1
|
Gras M, Heide S, Keren B, Valence S, Garel C, Whalen S, Jansen AC, Keymolen K, Stouffs K, Jennesson M, Poirsier C, Lesca G, Depienne C, Nava C, Rastetter A, Curie A, Cuisset L, Des Portes V, Milh M, Charles P, Mignot C, Héron D. Further characterisation of ARX-related disorders in females due to inherited or de novo variants. J Med Genet 2024; 61:103-108. [PMID: 37879892 DOI: 10.1136/jmg-2023-109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.
Collapse
Affiliation(s)
- Mathilde Gras
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Boris Keren
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Stéphanie Valence
- Unit of Pediatric Neurology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilites of rare causes » Déficiences Intellectuelles de Causes Rares, Armand-Trousseau Hospital, Paris, France
| | - Catherine Garel
- Unit of Pediatric Radiology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Sandra Whalen
- Department of Clinical Genetics and Reference Center for Rare Diseases « Developmental disorders and syndromes », APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katrien Stouffs
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mélanie Jennesson
- Pediatrics Unit, University Hospital of Reims, American Memorial Hospital, Reims, France
| | - Céline Poirsier
- UF génétique clinique, Pôle Femme-Parents-Enfants, CHU Reims, Reims, France
| | - Gaetan Lesca
- Department of Genetics, Referral Center for Developmental Anomalies and Malformative Syndromes, Centre-est HCL, Hospices Civils de Lyon, Lyon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Aurore Curie
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Laurence Cuisset
- APHP Centre Université Paris Cité, Service de Médecine Génomique des Maladies de Système et d'Organe, Cochin Hospital, Paris, France
| | - Vincent Des Portes
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Mathieu Milh
- Department of Neurology Pediatrics, AP-HM, Hôpital de la Timone, Marseille, France
| | - Perrine Charles
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| |
Collapse
|
2
|
Brandes N, Goldman G, Wang CH, Ye CJ, Ntranos V. Genome-wide prediction of disease variant effects with a deep protein language model. Nat Genet 2023; 55:1512-1522. [PMID: 37563329 PMCID: PMC10484790 DOI: 10.1038/s41588-023-01465-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Predicting the effects of coding variants is a major challenge. While recent deep-learning models have improved variant effect prediction accuracy, they cannot analyze all coding variants due to dependency on close homologs or software limitations. Here we developed a workflow using ESM1b, a 650-million-parameter protein language model, to predict all ~450 million possible missense variant effects in the human genome, and made all predictions available on a web portal. ESM1b outperformed existing methods in classifying ~150,000 ClinVar/HGMD missense variants as pathogenic or benign and predicting measurements across 28 deep mutational scan datasets. We further annotated ~2 million variants as damaging only in specific protein isoforms, demonstrating the importance of considering all isoforms when predicting variant effects. Our approach also generalizes to more complex coding variants such as in-frame indels and stop-gains. Together, these results establish protein language models as an effective, accurate and general approach to predicting variant effects.
Collapse
Affiliation(s)
- Nadav Brandes
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Grant Goldman
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte H Wang
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Vasilis Ntranos
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Rojahn S, Hambuch T, Adrian J, Gafni E, Gileta A, Hatchell H, Johnson B, Kallman B, Karfilis K, Kautzer C, Kennemer M, Kirk L, Kvitek D, Lettes J, Macrae F, Mendez F, Paul J, Pellegrino M, Preciado R, Risinger J, Schultz M, Spurka L, Swamy S, Truty R, Usem N, Velenich A, Aradhya S. Scalable detection of technically challenging variants through modified next-generation sequencing. Mol Genet Genomic Med 2022; 10:e2072. [PMID: 36251442 PMCID: PMC9747563 DOI: 10.1002/mgg3.2072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Some clinically important genetic variants are not easily evaluated with next-generation sequencing (NGS) methods due to technical challenges arising from high- similarity copies (e.g., PMS2, SMN1/SMN2, GBA1, HBA1/HBA2, CYP21A2), repetitive short sequences (e.g., ARX polyalanine repeats, FMR1 AGG interruptions in CGG repeats, CFTR poly-T/TG repeats), and other complexities (e.g., MSH2 Boland inversions). METHODS We customized our NGS processes to detect the technically challenging variants mentioned above with adaptations including target enrichment and bioinformatic masking of similar sequences. Adaptations were validated with samples of known genotypes. RESULTS Our adaptations provided high-sensitivity and high-specificity detection for most of the variants and provided a high-sensitivity primary assay to be followed with orthogonal disambiguation for the others. The sensitivity of the NGS adaptations was 100% for all of the technically challenging variants. Specificity was 100% for those in PMS2, GBA1, SMN1/SMN2, and HBA1/HBA2, and for the MSH2 Boland inversion; 97.8%-100% for CYP21A2 variants; and 85.7% for ARX polyalanine repeats. CONCLUSIONS NGS assays can detect technically challenging variants when chemistries and bioinformatics are jointly refined. The adaptations described support a scalable, cost-effective path to identifying all clinically relevant variants within a single sample.
