1
|
Fehrmann MLA, Lanting CP, Haer-Wigman L, Mylanus EAM, Huinck WJ, Pennings RJE. Good cochlear implantation outcomes in subjects with mono-allelic WFS1-associated sensorineural hearing loss - a case series. Int J Audiol 2024:1-9. [PMID: 39422244 DOI: 10.1080/14992027.2024.2411579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aimed to evaluate long-term cochlear implant (CI) outcomes in individuals with mono-allelic pathogenic variants in WFS1, which is associated with both Wolfram-like syndrome and DFNA6/14/38. DESIGN Retrospective case series. STUDY SAMPLE Seven CI recipients, ranging from eight months to 58 years of age, were included in the study, including four with Wolfram-like syndrome and three with DFNA6/14/38. A total of ten cochlear implantations were performed among these subjects. RESULTS At one-year post-implantation, a mean phoneme score of 90 ± 9% at 65 dB SPL in quiet was found, which remained stable up to ten years post-implantation with a mean phoneme score of 94 ± 6%. Despite these excellent outcomes, one subject achieved no speech recognition with CI and eventually became a non-user. This individual had a prolonged absence of auditory stimulation prior to implantation and encountered multiple challenges during rehabilitation. CONCLUSION Individuals with Wolfram-like syndrome or DFNA6/14/38 demonstrate consistently good outcomes following implantation, which remain stable over time. These findings affirm cochlear implantation as an effective rehabilitation option for these individuals. Furthermore, the stable and good CI outcomes contradict the suggested link between WFS1-associated sensorineural hearing loss and auditory neuropathy.
Collapse
Affiliation(s)
- M L A Fehrmann
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - C P Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - L Haer-Wigman
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E A M Mylanus
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - W J Huinck
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - R J E Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Li S, Li X, Qu J. A Wolfram-like syndrome family: Case report. Eur J Ophthalmol 2024; 34:NP51-NP57. [PMID: 38470317 DOI: 10.1177/11206721241237552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND Wolfram-like syndrome (WFLS) is an autosomal dominant inherited disease characterized by a single heterozygous pathogenic variant in the WFS1 gene. Its clinical presentation is similar to autosomal recessive Wolfram syndrome. CASE PRESENTATION We reported a case of a 10-year-old boy and his family members who initially experienced hearing impairment (HI), followed by optic atrophy. Genetic testing revealed the presence of a WFS1 variant (chr4-6302385 exon8 NM_006005.3: c.2590G > A, p. Glu864Lys). CONCLUSION Wolfram-like syndrome, a rare neurodegenerative genetic disorder, manifested as deafness, optic atrophy, and diabetes mellitus. There hasn't been a definite treatment yet. Early identification of the variant in the WFS1 gene is beneficial for genetic counseling.
Collapse
Affiliation(s)
- Siying Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jinfeng Qu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
3
|
Gan NS, Oziębło D, Skarżyński H, Ołdak M. Monogenic Causes of Low-Frequency Non-Syndromic Hearing Loss. Audiol Neurootol 2023; 28:327-337. [PMID: 37121227 DOI: 10.1159/000529464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Low-frequency non-syndromic hearing loss (LFNSHL) is a rare form of hearing loss (HL). It is defined as HL at low frequencies (≤2,000 Hz) resulting in a characteristic ascending audiogram. LFNSHL is usually diagnosed postlingually and is progressive, leading to HL affecting other frequencies as well. Sometimes it occurs with tinnitus. Around half of the diagnosed prelingual HL cases have a genetic cause and it is usually inherited in an autosomal recessive mode. Postlingual HL caused by genetic changes generally has an autosomal dominant pattern of inheritance and its incidence remains unknown. SUMMARY To date, only a handful of genes have been found as causing LFNSHL: well-established WFS1 and, reported in some cases, DIAPH1, MYO7A, TNC, and CCDC50 (respectively, responsible for DFNA6/14/38, DFNA1, DFNA11, DFNA56, and DFNA44). In this review, we set out audiological phenotypes, causative genetic changes, and molecular mechanisms leading to the development of LFNSHL. KEY MESSAGES LFNSHL is most commonly caused by pathogenic variants in the WFS1 gene, but it is also important to consider changes in other HL genes, which may result in similar audiological phenotype.
