1
|
Bosman W, Franken GAC, de Las Heras J, Madariaga L, Barakat TS, Oostenbrink R, van Slegtenhorst M, Perdomo-Ramírez A, Claverie-Martín F, van Eerde AM, Vargas-Poussou R, Dubourg LD, González-Recio I, Martínez-Cruz LA, de Baaij JHF, Hoenderop JGJ. Hypomagnesaemia with varying degrees of extrarenal symptoms as a consequence of heterozygous CNNM2 variants. Sci Rep 2024; 14:6917. [PMID: 38519529 PMCID: PMC10959950 DOI: 10.1038/s41598-024-57061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Variants in the CNNM2 gene are causative for hypomagnesaemia, seizures and intellectual disability, although the phenotypes can be variable. This study aims to understand the genotype-phenotype relationship in affected individuals with CNNM2 variants by phenotypic, functional and structural analysis of new as well as previously reported variants. This results in the identification of seven variants that significantly affect CNNM2-mediated Mg2+ transport. Pathogenicity of these variants is further supported by structural modelling, which predicts CNNM2 structure to be affected by all of them. Strikingly, seizures and intellectual disability are absent in 4 out of 7 cases, indicating these phenotypes are caused either by specific CNNM2 variant only or by additional risk factors. Moreover, in line with sporadic observations from previous reports, CNNM2 variants might be associated with disturbances in parathyroid hormone and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Willem Bosman
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Gijs A C Franken
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Javier de Las Heras
- Division of Pediatric Metabolism, Cruces University Hospital, CIBER-ER, Metab-ERN, University of the Basque Country (UPV/EHU), Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Madariaga
- Pediatric Nephrology Department, Cruces University Hospital, CIBERDEM, CIBER-ER, Endo-ERN, Biocruces Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - Tahsin Stefan Barakat
- Deparment of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Rianne Oostenbrink
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of General Pediatrics, Erasmus Medical Center Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Ana Perdomo-Ramírez
- Unidad de Investigación, Renal Tube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Félix Claverie-Martín
- Unidad de Investigación, Renal Tube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Rosa Vargas-Poussou
- Service de medecine genomique des maladies rares, AP-HP, universite Paris Cité, Paris, France
- Centre de reference des maladies renales hereditaires de l'enfant et de l'adulte MARHEA, hopital Européen Georges Pompidou, Paris, France
- CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne universite, universite Paris Cité, Paris, France
| | - Laurence Derain Dubourg
- Hôpital Édouard Herriot, Hospices civils de Lyon, service de nephrologie, dialyse, hypertension et exploration fonctionnelle renale, Lyon, France
- Centre de reference des maladies renales rares et phosphocalciques, Nephrogones, Hôpital Femme-Mère-Enfant Bron, Bron, France
- Faculté de medecine Lyon est, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Irene González-Recio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | | | | |
Collapse
|
2
|
Chen YS, Gehring K. New insights into the structure and function of CNNM proteins. FEBS J 2023; 290:5475-5495. [PMID: 37222397 DOI: 10.1111/febs.16872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-β-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry & Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Kalle Gehring
- Department of Biochemistry & Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Bakker MK, van Straten T, Chong M, Paré G, Gill D, Ruigrok YM. Anti-Epileptic Drug Target Perturbation and Intracranial Aneurysm Risk: Mendelian Randomization and Colocalization Study. Stroke 2023; 54:208-216. [PMID: 36300369 PMCID: PMC9794136 DOI: 10.1161/strokeaha.122.040598] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In a genome-wide association study of intracranial aneurysms (IA), enrichment was found between genes associated with IA and genes encoding targets of effective anti-epileptic drugs. Our aim was to assess if this pleiotropy is driven by shared disease mechanisms that could potentially highlight a treatment strategy for IA. METHODS Using 2-sample inverse-variance weighted Mendelian randomization and genetic colocalization analyses we assessed: (1) if epilepsy liability in general affects IA risk, and (2) whether changes in gene- and protein-expression levels of anti-epileptic drug targets in blood and arterial tissue may causally affect IA risk. RESULTS We found no overall effect of epilepsy liability on IA. Expression of 21 genes and 13 proteins corresponding to anti-epileptic drug targets supported a causal effect (P<0.05) on IA risk. Of those genes and proteins, genetic variants affecting CNNM2 levels showed strong evidence for colocalization with IA risk (posterior probability>70%). Higher CNNM2 levels in arterial tissue were associated with increased IA risk (odds ratio, 3.02; [95% CI, 2.32-3.94]; P=3.39×10-16). CNNM2 expression was best proxied by rs11191580. The magnitude of the effect of this variant was greater than would be expected if systemic blood pressure was the sole IA-causing mechanism in this locus. CONCLUSIONS CNNM2 is a driver of the pleiotropy between IA and anti-epileptic drug targets. Administration of the anti-epileptic drugs phenytoin, valproic acid, or carbamazepine may be expected to decrease CNNM2 levels and therefore subsequently decrease IA risk. CNNM2 is therefore an important target to investigate further for its role in the pathogenesis of IA.
Collapse
Affiliation(s)
- Mark K. Bakker
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, the Netherlands (M.K.B., T.v.S., Y.M.R.)
| | - Tijmen van Straten
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, the Netherlands (M.K.B., T.v.S., Y.M.R.)
| | - Michael Chong
- Population Health Research Institute; Thrombosis and Atherosclerosis Research Institute; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (M.C., G.P.)
| | - Guillaume Paré
- Population Health Research Institute; Thrombosis and Atherosclerosis Research Institute; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (M.C., G.P.)
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom (D.G.)
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, the Netherlands (M.K.B., T.v.S., Y.M.R.)
| |
Collapse
|