Collapse
|
4
|
Rodgers J, Calvert S, Shoubridge C, McGaughran J. A novel ARX loss of function variant in female monozygotic twins is associated with chorea. Eur J Med Genet 2021; 64:104315. [PMID: 34419634 DOI: 10.1016/j.ejmg.2021.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Pathogenic variants in ARX lead to a variety of phenotypes with intellectual disability being a uniform feature. Other features can include severe epilepsy, spasticity, movement disorders, agenesis of the corpus callosum, lissencephaly, hydranencephaly and ambiguous genitalia in males. We present the first report of monozygotic female twins with a de novo ARX pathogenic variant (c.1406_1415del; p. Ala469Aspfs*20), predicted to result in a truncated ARX protein missing the important regulatory Aristaless domain. The twins presented with profound developmental delay and seizures, consistent with the known genotype-phenotype correlation. Twin 2's features were significantly more severe. She also developed chorea; the first time this movement disorder has been seen in an ARX variant other than an expansion of the first polyalanine tract. Differential X-chromosome inactivation was the most likely explanation for the differing severities but could not be conclusively proven.
Collapse
Affiliation(s)
- Jonathan Rodgers
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Sophie Calvert
- Department of Neurosciences, Queensland Children's Hospital, Brisbane, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, QLD, Australia; School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Loring KE, Mattiske T, Lee K, Zysk A, Jackson MR, Noebels JL, Shoubridge C. Early 17β-estradiol treatment reduces seizures but not abnormal behaviour in mice with expanded polyalanine tracts in the Aristaless related homeobox gene (ARX). Neurobiol Dis 2021; 153:105329. [PMID: 33711494 DOI: 10.1016/j.nbd.2021.105329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022] Open
Abstract
Children with severe intellectual disability have an increased prevalence of refractory seizures. Steroid treatment may improve seizure outcomes, but the mechanism remains unknown. Here we demonstrate that short term, daily delivery of an exogenous steroid 17β-estradiol (40 ng/g) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract. Frequency of observed seizures on handling (n = 14/treatment/genotype) were significantly reduced in PA1 (32% reduction) and more modestly reduced in PA2 mice (14% reduction) with steroid treatment compared to vehicle. Spontaneous seizures were assessed (n = 7/treatment/genotype) at 7 weeks of age coinciding with a peak of seizure activity in untreated mice. PA1 mice treated with steroids no longer present with the most severe category of prolonged myoclonic seizures. Treated PA2 mice had an earlier onset of seizures coupled with a subsequent reduction in seizures later in postnatal life, with a complete absence of any seizures during the analysis at 7 weeks of age. Despite the reduction in seizures, 17β-estradiol treated mice showed no improvement in behavioural or cognitive outcomes in adulthood. For the first time we show that these deficits due to mutations in Arx are already present before seizure onset and do not worsen with seizures. ARX is a transcription factor and Arx PA mutant mice have deregulated transcriptome profiles in the developing embryonic brain. At postnatal day 10, treatment completion, RNAseq identified 129 genes significantly deregulated (Log2FC > ± 0.5, P-value<0.05) in the frontal cortex of mutant compared to wild-type mice. This list reflects genes deregulated in disease and was particularly enriched for known genes in neurodevelopmental disorders and those involved in signalling and developmental pathways. 17β-estradiol treatment of mutant mice significantly deregulated 295 genes, with only 23 deregulated genes overlapping between vehicle and steroid treated mutant mice. We conclude that 17β-estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome nor improve mortality or behavioural and cognitive deficits.
