1
|
Wang W, Dai J, Hu X, He W, Gu Y, Wan Z, Zhang Y, Luo K, Li W, Zhang Q, Gong F, Lu G, Hu L, Tan YQ, Lin G, Du J. Decade-long application of preimplantation genetic testing for DMD/BMD: analysis of five clinical strategies and embryo recombination patterns. Hum Genet 2025:10.1007/s00439-025-02728-y. [PMID: 39969580 DOI: 10.1007/s00439-025-02728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
This study aimed to find the most effective PGT-M strategy for Duchenne muscular dystrophy/Becker muscular dystrophy (DMD/BMD), and to reduce misdiagnosis caused by embryo recombination in DMD. A retrospective study was performed by analyzing 158 PGT-M cycles for DMD/BMD in Reproductive and Genetic Hospital of CITIC-Xiangya between 2009 and 2023. Patients' backgrounds were collected. The effectiveness and safety for five different PGT-M strategies (1-5), including mutation testing from cleavage or trophoblast ectoderm (TE) cells and additional linkage analysis post-TE cell amplification, were analyzed. The embryonic recombination events were assessed for these cycles. Mutation analysis showed that 62.4% of the 125 families had DMD deletions, 16.0% had duplications, and 21.6% had single nucleotide variants (SNVs). Among 125 families, 104 (83.2%) had previously affected fetus or offspring. The highest diagnosis rate (99.56%) was achieved with Strategy 5, which combined mutation testing with SNP-based linkage analysis in TE cells. This strategy 5 also demonstrated an advantage in cases with recombination near the mutation. An intragenic recombination rate of 5.5% was observed in embryos, predominantly in the hotspots (exons 45-55 and exons 3-9) of DMD deletion/duplication mutations. Prenatal diagnosis for 52 families and successful outcomes in all 85 healthy deliveries (live birth rate, 65.89%, 85/129) validated the accuracy and effectiveness of PGT-M. This study provides a highly effective PGT-M strategy (Strategy 5) for DMD/BMD by comparing five different strategies, with the diagnostic yield reaching 99.56%. The results underscore the significance of monitoring intragenic recombination in DMD, which is a frequent occurrence in DMD/BMD.
Collapse
Affiliation(s)
- Weili Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jing Dai
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Xiao Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Wenbin He
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Yifan Gu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Zhenxing Wan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Yi Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Keli Luo
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, No. 88 Xiangya Road, Changsha, 410008, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| |
Collapse
|
2
|
Yuan S, Hu L, Zhong J, Hu X, Zhao X, Wan Z, Zeng S, He WB, Gu F, Wang SP, Lu G, Lin G, Du J. Genetic Analysis and Reproductive Interventions for Two Rare Families Affected by Severe Haemophilia A. Haemophilia 2025; 31:148-155. [PMID: 39632590 DOI: 10.1111/hae.15140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Haemophilia A (HA) is a rare bleeding disorder caused by variants in F8. Although traditional mutational analyses have identified numerous pathogenic variants, the aetiology of HA in certain patients remains unclear. Furthermore, female patients with severe HA are rare. AIM To investigate the molecular defects underlying severe HA in two patients and provide personalised reproductive interventions for their families. METHODS Two patients diagnosed with severe HA without other clinical phenotypes were enrolled in the study. A combination of whole-exome sequencing, real-time quantitative polymerase chain reaction and long-read sequencing (LR-sequencing) was performed to reveal the molecular defects of them, followed by the application of different reproductive intervention strategies. RESULTS Proband 1, a 29-year-old man with FVIII activity of 0.8%, did not exhibit common F8 variants, including Inv1 or Inv22, in the coding region. However, he carried a rare maternal novel inversion on ChrX:154148973_154170321, spanning approximately 21.345 Kbp, with breakpoints in introns 13 and 14 of F8. Finally, the couple of Proband 1 opted for assisted reproductive technology using preimplantation genetic testing and successfully conceived. Proband 2, a 20-year-old female with severe HA and FVIII activity of 0.6%, carried inv22 of F8. Further investigation combining whole exome sequencing (WES) and pedigree analysis revealed that she carried a maternal cross-deletion encompassing exons 1-22 of F8, FUNDC2, BRCC3 and CLIC2, along with a de novo missense variant c.5852T>C (p.Leu1951Ser) on her paternal X-chromosome. Chromosome X-inactivation (XCI) analysis demonstrated a highly skewed inactivation of the maternal X chromosome, with a ratio of 98:2. Subsequently, prenatal diagnosis confirmed that the third child in this family did not carry any of the F8 variants present in Proband 2. CONCLUSION Our findings provide novel insights into the genetic aetiology of HA and emphasise the importance of a definitive diagnosis in guiding genetic counselling and personalised reproductive interventions for affected individuals and their families.
