1
|
Fan T, Xie J, Huang G, Li L, Zeng X, Tao Q. PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers. EPIGENOMES 2024; 8:36. [PMID: 39311138 PMCID: PMC11417953 DOI: 10.3390/epigenomes8030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Jianlian Xie
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Guo Huang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (T.F.); (G.H.)
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong; (J.X.); (L.L.)
| |
Collapse
|
2
|
Li X, Jiang X, Lu J, Jiang L, Li Y, Lin Y, Wan F, Wang C. CircETV6 acts as an oncogenic driver in hepatocellular carcinoma progression. J Biochem Mol Toxicol 2024; 38:e23766. [PMID: 39215759 DOI: 10.1002/jbt.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Circular RNA (circRNA) plays important role in hepatocellular carcinoma (HCC) progression. However, the role and mechanism of circETV6 in HCC progression remain unclear. The levels of circETV6, ETV6, miR-383-5p, and PTPRE were tested by quantitative reverse-transcription polymerase chain reaction. Cell functions were assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry. The protein levels of poptosis-related markers and PTPRE were determined by western blot analysis. RNA interaction was analyzed by dual-luciferase reporter assay and RNA pull-down assay. A xenograft model was established to assess circETV6 roles in vivo. CircETV6 was highly expressed in HCC tissues and cells. CircETV6 knockdown repressed HCC cell proliferation, migration, invasion, and cell cycle, while accelerated apoptosis. CircETV6 targeted miR-383-5p, and miR-383-5p inhibition reversed the regulation of circETV6 knockdown on HCC cell progression. CircETV6 promoted PTPRE level via targeting miR-383-5p. Overexpressed PTPRE abolished the inhibition effect of miR-383-5p on HCC cell progression. In addition, circETV6 knockdown slowed HCC tumor growth in vivo. CircETV6 might facilitate HCC progression via the miR-383-5p/PTPRE axis, providing a novel target for HCC treatment.
Collapse
Affiliation(s)
- Xiaoqin Li
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Xuemei Jiang
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Jing Lu
- Department of Gynecology, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Lan Jiang
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Yan Li
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Yuting Lin
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Feng Wan
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Changmin Wang
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
4
|
Tian Y, Han W, Lv K, Fu L, Zhou X. CircSNX6 promotes proliferation, metastasis, and angiogenesis in hepatocellular carcinoma via miR-383-5p/VEGFA signaling pathway. Sci Rep 2024; 14:8243. [PMID: 38589413 PMCID: PMC11001896 DOI: 10.1038/s41598-024-58708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
The role of circular RNA (circRNAs) in hepatocellular carcinoma (HCC) has been extensively studied. Previous research has highlighted the regulatory role of circSNX6 in HCC cells and tissues. However, the precise mechanism underlying HCC progression still requires comprehensive investigation. The study initially utilized quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to assess circSNX6 expression levels in HCC cell lines and tissues. Subsequently, the stability of circRNA was evaluated through Ribonuclease R and actinomycin D treatment assays. The impact of circSNX6 knockdown on proliferation, migration, invasion, and angiogenesis abilities was determined using various assays including colony formation, Transwell culture system, tube formation assay, and cell counting kit (CCK)-8 assays. Additionally, RNA immunoprecipitation chip and dual-luciferase reporter assays were employed to investigate the interactions between circSNX6 and miR-383-5p. Finally, an HCC xenograft tumor model in mice was established to assess the in vivo expression of circSNX6 and its functional role in HCC. Our findings revealed an elevated circSNX6 expression in HCC tissues, which was correlated with poor patient prognosis. Knockdown of circSNX6 suppressed HCC cell growth, invasion, metastasis, and angiogenesis. The downregulation of miR-383-5p, a target of circSNX6, significantly attenuated the tumor-suppressive effects induced by circSNX6 knockdown. Moreover, circSNX6 was found to modulate VEGFA expression by targeting miR-383-5p. The inhibition of HCC cell proliferation by miR-383-5p could be partially reversed by overexpressing VEGFA. Silencing circSNX6 also suppressed tumor formation and the metastasis of HCC cells in a mouse model. In summary, our findings suggest that circSNX6 promotes cell proliferation, metastasis, and angiogenesis in HCC by regulating the miR-383-5p/VEGFA pathway.