Collapse
Affiliation(s)
- Karagh E Loring
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Tessa Mattiske
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Kristie Lee
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Aneta Zysk
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Matilda R Jackson
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Cheryl Shoubridge
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Scalia B, Venti V, Ciccia LM, Criscione R, Lo Bianco M, Sciuto L, Falsaperla R, Zanghì A, Praticò AD. Aristaless-Related Homeobox (ARX): Epilepsy Phenotypes beyond Lissencephaly and Brain Malformations. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe Aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans and are responsible for both malformation (in particular lissencephaly) and nonmalformation complex phenotypes. The epilepsy phenotypes related to ARX mutations are West syndrome and X-linked infantile spasms, X-linked myoclonic epilepsy with spasticity and intellectual development and Ohtahara and early infantile epileptic encephalopathy syndrome, which are related in most of the cases to intellectual disability and are often drug resistant. In this article, we shortly reviewed current knowledge of the function of ARX with a particular attention on its consequences in the development of epilepsy during early childhood.
Collapse
Affiliation(s)
- Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina M. Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Criscione
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Neonatal Intensive Care unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Dubos A, Meziane H, Iacono G, Curie A, Riet F, Martin C, Loaëc N, Birling MC, Selloum M, Normand E, Pavlovic G, Sorg T, Stunnenberg HG, Chelly J, Humeau Y, Friocourt G, Hérault Y. A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Hum Mol Genet 2019; 27:2138-2153. [PMID: 29659809 PMCID: PMC5985730 DOI: 10.1093/hmg/ddy122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.
Collapse
Affiliation(s)
- Aline Dubos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Aurore Curie
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Femmes Mères Enfants, Hospices Civils de Lyon, Institut des Sciences Cognitives, CNRS UMR5304, Université Claude Bernard Lyon1, 69675 Bron, France
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Loaëc
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | | | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Elisabeth Normand
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France.,Pole In Vivo, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| |
Collapse
|
8
|
Wu Y, Zhang H, Liu X, Shi Z, Li H, Wang Z, Jie X, Huang S, Zhang F, Li J, Zhang K, Gao X. Mutations of ARX and non-syndromic intellectual disability in Chinese population. Genes Genomics 2018; 41:125-131. [PMID: 30255221 DOI: 10.1007/s13258-018-0745-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/15/2018] [Indexed: 02/08/2023]
Abstract
Mutations of Aristaless-related homeobox (ARX) gene were looked as the third cause of non-syndromic intellectual disability (NSID), while the boundary between true disease-causing mutations and non-disease-causing variants within this gene remains elusive. To investigate the relationship between ARX mutations and NSID, a panel comprising six reported causal mutations of the ARX was detected in 369 sporadic NSID patients and 550 random participants in Chinese. Two mutations, c.428_451 dup and p.G286S, may be disease-causing mutations for NSID, while p.Q163R and p.P353L showed a great predictive value in female NSID diagnosis with significant associations (X2 = 19.60, p = 9.54e-6 for p.Q163R; X2 = 25.70, p = 4.00e-07 for p.P353L), carriers of these mutations had an increased risk of NSID of more than fourfold. Detection of this panel also predicted significant associations between genetic variants of the ARX gene and NSID (p = 3.73e-4). The present study emphasized the higher genetic burden of the ARX gene on NSID in the Chinese population, molecular analysis of this gene should be considered for patients presenting NSID of unknown etiology.
Collapse
Affiliation(s)
- Yufei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Huan Zhang
- The 2nd Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaofen Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Zhangyan Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Hongling Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Zhibin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Xiaoyong Jie
- Xi'an Cangning Psychiatric Hospital, Xi'an, 710114, China
| | - Shaoping Huang
- The 2nd Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fuchang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China.,College of Public Management, Institute of Application Psychology, Northwest University, Xi'an, 710127, China
| | - Junlin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China
| | - Kejin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China.