Collapse
Affiliation(s)
- Shimin Yuan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Juanfang Zhong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Xiao Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Xiaomeng Zhao
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Zhenxing Wan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Sicong Zeng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Wen-Bin He
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Hunan Guangxiu Hospital Affiliated with Hunan Normal University, Health Science Center, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province & Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha, Hunan, China
| | - Feng Gu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Hunan Guangxiu Hospital Affiliated with Hunan Normal University, Health Science Center, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province & Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha, Hunan, China
| | - Sheng-Peng Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Hunan Guangxiu Hospital Affiliated with Hunan Normal University, Health Science Center, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province & Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha, Hunan, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Ren J, Peng C, Chen H, Zhou F, Keqie Y, Li Y, Yang H, Zhang H, Du Z, Hu T, Zhang X, Luo S, Fan W, Wang Y, Wang H, Chen X, Liu S. Asian Screening Array and Next-Generation Sequencing Based Panels Applied to Preimplantation Genetic Testing for Monogenic Disorders Preclinical Workup in 294 Families: A Retrospective Analysis. Prenat Diagn 2024; 44:1344-1353. [PMID: 39072792 DOI: 10.1002/pd.6639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Currently, the most commonly used methods for linkage analysis of pre-implantation genetic testing for monogenic disorders (PGT-M) are next generation sequencing (NGS) and SNP array. We aim to investigate whether the application efficacy of Asian screening array (ASA) in PGT-M preclinical workup for the Chinese population is superior to NGS based single nucleotide polymorphism (SNP) panels. METHODS We conducted a retrospective analysis by reviewing 294 couples from a single center over the past 4 years and compared the detection results between NGS-based SNP panels and ASA. Using the numbers of informative SNPs upstream and downstream flanking of variants, we assessed the detection efficiency of both methods in monogenic diseases, chromosomal microdeletion syndrome and males with de novo variants, among other scenarios. RESULTS Results indicate that ASA offers a greater number of informative SNPs compared with NGS-based SNP panels. Additionally, data analysis for ASA is generally more straightforward and may require less computational resources. While ASA can address most PGT-M challenges, we have also identified certain genes in previous tests that are not suitable for PGT-M using ASA. CONCLUSION The application of ASA in PGT-M preclinical workup for Chinese populations has good practical value as it can perform linkage analysis for most genetic variants. However, for certain variants, NGS or other testing methods, such as mutated allele revealed by sequencing with aneuploidy and linkage analysis (MARSALA), may still be necessary for completion.