Collapse
Affiliation(s)
- Yuan Tian
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Wenwen Han
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Kaiji Lv
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Long Fu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Xinhua Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
5
|
Bi X, Wang L, Li H, Ma Y, Guo R, Yue J, Kong L, Gong X, Jiao F, Chinn E, Hu J. MiR-383-5p inhibits the proliferation and migration of lung adenocarcinoma cells by targeting SHMT2. J Cancer 2024; 15:2746-2758. [PMID: 38577602 PMCID: PMC10988301 DOI: 10.7150/jca.89733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024] Open
Abstract
Purpose: To explore the effects of miR-383-5p and serine hydroxymethyltransferase 2 (SHMT2) on the proliferation and migration of lung adenocarcinoma cells. Methods: SHMT2 expression in lung adenocarcinoma and normal tissues was investigated using The Cancer Genome Atlas database. Immunohistochemical analysis was performed to confirm SHMT2 expression in lung adenocarcinoma and adjacent normal lung tissues. Bioinformatics analysis and luciferase reporter assays were used to analyze the relationship between miR-383-5p and SHMT2 expression. The protein expression levels of SHMT2, vimentin, N-cadherin, E-cadherin, Bcl-2, and cyclinD1 were analyzed using western blotting. The reverse transcription-quantitative polymerase chain reaction was used to detect SHMT2 knockdown efficiency, miR-383-5p overexpression, and inhibition efficiency. The proliferative ability of cells was detected using the Cell Counting Kit-8 assay. The Transwell assay was used to detect the migration ability of cells. Results: SHMT2 expression was significantly increased in patients with lung adenocarcinoma compared to that in control patients; the higher the SHMT2 expression the worse the outcomes were in patients with lung adenocarcinoma. SHMT2 knockdown inhibited the proliferation, migration, and epithelial-mesenchymal transition of lung adenocarcinoma A549 and H1299 cells. MiR-383-5p directly targeted and downregulated SHMT2 in A549 and H1299 cells. The effects of miRNA-383-5p on the proliferation and migration of these cells differed from those of SHMT2. Exogenous overexpression of SHMT2 reversed the miR-383-5p-induced proliferation and migration inhibition in A549 and H1299 cells. Conclusion: MiR-383-5p inhibits the proliferation and migration of lung adenocarcinoma cells by targeting and downregulating SHMT2.
Collapse
Affiliation(s)
- Xianxia Bi
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Luwei Wang
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Hua Li
- Yantai Environmental Sanitation Management Center, YanTai, Shandong 264000, P.R. China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jicheng Yue
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Lijun Kong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Xiangqian Gong
- Department of Gastrointestinal Surgery, Yuhuangding Hospital, YanTai, Shandong 265499, P.R. China
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Eugene Chinn
- Peninsula Cancer Research Center of Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| |
Collapse
|
6
|
Yan Y, Wang H, Hu J, Guo T, Dong Q, Yin H, Yuan G, Pan Y. CircRNA-104718 promotes glioma malignancy through regulation of miR-218-5p/HMGB1 signalling pathway. Metab Brain Dis 2023; 38:1531-1542. [PMID: 36867300 DOI: 10.1007/s11011-023-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Increasing number of studies have proven that circular RNAs (circRNAs) play a major role in the biological processes of many different cancers, including glioma, especially as competitive molecular sponges of microRNAs (miRNAs). However, the clear molecular mechanism of the circRNA network in glioma is still not well understood. The expression level of circRNA-104718 and microRNA (miR)-218-5p in glioma tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The target protein's expression level was assessed by western blotting. Bioinformatics systems were used to predict the possible microRNAs and target genes of circRNA-104718, after which dual-luciferase reporter assays were used to confirm the predicted interactions. The proliferation, invasion, migration and apoptosis of glioma cells were detected by CCK, EdU, transwell, wound-healing and flow cytometry assays. CircRNA-104718 was upregulated in human glioma tissues, and a higher level of circRNA-104718 indicated poorer outcomes in glioma patients. In contrast, in glioma tissues, miR-218-5p was downregulated. Knockdown of circRNA-104718 suppressed migration and invasion while boosting the apoptosis rate of glioma cells. In addition, the upregulation of miR-218-5p in glioma cells caused the same suppression. Mechanistically, circRNA-104718 inhibited the protein expression level of high mobility group box-1 (HMGB1) by acting as a molecular sponge for miR-218-5p. CircRNA-104718 is a suppressive factor in glioma cells and might represent a new target for the treatment of glioma patients. CircRNA-104718 modulates glioma cell proliferation through the miR-218-5p/HMGB1 signalling axis. CircRNA-104718 provides a possible mechanism for understanding the pathogenesis of glioma.