Collapse
Affiliation(s)
- Nina Sara Gan
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
4
|
Guo L, Gu X, Sun Q, Zhang Y, Li H, Du Q. Novel WFS1 mutations in patients with low-to-middle frequency hearing loss. Int J Pediatr Otorhinolaryngol 2023; 167:111484. [PMID: 36958120 DOI: 10.1016/j.ijporl.2023.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Hearing loss (HL) is the most common sensorineural disorder in human. It is estimated that genetic factors contribute to over 50% of prelingual hearing loss. Most of dominant HHL patients manifest postlingual progressive hearing loss that mainly affect high frequencies. However, mutations in a few dominant HL genes, such as WFS1, TECTA and DIAPH1, cause distinct audiogram that primarily affects the low and middle frequencies. METHODS We recruited twelve independent HL families with worse low or middle frequency audiograms. Each proband of these families was excluded for pathogenic mutations in GJB2, SLC26A4, and MT-RNR1 genes. Mutation screening was performed by whole exome sequencing. Next, candidate variants were validated in each family by sanger sequencing. RESULTS Six heterozygous WFS1 variants were identified in six families, including three novel mutations (c.2519T > G, p.F840C; c.2048T > G, p.M683R and c.2419A > C, p.S807R) and three previously reported variants (c.2005T > C, p.Y669H; c.2590G > A, p.E864K and c.G2389A, p.D797 N). All the novel mutations were absent in 100 ethnically matched controls and were predicted to be deleterious by multiple algorithms. CONCLUSIONS We identified three novel and three previously reported WFS1 mutations in six unrelated Chinese families. Our findings enriched the genotype-phenotype spectrum of WFS1 related NSHL. Additional genotype-phenotype correlation study will clarify the detailed phenotypic range caused by WFS1 mutations.
Collapse
Affiliation(s)
- Luo Guo
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Xiaodong Gu
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Qin Sun
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yike Zhang
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huawei Li
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Qiang Du
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
5
|
Lin PH, Wu HP, Wu CM, Chiang YT, Hsu JS, Tsai CY, Wang H, Tseng LH, Chen PY, Yang TH, Hsu CJ, Chen PL, Wu CC, Liu TC. Cochlear Implantation Outcomes in Patients with Auditory Neuropathy Spectrum Disorder of Genetic and Non-Genetic Etiologies: A Multicenter Study. Biomedicines 2022; 10:biomedicines10071523. [PMID: 35884828 PMCID: PMC9313466 DOI: 10.3390/biomedicines10071523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
With diverse etiologies and clinical features, the management of pediatric auditory neuropathy spectrum disorder (ANSD) is often challenging, and the outcomes of cochlear implants (CIs) are variable. This study aimed to investigate CI outcomes in pediatric patients with ANSD of different etiologies. Thirty-six children with ANSD who underwent cochlear implantation between 2001 and 2021 were included. Comprehensive etiological analyses were conducted, including a history review, next-generation sequencing-based genetic examinations, and imaging studies using high-resolution computed tomography and magnetic resonance imaging. Serial behavioral and speech audiometry were performed before and after surgery, and the outcomes with CI were evaluated using the Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores. By etiology, 18, 1, 1, and 10 patients had OTOF-related, WFS1-related, OPA1-related, and cochlear nerve deficiency (CND)-related ANSD, respectively. Six patients had no definite etiology. The average CI-aided behavioral threshold was 28.3 ± 7.8 dBHL, and those with CND-related ANSD were significantly worse than OTOF-related ANSD. The patients’ median CAP and SIR scores were 6 and 4, respectively. Favorable CI outcomes were observed in patients with certain etiologies of ANSD, particularly those with OTOF (CAP/SIR scores 5–7/2–5), WFS1 (CAP/SIR score 6/5), and OPA1 variants (CAP/SIR score 7/5). Patients with CND had suboptimal CI outcomes (CAP/SIR scores 2–6/1–3). Identifying the etiologies in ANSD patients is crucial before surgery and can aid in predicting prognoses.