Collapse
Affiliation(s)
- Jun Ren
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Cuiting Peng
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Han Chen
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fan Zhou
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuezhi Keqie
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yutong Li
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hong Yang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Haixia Zhang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ze Du
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Hu
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xuemei Zhang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shan Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Fan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - He Wang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xinlian Chen
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Hu X, Wang W, Luo K, Dai J, Zhang Y, Wan Z, He W, Zhang S, Yang L, Tan Q, Li W, Zhang Q, Gong F, Lu G, Tan YQ, Lin G, Du J. Extended application of PGT-M strategies for small pathogenic CNVs. J Assist Reprod Genet 2024; 41:739-750. [PMID: 38263474 PMCID: PMC10957852 DOI: 10.1007/s10815-024-03028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
PURPOSE The preimplantation genetic testing for aneuploidy (PGT-A) platform is not currently available for small copy-number variants (CNVs), especially those < 1 Mb. Through strategies used in PGT for monogenic disease (PGT-M), this study intended to perform PGT for families with small pathogenic CNVs. METHODS Couples who carried small pathogenic CNVs and underwent PGT at the Reproductive and Genetic Hospital of CITIC-Xiangya (Hunan, China) between November 2019 and April 2023 were included in this study. Haplotype analysis was performed through two platforms (targeted sequencing and whole-genome arrays) to identify the unaffected embryos, which were subjected to transplantation. Prenatal diagnosis using amniotic fluid was performed during 18-20 weeks of pregnancy. RESULTS PGT was successfully performed for 20 small CNVs (15 microdeletions and 5 microduplications) in 20 families. These CNVs distributed on chromosomes 1, 2, 6, 7, 13, 15, 16, and X with sizes ranging from 57 to 2120 kb. Three haplotyping-based PGT-M strategies were applied. A total of 89 embryos were identified in 25 PGT cycles for the 20 families. The diagnostic yield was 98.9% (88/89). Nineteen transfers were performed for 17 women, resulting in a 78.9% (15/19) clinical pregnancy rate after each transplantation. Of the nine women who had healthy babies, eight accepted prenatal diagnosis and the results showed no related pathogenic CNVs. CONCLUSION Our results show that the extended haplotyping-based PGT-M strategy application for small pathogenic CNVs compensated for the insufficient resolution of PGT-A. These three PGT-M strategies could be applied to couples with small pathogenic CNVs.
Collapse
Affiliation(s)
- Xiao Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Weili Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Keli Luo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Jing Dai
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Yi Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Zhenxing Wan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Wenbin He
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Lanlin Yang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Qin Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Wen Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, 410000, China
| | - Qianjun Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, 410000, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, 410000, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, 410000, China
| | - Yue-Qiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, 410000, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, 410000, China.
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
- College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, 410000, China.
| |
Collapse
|
5
|
Tian Y, Wang Y, Yang J, Gao P, Xu H, Wu Y, Li M, Chen H, Lu D, Yan H. Integrative preimplantation genetic testing analysis for a Chinese family with hereditary spherocytosis caused by a novel splicing variant of SPTB. Front Genet 2023; 14:1221853. [PMID: 37795245 PMCID: PMC10545875 DOI: 10.3389/fgene.2023.1221853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Hereditary spherocytosis (HS), the most common inherited hemolytic anemia disorder, is characterized by osmotically fragile microspherocytic red cells with a reduced surface area on the peripheral blood smear. Pathogenic variants in five erythrocyte membrane structure-related genes ANK1 (Spherocytosis, type 1; MIM#182900), SPTB (Spherocytosis, type 2; MIM#616649), SPTA1 (Spherocytosis, type 3; MIM#270970), SLC4A1 (Spherocytosis, type 4; MIM#612653) and EPB42 (Spherocytosis, type 5; MIM#612690) have been confirmed to be related to HS. There have been many studies on the pathogenic variants and mechanisms of HS, however, studies on how to manage the transmission of HS to the next-generation have not been reported. In this study, we recruited a patient with HS. Targeted next-generation sequencing with a panel of 208 genes related to blood system diseases detected a novel heterozygous variant in the SPTB: c.300+2dup in the proband. Sanger sequencing of variant alleles and haplotype linkage analysis of single nucleotide polymorphism (SNP) based on next-generation sequencing were performed simultaneously. Five embryos were identified with one heterozygous and four not carrying the SPTB variant. Single-cell amplification and whole genome sequencing showed that three embryos had varying degrees of trisomy mosaicism. One of two normal embryos was transferred to the proband. Ultimately, a healthy boy was born, confirmed by noninvasive prenatal testing for monogenic conditions (NIPT-M) to be disease-free. This confirmed our successful application of PGT in preventing transmission of the pathogenic variant allele in the HS family.