| | - Xiaocai Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population and Health, Northwest University, Xi'an, 710069, China. .,College of Public Management, Institute of Application Psychology, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
9
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
10
|
Breen DP, Mercimek-Andrews S, Lang AE. Infantile-onset hand dystonia with intellectual disability. Neurology 2018; 90:333-335. [DOI: 10.1212/wnl.0000000000004972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/16/2017] [Indexed: 11/15/2022] Open
|
11
|
Jackson MR, Lee K, Mattiske T, Jaehne EJ, Ozturk E, Baune BT, O'Brien TJ, Jones N, Shoubridge C. Extensive phenotyping of two ARX polyalanine expansion mutation mouse models that span clinical spectrum of intellectual disability and epilepsy. Neurobiol Dis 2017; 105:245-256. [DOI: 10.1016/j.nbd.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/30/2017] [Accepted: 05/29/2017] [Indexed: 11/17/2022] Open
|
12
|
Kulkarni G, Ranade S. Molecular Analysis of Hotspot Regions ofARXandMECP2Genes in Intellectual Disability and Cornelia De Lange Syndrome. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1351119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Gayatri Kulkarni
- Department of Chemistry, Division of Biochemistry, Savitribai Phule Pune University, Pune 411 007, Maharashtra, India
| | - Suvidya Ranade
- Department of Chemistry, Division of Biochemistry, Savitribai Phule Pune University, Pune 411 007, Maharashtra, India
| |
Collapse
|
13
|
ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindin-positive cortical GABAergic interneurons. Neuroscience 2017. [PMID: 28627419 DOI: 10.1016/j.neuroscience.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Aristaless-related homeobox gene (ARX) is indispensable for interneuron development. Patients with ARX polyalanine expansion mutations of the first two tracts (namely PA1 and PA2) suffer from intellectual disability of varying severity, with seizures a frequent comorbidity. The impact of PA1 and PA2 mutations on the brain development is unknown, hindering the search for therapeutic interventions. Here, we characterized the disturbances to cortical interneuron development in mice modeling the two most common ARX polyalanine expansion mutations in human. We found a consistent ∼40-50% reduction of calbindin-positive interneurons, but not Stt+ or Cr+ interneurons, within the cortex of newborn hemizygous mice (p=0.024) for both mutant strains compared to wildtype (p=0.011). We demonstrate that this was a consequence of calbindin precursor cells being arrested or delayed at the ventral subpallium en route of tangential migration. Ex-vivo assay validated this migration deficit in PA1 cells (p=0.0002) suggesting that the defect is contributed by intrinsic loss of Arx function within migrating cells. Both humans and mice with PA1 mutations present with severe clinical features, including intellectual disability and infantile spasms. Our data further demonstrated the pathogenic mechanism was robustly shared between PA1 and PA2 mutations, as previously reported including Arx protein reduction and overlapping transcriptome profiles within the developing mouse brains. Data from our study demonstrated that cortical calbindin interneuron development and migration is negatively affected by ARX polyalanine expansion mutations. Understanding the cellular pathogenesis contributing to disease manifestation is necessary to screen efficacy of potential therapeutic interventions.
Collapse
|
14
|
Mattiske T, Lee K, Gecz J, Friocourt G, Shoubridge C. Embryonic forebrain transcriptome of mice with polyalanine expansion mutations in the ARX homeobox gene. Hum Mol Genet 2017; 25:5433-5443. [PMID: 27798109 DOI: 10.1093/hmg/ddw360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/18/2016] [Indexed: 11/14/2022] Open
Abstract
The Aristaless-related homeobox (ARX) gene encodes a paired-type homeodomain transcription factor with critical roles in embryonic development. Mutations in ARX give rise to intellectual disability (ID), epilepsy and brain malformation syndromes. To capture the genetics and molecular disruptions that underpin the ARX-associated clinical phenotypes, we undertook a transcriptome wide RNASeq approach to analyse developing (12.5 dpc) telencephalon of mice modelling two recurrent polyalanine expansion mutations with different phenotypic severities in the ARX gene. Here we report 238 genes significantly deregulated (Log2FC > +/-1.1, P-value <0.05) when both mutations are compared to wild-type (WT) animals. When each mutation is considered separately, a greater number of genes were deregulated in the severe PA1 mice (825) than in the PA2 animals (78). Analysing genes deregulated in either or both mutant strains, we identified 12% as implicated in ID, epilepsy and autism (99/858), with ∼5% of them as putative or known direct targets of ARX transcriptional regulation. We propose a core pathway of transcription regulators, including Hdac4, involved in chromatin condensation and transcriptional repression, and one of its targets, the transcription factor Twist1, as potential drivers of the ID and infantile spasms in patients with ARX polyalanine expansion mutations. We predict that the subsequent disturbance to this pathway is a consequence of ARX protein reduction with a broader and more significant level of disruption in the PA1 in comparison to the PA2 mice. Identifying early triggers of ARX-associated phenotypes contributes to our understanding of particular clusters/pathways underpinning comorbid phenotypes that are shared by many neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tessa Mattiske