Collapse
Affiliation(s)
- Pei-Hsuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (P.-H.L.); (P.-L.C.)
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
| | - Che-Ming Wu
- Department of Otolaryngology & Head and Neck Surgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City 23652, Taiwan;
- Department of Otolaryngology & Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33305, Taiwan
| | - Yu-Ting Chiang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Han Wang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Li-Hui Tseng
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Pey-Yu Chen
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (P.-H.L.); (P.-L.C.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30261, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30261, Taiwan
- Hearing and Speech Center, National Taiwan University Hospital, Taipei 10002, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Correspondence: (C.-C.W.); (T.-C.L.)
| |
Collapse
|
6
|
Chapla A, Johnson J, Korula S, Mohan N, Ahmed A, Varghese D, Rangasamy P, Ravichandran L, Jebasingh F, Kumar Agrawal K, Somasundaram N, Hesarghatta Shyamasunder A, Mathai S, Simon A, Jha S, Chowdry S, Venkatesan R, Raghupathy P, Thomas N. WFS1 Gene-associated Diabetes Phenotypes and Identification of a Founder Mutation in Southern India. J Clin Endocrinol Metab 2022; 107:1328-1336. [PMID: 35018440 DOI: 10.1210/clinem/dgac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Wolfram syndrome (WFS) is a rare autosomal recessive disorder characterized by juvenile-onset diabetes, diabetes insipidus, optic atrophy, deafness, and progressive neurodegeneration. However, due to the progressive nature of the disease and a lack of complete clinical manifestations, a confirmed diagnosis of WFS at the time of onset of diabetes is a challenge. OBJECTIVE With WFS1 rare heterozygous variants reported in diabetes, there is a need for comprehensive genetic screening strategies for the early diagnosis of WFS and delineating the phenotypic spectrum associated with the WFS1 gene variants in young-onset diabetes. METHODS This case series of 11 patients who were positive for WFS1 variants were identified with next-generation sequencing (NGS)-based screening of 17 genemonogenic diabetes panel. These results were further confirmed with Sanger sequencing. RESULTS 9 out of 11 patients were homozygous for pathogenic/likely pathogenic variants in the WFS1 gene. Interestingly, 3 of these probands were positive for the novel WFS1 (NM_006005.3): c.1107_1108insA (p.Ala370Serfs*173) variant, and haplotype analysis suggested a founder effect in 3 families from Southern India. Additionally, we identified 2 patients with young-onset diabetes who were heterozygous for a likely pathogenic variant or a variant of uncertain significance in the WFS1 gene. CONCLUSION These results project the need for NGS-based parallel multigene testing as a tool for early diagnosis of WFS and identify heterozygous WFS1 variants implicated in young-onset diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Anna Simon
- Christian Medical College Vellore, India
| | - Sujeet Jha
- Max Super Speciality Hospital, New Delhi, India
| | - Subhankar Chowdry
- Institute of Post-Graduate Medical Education and Research, Kolkotta, India
| | | | | | | |
Collapse
|
7
|
Song M, Li J, Lan L, Xie L, Xiong F, Yu L, Shi W, Wang D, Guan J, Wang H, Wang Q. Clinical characteristics of patients with unilateral auditory neuropathy. Am J Otolaryngol 2021; 42:103143. [PMID: 34175691 DOI: 10.1016/j.amjoto.2021.103143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To analyze the clinical characteristics of patients with unilateral auditory neuropathy (UAN), and to provide guidance for future clinical diagnosis and research. METHODS Patients who were clinically diagnosed with UAN from 2004 to 2019 were included. Clinical characteristics, audiological features, imaging findings, genetic test results and management effect were summarized and followed. RESULTS A total of 44 patients [mean age, 4.35 ± 4.39 years; 22 (50.00%) males and 22 (50.00%) females] were enrolled for analyses. Among the 38 patients who were tested by pure-tone or behavioral audiometry, the degree of hearing loss of the affected ear was characterized as mild in 2 ears (5.26%), moderate in 5 (13.16%), severe in 9 (23.68%) and profound in 22 (57.89%). For the 44 contralateral ears, 33 (75.00%) showed normal hearing and 11 (25.00%) presented with sensorineural hearing loss. Auditory brainstem responses were absent or abnormal in all 44 affected ears, while otoacoustic emissions and/or cochlear microphonics were present. Among the 18 patients who underwent magnetic resonance imaging (MRI), 7 (38.89%) presented cochlear nerve deficiency (CND). Nineteen candidate variants were found in 12 patients among the 15 UAN patients who were conducted targeted gene capture and next generation sequencing. Thirty patients were followed up by telephone to investigate their management effect. CONCLUSIONS Our study demonstrates comprehensive audiological features of patients with UAN to improve the clinical understanding and diagnosis. Some patients with UAN could show ipsilateral CND and MRI is essential to evaluate if the nerve is deficient. No pathogenic variants that directly related to the pathogenesis of UAN have been found in this study currently.