Collapse
Affiliation(s)
- Yafei Tian
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Wang
- Department of Reproductive Heredity Center, Navy Medical University, Shanghai, China
| | - Jingmin Yang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
- Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
- Shanghai WeHealth BioMedical Technology Co., Ltd.Shanghai, China
| | - Pengfei Gao
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai WeHealth BioMedical Technology Co., Ltd.Shanghai, China
| | - Hui Xu
- Shanghai WeHealth BioMedical Technology Co., Ltd.Shanghai, China
| | - Yiming Wu
- Shanghai WeHealth BioMedical Technology Co., Ltd.Shanghai, China
| | - Mengru Li
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Daru Lu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
- Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
| | - Hongli Yan
- Department of Reproductive Heredity Center, Navy Medical University, Shanghai, China
| |
Collapse
|
6
|
Chen D, Xu Y, Fu Y, Wang Y, Liu Y, Ding C, Cai B, Pan J, Wang J, Li R, Guo J, Zhang H, Zeng Y, Shen X, Zhou C. Clinical application of next generation sequencing-based haplotype linkage analysis in the preimplantation genetic testing for germline mosaicisms. Orphanet J Rare Dis 2023; 18:137. [PMID: 37270548 DOI: 10.1186/s13023-023-02736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Preimplantation genetic testing (PGT) for monogenic disorders (PGT-M) for germline mosaicism was previously highly dependent on polymerase chain reaction (PCR)-based directed mutation detection combined with linkage analysis of short tandem repeats (STRs). However, the number of STRs is usually limited. In addition, designing suitable probes and optimizing the reaction conditions for multiplex PCR are time-consuming and laborious. Here, we evaluated the effectiveness of next generation sequencing (NGS)-based haplotype linkage analysis in PGT of germline mosaicism. METHODS PGT-M with NGS-based haplotype linkage analysis was performed for two families with maternal germline mosaicism for an X-linked Duchenne muscular dystrophy (DMD) mutation (del exon 45-50) or an autosomal TSC1 mutation (c.2074C > T). Trophectoderm biopsy and multiple displacement amplification (MDA) were performed for a total of nine blastocysts. NGS and Sanger sequencing were performed in genomic DNA of family members and embryonic MDA products to detect DMD deletion and TSC1 mutation, respectively. Single nucleotide polymorphism (SNP) sites closely linked to pathogenic mutations were detected with NGS and served in haplotype linkage analysis. NGS-based aneuploidy screening was performed for all embryos to reduce the risk of pregnancy loss. RESULTS All nine blastocytes showed conclusive PGT results. Each family underwent one or two frozen-thawed embryo transfer cycles to obtain a clinical pregnancy, and the prenatal diagnosis showed that the fetus was genotypically normal and euploid for both families. CONCLUSIONS NGS-SNP could effectively realize PGT for germline mosaicism. Compared with PCR-based methods, the NGS-SNP method with increased polymorphic informative markers can achieve a greater diagnostic accuracy. Further studies are warranted to verify the effectiveness of NGS-based PGT of germline mosaicism cases in the absence of surviving offsprings.
Collapse
Affiliation(s)
- Dongjia Chen
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Yan Xu
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Yu Fu
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570102, China
| | - Yali Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Yuliang Liu
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Chenhui Ding
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Bing Cai
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Jiafu Pan
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Jing Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Rong Li
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Jing Guo
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Han Zhang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Yanhong Zeng
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Xiaoting Shen
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China.
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Canquan Zhou
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China.