- Department of Paediatrics, Adelaide Medical School.,Robinson Research Institute, University of Adelaide, SA, Australia
| | - Kristie Lee
- Department of Paediatrics, Adelaide Medical School.,Robinson Research Institute, University of Adelaide, SA, Australia
| | - Jozef Gecz
- Department of Paediatrics, Adelaide Medical School.,Robinson Research Institute, University of Adelaide, SA, Australia
| | - Gaelle Friocourt
- Inserm, UMR1078, Brest, France.,Brest University, Faculté de Médecine et des Sciences de la Santé, Sfr ScInBioS, Brest, France
| | - Cheryl Shoubridge
- Department of Paediatrics, Adelaide Medical School.,Robinson Research Institute, University of Adelaide, SA, Australia
| |
Collapse
|
15
|
Mattiske T, Moey C, Vissers LE, Thorne N, Georgeson P, Bakshi M, Shoubridge C. An Emerging Female Phenotype with Loss-of-Function Mutations in the Aristaless-Related Homeodomain Transcription Factor ARX. Hum Mutat 2017; 38:548-555. [PMID: 28150386 DOI: 10.1002/humu.23190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 01/24/2017] [Indexed: 01/17/2023]
Abstract
The devastating clinical presentation of X-linked lissencephaly with abnormal genitalia (XLAG) is invariably caused by loss-of-function mutations in the Aristaless-related homeobox (ARX) gene. Mutations in this X-chromosome gene contribute to intellectual disability (ID) with co-morbidities including seizures and movement disorders such as dystonia in affected males. The detection of affected females with mutations in ARX is increasing. We present a family with multiple affected individuals, including two females. Two male siblings presenting with XLAG were deceased prior to full-term gestation or within the first few weeks of life. Of the two female siblings, one presented with behavioral disturbances, mild ID, a seizure disorder, and complete agenesis of the corpus callosum (ACC), similar to the mother's phenotype. A novel insertion mutation in Exon 2 of ARX was identified, c.982delCinsTTT predicted to cause a frameshift at p.(Q328Ffs* 37). Our finding is consistent with loss-of-function mutations in ARX causing XLAG in hemizygous males and extends the findings of ID and seizures in heterozygous females. We review the reported phenotypes of females with mutations in ARX and highlight the importance of screening ARX in male and female patients with ID, seizures, and in particular with complete ACC.
Collapse
Affiliation(s)
- Tessa Mattiske
- Department of Paediatrics, School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Ching Moey
- Department of Paediatrics, School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Lisenka E Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Natalie Thorne
- Murdoch Children's Research Institute, Melbourne, Australia.,University of Melbourne, Melbourne, Australia.,Melbourne Genomics Health Alliance, Melbourne, Australia
| | - Peter Georgeson
- Melbourne Genomics Health Alliance, Melbourne, Australia.,Victorian Life Sciences Computation Initiative, The University of Melbourne, Melbourne, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Cheryl Shoubridge
- Department of Paediatrics, School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Olson HE, Kelly M, LaCoursiere CM, Pinsky R, Tambunan D, Shain C, Ramgopal S, Takeoka M, Libenson MH, Julich K, Loddenkemper T, Marsh ED, Segal D, Koh S, Salman MS, Paciorkowski AR, Yang E, Bergin AM, Sheidley BR, Poduri A. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol 2017; 81:419-429. [PMID: 28133863 DOI: 10.1002/ana.24883] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We sought to identify genetic causes of early onset epileptic encephalopathies with burst suppression (Ohtahara syndrome and early myoclonic encephalopathy) and evaluate genotype-phenotype correlations. METHODS We enrolled 33 patients with a referral diagnosis of Ohtahara syndrome or early myoclonic encephalopathy without malformations of cortical development. We performed detailed phenotypic assessment including seizure presentation, electroencephalography, and magnetic resonance imaging. We confirmed burst suppression in 28 of 33 patients. Research-based exome sequencing was performed for patients without a previously identified molecular diagnosis from