without a genetic diagnosis after microarray and/or exome sequencing. Here, we aimed to assess the power of short-read genome sequencing (GS), complemented with long-read GS, to identify causal variants in participants with NDD from the National Institute for Health and Care Research (NIHR) BioResource project. Short-read GS was conducted on 692 individuals (489 affected and 203 unaffected relatives) from 465 families. Additionally, long-read GS was performed on five affected individuals who had structural variants (SVs) in technically challenging regions, had complex SVs, or required distal variant phasing. Causal variants were identified in 36% of affected individuals (177/489), and a further 23% (112/489) had a variant of uncertain significance after multiple rounds of re-analysis. Among all reported variants, 88% (333/380) were coding nuclear SNVs or insertions and deletions (indels), and the remainder were SVs, non-coding variants, and mitochondrial variants. Furthermore, long-read GS facilitated the resolution of challenging SVs and invalidated variants of difficult interpretation from short-read GS. This study demonstrates the value of short-read GS, complemented with long-read GS, in investigating the genetic causes of NDDs. GS provides a comprehensive and unbiased method of identifying all types of variants throughout the nuclear and mitochondrial genomes in individuals with NDD.
Collapse
Affiliation(s)
- Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Stephens
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Camila Armirola Ricaurte
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Eleanor Dewhurst
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kayyi Low
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Detelina Grozeva
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Kathleen Stirrups
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marie Erwood
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Amy McTague
- Molecular Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Christopher J Penkett
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Olga Shamardina
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Louise C Daugherty
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nicholas Gleadall
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sofia T Duarte
- Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | | | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Gautam Ambegaonkar
- Child Development Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Manali Chitre
- Clinical Medical School, University of Cambridge, Cambridge, UK
| | | | - Manju A Kurian
- Molecular Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alasdair Parker
- Clinical Medical School, University of Cambridge, Cambridge, UK; Child Development Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Evan Reid
- Cambridge Institute for Medical Research and Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Emma Wakeling
- North West Thames Regional Genetics Service, Harrow, UK
| | - Evangeline Wassmer
- Neurology Department, Birmingham Women and Children's Hospital, Birmingham, UK
| | - C Geoffrey Woods
- Clinical Medical School, University of Cambridge, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - F Lucy Raymond
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK.
| | - Keren J Carss
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
2
|
Hasenahuer MA, Sanchis-Juan A, Laskowski RA, Baker JA, Stephenson JD, Orengo CA, Raymond FL, Thornton JM. Mapping the Constrained Coding Regions in the Human Genome to Their Corresponding Proteins. J Mol Biol 2023; 435:167892. [PMID: 36410474 PMCID: PMC9875310 DOI: 10.1016/j.jmb.2022.167892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
Constrained Coding Regions (CCRs) in the human genome have been derived from DNA sequencing data of large cohorts of healthy control populations, available in the Genome Aggregation Database (gnomAD) [1]. They identify regions depleted of protein-changing variants and thus identify segments of the genome that have been constrained during human evolution. By mapping these DNA-defined regions from genomic coordinates onto the corresponding protein positions and combining this information with protein annotations, we have explored the distribution of CCRs and compared their co-occurrence with different protein functional features, previously annotated at the amino acid level in public databases. As expected, our results reveal that functional amino acids involved in interactions with DNA/RNA, protein-protein contacts and catalytic sites are the protein features most likely to be highly constrained for variation in the control population. More surprisingly, we also found that linear motifs, linear interacting peptides (LIPs), disorder-order transitions upon binding with other protein partners and liquid-liquid phase separating (LLPS) regions are also strongly associated with high constraint for variability. We also compared intra-species constraints in the human CCRs with inter-species conservation and functional residues to explore how such CCRs may contribute to the analysis of protein variants. As has been previously observed, CCRs are only weakly correlated with conservation, suggesting that intraspecies constraints complement interspecies conservation and can provide more information to interpret variant effects.