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Xie P, Hu X, Kong L, Mao Y, Cheng D, Kang K, Dai J, Zhao D, Zhang Y, Lu N, Wan Z, Du R, Xiong B, Zhang J, Tan Y, Lu G, Gong F, Lin G, Liang B, Du J, Hu L. A novel multifunctional haplotyping-based preimplantation genetic testing for different genetic conditions. Hum Reprod 2022; 37:2546-2559. [PMID: 36066440 DOI: 10.1093/humrep/deac190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/24/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Is there an efficient and cost-effective detection platform for different genetic conditions about embryos? SUMMARY ANSWER A multifunctional haplotyping-based preimplantation genetic testing platform was provided for detecting different genetic conditions. WHAT IS KNOWN ALREADY Genetic disease and chromosomal rearrangement have been known to significantly impact fertility and development. Therefore, preimplantation genetic testing for aneuploidy (PGT-A), monogenic disorders (PGT-M) and structural rearrangements (PGT-SR), a part of ART, has been presented together to minimize the fetal genetic risk and increase pregnancy rate. For patients or their families who are suffering from chromosome abnormality, monogenic disease, unexplained repeated spontaneous abortion or implantation failure, after accepting genetic counseling, they may be suggested to accept detection from more than one PGT platforms about the embryos to avoid some genetic diseases. However, PGT platforms work through different workflows. The high costliness, lack of material and long-time operation of combined PGT platforms limit their application. STUDY DESIGN, SIZE, DURATION All 188 embryonic samples from 43 families were tested with HaploPGT platform, and most of their genetic abnormalities had been determined by different conventional PGT methods beforehand. Among them, there were 12 families only carrying structural rearrangements (115 embryos) in which 9 families accepted implantation and 5 families had normal labor ART outcomes, 7 families only carrying monogenic diseases (26 embryos) and 3 families carrying both structural rearrangements and monogenic diseases (26 embryos). Twelve monopronucleated zygotes (1PN) samples and 9 suspected triploid samples were collected from 21 families. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Here, we raised a comprehensive PGT method called HaploPGT, combining reduced representation genome sequencing, read-count analysis, B allele frequency and haplotyping analysis, to simultaneously detect different genetic disorders in one single test. MAIN RESULTS AND THE ROLE OF CHANCE With 80 million reads (80M) genomic data, the proportion of windows (1 million base pairs (Mb)) containing two or more informative single nucleotide polymorphism (SNP) sites was 97.81%, meanwhile the genotyping error rate stabilized at a low level (2.19%). Furthermore, the informative SNPs were equally distributed across the genome, and whole-genomic haplotyping was established. Therefore, 80M was chosen to balance the cost and accuracy in HaploPGT. HaploPGT was able to identify abnormal embryos with triploid, global and partial loss of heterozygosity, and even to distinguish parental origin of copy number variation in mosaic and non-mosaic embryos. Besides, by retrospectively analyzing 188 embryonic samples from 43 families, HaploPGT revealed 100% concordance with the available results obtained from reference methods, including PGT-A, PGT-M, PGT-SR and PGT-HLA. LIMITATIONS, REASON FOR CAUTION Despite the numerous benefits HaploPGT could bring, it still required additional family members to deduce the parental haplotype for identifying balanced translocation and monogenic mutation in tested embryos. In terms of PGT-SR, the additional family member could be a reference embryo with unbalanced translocation. For PGT-M, a proband was normally required. In both cases, genomic information from grandparents or parental siblings might help for haplotyping theoretically. Another restriction was that haploid, and diploid resulting from the duplication of a haploid, could not be told apart by HaploPGT, but it was able to recognize partial loss of heterozygosity in the embryonic genome. In addition, it should be noted that the location of rearrangement breakpoints and the situation of mutation sites were complicated, which meant that partial genetic disorders might not be completely detected. WIDER IMPLICATIONS OF THE FINDINGS HaploPGT is an efficient and cost-effective detection platform with high clinical value for detecting genetic status. This platform could promote the application of PGT in ART, to increase pregnancy rate and decrease the birth of children with genetic diseases. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the National Natural Science Foundation of China (81873478, to L.H.), National Key R&D Program of China (2018YFC1003100, to L.H.), the Natural Science Foundation of Hunan Province (Grant 2022JJ30414, to P.X.), Hunan Provincial Grant for Innovative Province Construction (2019SK4012) and the Scientific Research Foundation of Reproductive and Genetic Hospital of China International Trust & Investment Corporation (CITIC)-Xiangya (YNXM-201910). Haplotyping analysis has been licensed to Basecare Co., Ltd. L.K., Y.M., K.K., D.Z., N.L., J.Z. and R.D. are Basecare Co., Ltd employees. The other authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Pingyuan Xie