Collapse
|
8
|
Guan J, Wang H, Lan L, Wu Y, Chen G, Zhao C, Wang D, Wang Q. Recurrent de novo WFS1 pathogenic variants in Chinese sporadic patients with nonsyndromic sensorineural hearing loss. Mol Genet Genomic Med 2020; 8:e1367. [PMID: 32567228 PMCID: PMC7434732 DOI: 10.1002/mgg3.1367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022] Open
Abstract
Background Hereditary hearing loss (HL) is heterogeneous in terms of their phenotypic features, modes of inheritance, and causative gene mutations. The contribution of genetic variants to sporadic HL remains largely expanding. Either recessive or de novo dominant variants could result in an apparently sporadic occurrence of HL. In an attempt to find such variants we recruited 128 Chinese patients with sporadic nonsyndromic sensorineural HL (NSHL) and performed targeted deafness multigene sequencing in these unrelated trios‐families to elucidate the molecular basis. Methods We analyzed a total of 384 available members (probands and their two parents) from 128 unrelated Chinese families presenting with bilateral sensorineural HL, in which previous screening had found no mutations with the GJB2, SLC26A4, and MT‐RNR1 genes. We used a targeted genomic enrichment platform to simultaneously capture exons, splicing sites, and immediate flanking intron sequences of 127 known deafness genes. Sanger sequencing was used to identify probands and their two parents segregating causative variants in the candidate gene. Results We observed that two heterozygous de novo WFS1 mutations in exon 8: c.2051C>T (p.A684V) and c.2590G>A (p.E864K) in five families. The two de novo WFS1 mutations were found in 3.9% (5/128) of sporadic HL patients. We found that four of the five patients had the same de novo p.A684V mutation, and their audiograms showed symmetrical bilateral and profound sensorineural hearing impairments at all frequencies, but only the proband with de novo p.E864K mutation demonstrated significantly bilateral moderate low–mid frequency sensorineural HL. Our data suggest that this WFS1 p.A684V is likely to be a de novo mutational hot spot. Conclusions We found 3.9% (5/128) of sporadic NSHL is caused by de novo WFS1 mutations. Our data provide that the de novo p.E864K mutation is first identified and de novo p.A684V mutation is likely to be a mutational hot spot in WFS1. It is the first study to highlight that WFS1 gene with the two de novo mutations has been indicated to classify the distinct hearing impairment phenotypes. Furthermore, de novo p.A684V serves as a WFS1 mutational hot spot that was found in the Chinese population with sporadic childhood NSHL, and our study also provides pointers toward the necessity for sequencing of asymptomatic parents of a sporadic case with an apparent dominant pathogenic variant.
Collapse
Affiliation(s)
- Jing Guan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Hongyang Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Lan Lan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Yusen Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Guohui Chen
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Cui Zhao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Dayong Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Qiuju Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|