clinical evaluation or a research-based epilepsy gene panel. RESULTS In 17 of 28 (61%) patients with confirmed early burst suppression, we identified variants predicted to be pathogenic in KCNQ2 (n = 10), STXBP1 (n = 2), SCN2A (n = 2), PNPO (n = 1), PIGA (n = 1), and SEPSECS (n = 1). In 3 of 5 (60%) patients without confirmed early burst suppression, we identified variants predicted to be pathogenic in STXBP1 (n = 2) and SCN2A (n = 1). The patient with the homozygous PNPO variant had a low cerebrospinal fluid pyridoxal-5-phosphate level. Otherwise, no early laboratory or clinical features distinguished the cases associated with pathogenic variants in specific genes from each other or from those with no prior genetic cause identified. INTERPRETATION We characterize the genetic landscape of epileptic encephalopathy with burst suppression, without brain malformations, and demonstrate feasibility of genetic diagnosis with clinically available testing in >60% of our cohort, with KCNQ2 implicated in one-third. This electroclinical syndrome is associated with pathogenic variation in SEPSECS. Ann Neurol 2017;81:419-429.
Collapse
Affiliation(s)
- Heather E Olson
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - McKenna Kelly
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Christopher M LaCoursiere
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Rebecca Pinsky
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Dimira Tambunan
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Catherine Shain
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA.,Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Sriram Ramgopal
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Masanori Takeoka
- Harvard Medical School, Boston, MA.,Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Mark H Libenson
- Harvard Medical School, Boston, MA.,Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Kristina Julich
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Tobias Loddenkemper
- Harvard Medical School, Boston, MA.,Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Eric D Marsh
- Neurogenetics Program, Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Devorah Segal
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ.,Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY
| | - Susan Koh
- Department of Pediatrics and Neurology, Children's Hospital of Colorado, Aurora, CO
| | - Michael S Salman
- Section of Pediatric Neurology, Winnipeg Children's Hospital and Department of Pediatrics and Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alex R Paciorkowski
- Departments of Genetics and Neurology, University of Rochester, Rochester, NY
| | - Edward Yang
- Harvard Medical School, Boston, MA.,Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Ann M Bergin
- Harvard Medical School, Boston, MA.,Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Tapie A, Pi-Denis N, Souto J, Vomero A, Peluffo G, Boidi M, Ciganda M, Curbelo N, Raggio V, Roche L, Pastro L. A novel mutation in the OAR domain of the ARX gene. Clin Case Rep 2017; 5:170-174. [PMID: 28174645 PMCID: PMC5290510 DOI: 10.1002/ccr3.769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 11/12/2022] Open
Abstract
Mutations in ARX gene should be considered in patients with mental disability or/and epilepsy. It is an X-linked gene that has pleiotropic effects. Here, we report the case of a boy diagnosed with Ohtahara syndrome. We performed the molecular analysis of the gene and identified a new missense mutation.
Collapse
Affiliation(s)
- Alejandra Tapie
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Natalia Pi-Denis
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Jorge Souto
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Alejandra Vomero
- Facultad de Medicina Departamento de Pediatría Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Gabriel Peluffo
- Facultad de Medicina Departamento de Pediatría Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - María Boidi
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Martín Ciganda
- Facultad de Ciencias Laboratorio de Interacciones Moleculares Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Nicolás Curbelo
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Victor Raggio
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Leda Roche
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay
| | - Lucía Pastro
- Facultad de Medicina Departamento de Genética Universidad de la República Oriental del Uruguay Montevideo Uruguay; Facultad de Ciencias Laboratorio de Interacciones Moleculares Universidad de la República Oriental del Uruguay Montevideo Uruguay
| |
Collapse
|
18
|
Polling S, Ormsby AR, Wood RJ, Lee K, Shoubridge C, Hughes JN, Thomas PQ, Griffin MDW, Hill AF, Bowden Q, Böcking T, Hatters DM. Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation. Nat Struct Mol Biol 2015; 22:1008-15. [DOI: 10.1038/nsmb.3127] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
|