- Genetic Department, Hunan Normal University School of Medicine, Changsha, Hunan, China.,Genetic Department, National Engineering and Research Center of Human Stem Cells, Changsha, China.,Genetic Department, Hunan International Scientific and Technological Cooperation Base of Development and carcinogenesis, Changsha, Hunan, China
| | - Xiao Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | | | - Yan Mao
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Kai Kang
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Jing Dai
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | | | - Yi Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Naru Lu
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Zhenxing Wan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Renqian Du
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Bo Xiong
- Genetic Department, National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jun Zhang
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Yueqiu Tan
- Genetic Department, National Engineering and Research Center of Human Stem Cells, Changsha, China.,Genetic Department, Hunan International Scientific and Technological Cooperation Base of Development and carcinogenesis, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guangxiu Lu
- Genetic Department, National Engineering and Research Center of Human Stem Cells, Changsha, China.,Genetic Department, Hunan International Scientific and Technological Cooperation Base of Development and carcinogenesis, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fei Gong
- Genetic Department, National Engineering and Research Center of Human Stem Cells, Changsha, China.,Genetic Department, Hunan International Scientific and Technological Cooperation Base of Development and carcinogenesis, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ge Lin
- Genetic Department, National Engineering and Research Center of Human Stem Cells, Changsha, China.,Genetic Department, Hunan International Scientific and Technological Cooperation Base of Development and carcinogenesis, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Du
- Genetic Department, National Engineering and Research Center of Human Stem Cells, Changsha, China.,Genetic Department, Hunan International Scientific and Technological Cooperation Base of Development and carcinogenesis, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liang Hu
- Genetic Department, National Engineering and Research Center of Human Stem Cells, Changsha, China.,Genetic Department, Hunan International Scientific and Technological Cooperation Base of Development and carcinogenesis, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Asymmetric Contribution of Blastomere Lineages of First Division of the Zygote to Entire Human Body Using Post-Zygotic Variants. Tissue Eng Regen Med 2022; 19:809-821. [PMID: 35438457 PMCID: PMC9294097 DOI: 10.1007/s13770-022-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND In humans, after fertilization, the zygote divides into two 2n diploid daughter blastomeres. During this division, DNA is replicated, and the remaining mutually exclusive genetic mutations in the genome of each cell are called post-zygotic variants. Using these somatic mutations, developmental lineages can be reconstructed. How these two blastomeres are contributing to the entire body is not yet identified. This study aims to evaluate the cellular contribution of two blastomeres of 2-cell embryos to the entire body in humans using post-zygotic variants based on whole genome sequencing. METHODS Tissues from different anatomical areas were obtained from five donated cadavers for use in single-cell clonal expansion and bulk target sequencing. After conducting whole genome sequencing, computational analysis was applied to find the early embryonic mutations of each clone. We developed our in-house bioinformatics pipeline, and filtered variants using strict criteria, composed of mapping quality, base quality scores, depth, soft-clipped reads, and manual inspection, resulting in the construction of embryological phylogenetic cellular trees. RESULTS Using our in-house pipeline for variant filtering, we could extract accurate true positive variants, and construct the embryological phylogenetic trees for each cadaver. We found that two daughter blastomeres, L1 and L2 (lineage 1 and 2, respectively), derived from the zygote, distribute unequally to the whole body at the clonal level. From bulk target sequencing data, we validated asymmetric contribution by means of the variant allele frequency of L1 and L2. The asymmetric contribution of L1 and L2 varied from person to person. CONCLUSION We confirmed that there is asymmetric contribution of two daughter blastomeres from the first division of the zygote across the whole human body.