Collapse
Affiliation(s)
- Yunji Yan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Hongyu Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Jianhong Hu
- Department of Anesthesia Operation, Gansu provincial hospital, No.204, Donggang West Road, Lanzhou City, 730000, Gansu Province, China
| | - Tianxue Guo
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Qiang Dong
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, No.82, cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, No.82, cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
| |
Collapse
|
7
|
Yi Q, Xie W, Sun W, Sun W, Liao Y. A Concise Review of MicroRNA-383: Exploring the Insights of Its Function in Tumorigenesis. J Cancer 2022; 13:313-324. [PMID: 34976192 PMCID: PMC8692686 DOI: 10.7150/jca.64846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that commonly have 18-22 nucleotides and play important roles in the regulation of gene expression via directly binding to the 3'-UTR of target mRNAs. Approximately 50% of human genes are regulated by miRNAs and they are involved in many human diseases, including various types of cancers. Recently, microRNA-383 (miR-383) has been identified as being aberrantly expressed in multiple cancers, such as malignant melanoma, colorectal cancer, hepatocellular cancer, and glioma. Increasing evidence suggests that miR-383 participates in tumorigenic events including proliferation, apoptosis, invasion, and metastasis as well as drug resistance. Although downstream targets including CCND1, LDHA, VEGF, and IGF are illustrated to be regulated by miR-383, its roles in carcinogenesis are still ambiguous and the underlying mechanisms are still unclear. Herein, we review the latest studies on miR-383 and summarize its functions in human cancers and other diseases. The goal of this review is to provide new strategies for targeted therapy and further investigations.
Collapse
Affiliation(s)
- Qian Yi
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China.,Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
8
|
Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, Jafarzadeh S, Hamblin MR, Jafari Najaf Abadi MH, Mirzaei H. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol 2022; 10:955486. [PMID: 36313570 PMCID: PMC9608775 DOI: 10.3389/fcell.2022.955486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Majid Noori
- Golestan Hospital Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| |
Collapse
|
9
|
Cheng Y, Liu N, Yang C, Jiang J, Zhao J, Zhao G, Chen F, Zhao H, Li Y. MicroRNA-383 inhibits proliferation, migration, and invasion in hepatocellular carcinoma cells by targeting PHF8. Mol Genet Genomic Med 2020; 8:e1272. [PMID: 32441881 PMCID: PMC7434733 DOI: 10.1002/mgg3.1272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Background To study the effect of microRNA‐383 (miR‐383) on cell proliferation, migration, and invasion of hepatocellular carcinoma (HCC) cells, and explore its mechanism. Methods The expressions of miR‐383 and plant homology domain that refers to protein 8 (PHF8) were detected in tissues and cells by quantitative real‐time polymerase chain reaction (qRT‐PCR) or western blot respectively. The miR‐383 group (transfected miR‐383 mimics), miR‐con group (transfected miR‐con), si‐con group (transfected si‐con), si‐PHF8 group (transfected si‐PHF8), miR‐383 + ctrl group (cotransfected miR‐383 mimics and pcDNA‐3.1), miR‐383 + PHF8 group (cotransfected miR‐383 mimics and pcDNA‐3.1‐PHF8) were transfected into HepG2 cells by liposome method. Cell proliferation, migration and invasion were measured by 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide (MTT) or trans‐well assays respectively. The luciferase activity of each group was detected by dual luciferase reporter gene assay. Results Compared with normal adjacent tissues, the expression of miR‐383 was significantly down‐regulated and the expression of PHF8 was significantly up‐regulated (p < .05). Compared with normal hepatocellular cell LO2, the expression of miR‐383 was significantly reduced (p < .05) in HCC cells. Moreover, overexpression of miR‐383 or silencing of PHF8 significantly inhibited the proliferation, migration, and invasion of HCC cells. In addition, PHF8 was targeted by miR‐383 and its restoration rescued the inhibitory effect of miR‐383 on cell proliferation, migration, and invasion of HCC cells. Conclusion miR‐383 could inhibit the proliferation, migration, and invasion of HCC cells by targeting PHF8, which will provide a basis for miR‐383 targeted therapy for HCC.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Digestive Diseases, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- Department of Digestive Diseases, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - CaiFeng Yang
- Department of Digestive Diseases, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Jiong Jiang
- Department of Digestive Diseases, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Juhui Zhao
- Department of Digestive Diseases, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Gang Zhao
- Department of Digestive Diseases, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Fenrong Chen
- Department of Digestive Diseases, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Hongli Zhao
- Department of Digestive Diseases, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Yang Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|