Collapse
Affiliation(s)
- Marcia A. Hasenahuer
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK,Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK,Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK,Corresponding author at: European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK. @MarHasenahuer
| | - Alba Sanchis-Juan
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge CB2 0XY, UK,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Roman A. Laskowski
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - James A. Baker
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - James D. Stephenson
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Christine A. Orengo
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - F. Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Janet M. Thornton
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| |
Collapse
|
3
|
Caswell RC, Gunning AC, Owens MM, Ellard S, Wright CF. Assessing the clinical utility of protein structural analysis in genomic variant classification: experiences from a diagnostic laboratory. Genome Med 2022; 14:77. [PMID: 35869530 PMCID: PMC9308257 DOI: 10.1186/s13073-022-01082-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The widespread clinical application of genome-wide sequencing has resulted in many new diagnoses for rare genetic conditions, but testing regularly identifies variants of uncertain significance (VUS). The remarkable rise in the amount of genomic data has been paralleled by a rise in the number of protein structures that are now publicly available, which may have clinical utility for the interpretation of missense and in-frame insertions or deletions. METHODS Within a UK National Health Service genomic medicine diagnostic laboratory, we investigated the number of VUS over a 5-year period that were evaluated using protein structural analysis and how often this analysis aided variant classification. RESULTS We found 99 novel missense and in-frame variants across 67 genes that were initially classified as VUS by our diagnostic laboratory using standard variant classification guidelines and for which further analysis of protein structure was requested. Evidence from protein structural analysis was used in the re-assessment of 64 variants, of which 47 were subsequently reclassified as pathogenic or likely pathogenic and 17 remained as VUS. We identified several case studies where protein structural analysis aided variant interpretation by predicting disease mechanisms that were consistent with the observed phenotypes, including loss-of-function through thermodynamic destabilisation or disruption of ligand binding, and gain-of-function through de-repression or escape from proteasomal degradation. CONCLUSIONS We have shown that using in silico protein structural analysis can aid classification of VUS and give insights into the mechanisms of pathogenicity. Based on our experience, we propose a generic evidence-based workflow for incorporating protein structural information into diagnostic practice to facilitate variant classification.
Collapse
Affiliation(s)
- Richard C Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK.
| | - Adam C Gunning
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
- Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, EX2 5DW, UK
| | - Martina M Owens
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
- Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, EX2 5DW, UK
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, EX2 5DW, UK.
| |
Collapse
|
4
|
French CE, Dolling H, Mégy K, Sanchis-Juan A, Kumar A, Delon I, Wakeling M, Mallin L, Agrawal S, Austin T, Walston F, Park SM, Parker A, Piyasena C, Bradbury K, Ellard S, Rowitch DH, Raymond FL. Refinements and considerations for trio whole genome sequence analysis when investigating Mendelian Diseases presenting in early childhood. HGG ADVANCES 2022; 3:100113. [PMID: 35586607 PMCID: PMC9108978 DOI: 10.1016/j.xhgg.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
To facilitate early deployment of whole-genome sequencing (WGS) for severely ill children, a standardized pipeline for WGS analysis with timely turnaround and primary care pediatric uptake is needed. We developed a bioinformatics pipeline for comprehensive gene-agnostic trio WGS analysis of children suspected of having an undiagnosed monogenic disease that included detection and interpretation of primary genetic mechanisms of disease, including SNVs/indels, CNVs/SVs, uniparental disomy (UPD), imprinted genes, short tandem repeat expansions, mobile element insertions, SMN1/2 copy number calling, and mitochondrial genome variants. We assessed primary care practitioner experience and competence in a large cohort of 521 families (comprising 90% WGS trios). Children were identified by primary practitioners for recruitment, and we used the UK index of multiple deprivation to confirm lack of patient socio-economic status ascertainment bias. Of the 521 children sequenced, 176 (34%) received molecular diagnoses, with rates as high as 45% for neurology clinics. Twenty-three of the diagnosed cases (13%) required bespoke methods beyond routine SNV/CNV analysis. In our multidisciplinary clinician user experience assessment, both pediatricians and clinical geneticists expressed strong support for rapid WGS early in the care pathway, but requested further training in determining patient selection, consenting, and variant interpretation. Rapid trio WGS provides an efficacious single-pass screening test for children when deployed by primary practitioners in clinical settings that carry high a priori risk for rare pediatric disease presentations.
Collapse
Affiliation(s)
- Courtney E. French
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Boston Children’s Hospital, Boston, MA 02115, USA
| | - Helen Dolling
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- NIHR Bioresource, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Centre for Family Research, Department of Psychology, University of Cambridge, Cambridge CB2 3RQ, UK
| | - Karyn Mégy
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- NIHR Bioresource, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Alba Sanchis-Juan
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- NIHR Bioresource, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ajay Kumar
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Isabelle Delon
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Matthew Wakeling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter EX4 4PY, UK
| | - Lucy Mallin
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Shruti Agrawal
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Topun Austin
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Florence Walston
- Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Soo-Mi Park
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Alasdair Parker
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | | | | | | | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter EX4 4PY, UK
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - David H. Rowitch
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- NIHR Bioresource, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - F. Lucy Raymond
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- NIHR Bioresource, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Corresponding author
| |
Collapse
|
5
|
Rodger C, Flex E, Allison RJ, Sanchis-Juan A, Hasenahuer MA, Cecchetti S, French CE, Edgar JR, Carpentieri G, Ciolfi A, Pantaleoni F, Bruselles A, Onesimo R, Zampino G, Marcon F, Siniscalchi E, Lees M, Krishnakumar D, McCann E, Yosifova D, Jarvis J, Kruer MC, Marks W, Campbell J, Allen LE, Gustincich S, Raymond FL, Tartaglia M, Reid E. De Novo VPS4A Mutations Cause Multisystem Disease with Abnormal Neurodevelopment. Am J Hum Genet 2020; 107:1129-1148. [PMID: 33186545 PMCID: PMC7820634 DOI: 10.1016/j.ajhg.2020.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.