Collapse
|
9
|
Oliveira Netto AB, Brusius-Facchin AC, Leistner-Segal S, Kubaski F, Josahkian J, Giugliani R. Detection of Mosaic Variants in Mothers of MPS II Patients by Next Generation Sequencing. Front Mol Biosci 2021; 8:789350. [PMID: 34805285 PMCID: PMC8602069 DOI: 10.3389/fmolb.2021.789350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Mucopolysaccharidosis type II is an X-linked lysosomal storage disorder caused by mutations in the IDS gene that encodes the iduronate-2-sulfatase enzyme. The IDS gene is located on the long arm of the X-chromosome, comprising 9 exons, spanning approximately 24 kb. The analysis of carriers, in addition to detecting mutations in patients, is essential for genetic counseling, since the risk of recurrence for male children is 50%. Mosaicism is a well-known phenomenon described in many genetic disorders caused by a variety of mechanisms that occur when a mutation arises in the early development of an embryo. Sanger sequencing is limited in detecting somatic mosaicism and sequence change levels of less than 20% may be missed. The Next Generation Sequencing (NGS) has been increasingly used in diagnosis. It is a sensitive and fast method for the detection of somatic mosaicism. Compared to Sanger sequencing, which represents a cumulative signal, NGS technology analyzes the sequence of each DNA read in a sample. NGS might therefore facilitate the detection of mosaicism in mothers of MPS II patients. The aim of this study was to reanalyze, by NGS, all MPS II mothers that showed to be non-carriers by Sanger analysis. Twelve non-carriers were selected for the reanalysis on the Ion PGM and Ion Torrent S5 platform, using a custom panel that includes the IDS gene. Results were visualized in the Integrative Genomics Viewer (IGV). We were able to detected the presence of the variant previously found in the index case in three of the mothers, with frequencies ranging between 13 and 49% of the reads. These results suggest the possibility of mosaicism in the mothers. The use of a more sensitive technology for detecting low-level mosaic mutations is essential for accurate recurrence-risk estimates. In our study, the NGS analysis showed to be an effective methodology to detect the mosaic event.
Collapse
Affiliation(s)
- Alice Brinckmann Oliveira Netto
- Laboratory of Molecular Genetics, Medical Genetics Service, HCPA, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | - Ana Carolina Brusius-Facchin
- Laboratory of Molecular Genetics, Medical Genetics Service, HCPA, Porto Alegre, Brazil.,National Institute on Population Medical Genetics, INAGEMP, Porto Alegre, Brazil.,BioDiscovery Laboratory, Experimental Research Center, HCPA, Porto Alegre, Brazil
| | - Sandra Leistner-Segal
- Laboratory of Molecular Genetics, Medical Genetics Service, HCPA, Porto Alegre, Brazil
| | - Francyne Kubaski
- Laboratory of Molecular Genetics, Medical Genetics Service, HCPA, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil.,National Institute on Population Medical Genetics, INAGEMP, Porto Alegre, Brazil.,BioDiscovery Laboratory, Experimental Research Center, HCPA, Porto Alegre, Brazil
| | - Juliana Josahkian
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil.,Department of Clinical Medicine, Hospital Universitario de Santa Maria (HUSM), Santa Maria, Brazil
| | - Roberto Giugliani
- Laboratory of Molecular Genetics, Medical Genetics Service, HCPA, Porto Alegre, Brazil.,National Institute on Population Medical Genetics, INAGEMP, Porto Alegre, Brazil.,BioDiscovery Laboratory, Experimental Research Center, HCPA, Porto Alegre, Brazil.,Department of Genetics, UFRGS, Porto Alegre, Brazil
| |
Collapse
|