1
|
Rodilla C, Núñez-Moreno G, Benitez Y, Romero R, Fernández-Caballero L, Mínguez P, Corton M, Ayuso C. Cas9-targeted-based long-read sequencing for genetic screening of RPE65 locus. Front Genet 2024; 15:1439153. [PMID: 39469149 PMCID: PMC11513366 DOI: 10.3389/fgene.2024.1439153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Long-read sequencing (LRS) enables accurate structural variant detection and variant phasing. When a molecular diagnosis is suspected, target enrichment can reduce the cost and duration of sequencing. Methods LRS was conducted in five inherited retinal dystrophy (IRD) patients harboring a monoallelic variant in RPE65 that remained uncharacterized after clinical exome sequencing (CES). CRISPR-Cas9 guide RNA probes were designed to target a 31 kb region, including the entire RPE65 locus. The DNA was sequenced on a MinION platform. Short-read ×30 whole-genome sequencing (WGS) was performed for five patients to validate nanopore results. Results The nanopore sequencing process yielded a median of 271 reads within the targeted region, with a mean depth of 109 and a median read size of 8 kb. All variants identified by CES have been detected using this approach, and no additional RPE65 gene causative variants were found. Nanopore variant detection demonstrated performance akin to short-read WGS at similar coverage levels, although exhibiting increased false positive calls at lower coverage. Discussion In this study, we explore the advantages of using a targeted approach together with long-read sequencing to identify variants associated with IRD. The results underscore the utility of targeted long reads for characterizing patients affected by rare diseases when first-tier diagnostic tests are non-conclusive.
Collapse
Affiliation(s)
- Cristina Rodilla
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Yolanda Benitez
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Raquel Romero
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Lidia Fernández-Caballero
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Corton
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Kumari P, Kaur M, Dindhoria K, Ashford B, Amarasinghe SL, Thind AS. Advances in long-read single-cell transcriptomics. Hum Genet 2024; 143:1005-1020. [PMID: 38787419 PMCID: PMC11485027 DOI: 10.1007/s00439-024-02678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Long-read single-cell transcriptomics (scRNA-Seq) is revolutionizing the way we profile heterogeneity in disease. Traditional short-read scRNA-Seq methods are limited in their ability to provide complete transcript coverage, resolve isoforms, and identify novel transcripts. The scRNA-Seq protocols developed for long-read sequencing platforms overcome these limitations by enabling the characterization of full-length transcripts. Long-read scRNA-Seq techniques initially suffered from comparatively poor accuracy compared to short read scRNA-Seq. However, with improvements in accuracy, accessibility, and cost efficiency, long-reads are gaining popularity in the field of scRNA-Seq. This review details the advances in long-read scRNA-Seq, with an emphasis on library preparation protocols and downstream bioinformatics analysis tools.
Collapse
Affiliation(s)
- Pallawi Kumari
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Manmeet Kaur
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Kiran Dindhoria
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW, Australia
| | - Shanika L Amarasinghe
- Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, VIC, 3025, Australia
| | - Amarinder Singh Thind
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW, Australia.
- The School of Chemistry and Molecular Bioscience (SCMB), University of Wollongong, Loftus St, Wollongong, NSW, 2500, Australia.
| |
Collapse
|
3
|
Shelton WJ, Zandpazandi S, Nix JS, Gokden M, Bauer M, Ryan KR, Wardell CP, Vaske OM, Rodriguez A. Long-read sequencing for brain tumors. Front Oncol 2024; 14:1395985. [PMID: 38915364 PMCID: PMC11194609 DOI: 10.3389/fonc.2024.1395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Brain tumors and genomics have a long-standing history given that glioblastoma was the first cancer studied by the cancer genome atlas. The numerous and continuous advances through the decades in sequencing technologies have aided in the advanced molecular characterization of brain tumors for diagnosis, prognosis, and treatment. Since the implementation of molecular biomarkers by the WHO CNS in 2016, the genomics of brain tumors has been integrated into diagnostic criteria. Long-read sequencing, also known as third generation sequencing, is an emerging technique that allows for the sequencing of longer DNA segments leading to improved detection of structural variants and epigenetics. These capabilities are opening a way for better characterization of brain tumors. Here, we present a comprehensive summary of the state of the art of third-generation sequencing in the application for brain tumor diagnosis, prognosis, and treatment. We discuss the advantages and potential new implementations of long-read sequencing into clinical paradigms for neuro-oncology patients.
Collapse
Affiliation(s)
- William J Shelton
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sara Zandpazandi
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - J Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olena Morozova Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
4
|
Zeibich R, Kwan P, J. O’Brien T, Perucca P, Ge Z, Anderson A. Applications for Deep Learning in Epilepsy Genetic Research. Int J Mol Sci 2023; 24:14645. [PMID: 37834093 PMCID: PMC10572791 DOI: 10.3390/ijms241914645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a group of brain disorders characterised by an enduring predisposition to generate unprovoked seizures. Fuelled by advances in sequencing technologies and computational approaches, more than 900 genes have now been implicated in epilepsy. The development and optimisation of tools and methods for analysing the vast quantity of genomic data is a rapidly evolving area of research. Deep learning (DL) is a subset of machine learning (ML) that brings opportunity for novel investigative strategies that can be harnessed to gain new insights into the genomic risk of people with epilepsy. DL is being harnessed to address limitations in accuracy of long-read sequencing technologies, which improve on short-read methods. Tools that predict the functional consequence of genetic variation can represent breaking ground in addressing critical knowledge gaps, while methods that integrate independent but complimentary data enhance the predictive power of genetic data. We provide an overview of these DL tools and discuss how they may be applied to the analysis of genetic data for epilepsy research.
Collapse
Affiliation(s)
- Robert Zeibich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC 3084, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Zongyuan Ge
- Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia;
- Monash-Airdoc Research, Monash University, Melbourne, VIC 3800, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|