Collapse
Affiliation(s)
- Catherine Rodger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Rachel J Allison
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alba Sanchis-Juan
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge CB2 0XY, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Marcia A Hasenahuer
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK; European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Courtney E French
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Roberta Onesimo
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy; Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Francesca Marcon
- Unit of Mechanisms, Biomarkers and Models, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Ester Siniscalchi
- Unit of Mechanisms, Biomarkers and Models, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Melissa Lees
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Deepa Krishnakumar
- Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Emma McCann
- Department of Clinical Genetics, Liverpool Women's Hospital, Liverpool L8 7SS, UK
| | - Dragana Yosifova
- Department of Medical Genetics, Guys' and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Joanna Jarvis
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham B15 2TG, UK
| | | | - Warren Marks
- Cook Children's Medical Centre, Fort Worth, TX 76104, USA
| | - Jonathan Campbell
- Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Essex CO4 5JL, UK
| | - Louise E Allen
- Ophthalmology Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy; Area of Neuroscience, SISSA, Trieste 34136, Italy
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy.
| | - Evan Reid
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
6
|
Yazar M, Özbek P. In Silico Tools and Approaches for the Prediction of Functional and Structural Effects of Single-Nucleotide Polymorphisms on Proteins: An Expert Review. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:23-37. [PMID: 33058752 DOI: 10.1089/omi.2020.0141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) are single-base variants that contribute to human biological variation and pathogenesis of many human diseases. Among all SNP types, nonsynonymous single-nucleotide polymorphisms (nsSNPs) can alter many structural, biochemical, and functional features of a protein such as folding characteristics, charge distribution, stability, dynamics, and interactions with other proteins/nucleotides. These modifications in the protein structure can lead nsSNPs to be closely associated with many multifactorial diseases such as cancer, diabetes, and neurodegenerative diseases. Predicting structural and functional effects of nsSNPs with experimental approaches can be time-consuming and costly; hence, computational prediction tools and algorithms are being widely and increasingly utilized in biology and medical research. This expert review examines the in silico tools and algorithms for the prediction of functional or structural effects of SNP variants, in addition to the description of the phenotypic effects of nsSNPs on protein structure, association between pathogenicity of variants, and functional or structural features of disease-associated variants. Finally, case studies investigating the functional and structural effects of nsSNPs on selected protein structures are highlighted. We conclude that creating a consistent workflow with a combination of in silico approaches or tools should be considered to increase the performance, accuracy, and precision of the biological and clinical predictions made in silico.
Collapse
Affiliation(s)
- Metin Yazar
- Department of Bioengineering, Marmara University, Göztepe, İstanbul, Turkey.,Department of Genetics and Bioengineering, Istanbul Okan University, Tuzla, Istanbul, Turkey
| | - Pemra Özbek
- Department of Bioengineering, Marmara University, Göztepe, İstanbul, Turkey
| |
Collapse
|
7
|
Sanchis-Juan A, Hasenahuer MA, Baker JA, McTague A, Barwick K, Kurian MA, Duarte ST, Carss KJ, Thornton J, Raymond FL. Structural analysis of pathogenic missense mutations in GABRA2 and identification of a novel de novo variant in the desensitization gate. Mol Genet Genomic Med 2020; 8:e1106. [PMID: 32347641 PMCID: PMC7336760 DOI: 10.1002/mgg3.1106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background Cys‐loop receptors control neuronal excitability in the brain and their dysfunction results in numerous neurological disorders. Recently, six missense variants in GABRA2, a member of this family, have been associated with early infantile epileptic encephalopathy (EIEE). We identified a novel de novo missense variant in GABRA2 in a patient with EIEE and performed protein structural analysis of the seven variants. Methods The novel variant was identified by trio whole‐genome sequencing. We performed protein structural analysis of the seven variants, and compared them to previously reported pathogenic mutations at equivalent positions in other Cys‐loop receptors. Additionally, we studied the distribution of disease‐associated variants in the transmembrane helices of these proteins. Results The seven variants are in the transmembrane domain, either close to the desensitization gate, the activation gate, or in inter‐subunit interfaces. Six of them have pathogenic mutations at equivalent positions in other Cys‐loop receptors, emphasizing the importance of these residues. Also, pathogenic mutations are more common in the pore‐lining helix, consistent with this region being highly constrained for variation in control populations. Conclusion Our study reports a novel pathogenic variant in GABRA2, characterizes the regions where pathogenic mutations are in the transmembrane helices, and underscores the value of considering sequence, evolutionary, and structural information as a strategy for variant interpretation of novel missense mutations.
Collapse
Affiliation(s)
- Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Marcia A Hasenahuer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - James A Baker
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Katy Barwick
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sofia T Duarte
- Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | | | - Keren J Carss
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Janet Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|