1
|
Li W, Song YYY, Rao T, Yu WM, Ruan Y, Ning JZ, Yao XB, Yang SYS, Cheng F. CircCSNK1G3 up-regulates miR-181b to promote growth and metastasis via TIMP3-mediated epithelial to mesenchymal transitions in renal cell carcinoma. J Cell Mol Med 2021; 26:1729-1741. [PMID: 33560588 PMCID: PMC8918408 DOI: 10.1111/jcmm.15911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer, with a high recurrence rate and metastasis capacity. Circular RNAs (circRNAs) have been suggested to act as the critical regulator in several diseases. This study is designed to investigate the role of circCSNK1G3 on RCC progression. We observed a highly expression of circCSNK1G3 in RCC tissues compared with normal tissues. The aberrantly circCSNK1G3 promoted the tumour growth and metastasis in RCC. In the subsequent mechanism investigation, we discovered that the tumour‐promoting effects of circCSNK1G3 were, at least partly, achieved by up‐regulating miR‐181b. Increased miR‐181b inhibits several tumour suppressor gene, including CYLD, LATS2, NDRG2 and TIMP3. Furthermore, the decreased TIMP3 leads to the enhanced epithelial to mesenchymal transition (EMT) process, thus promoting the cancer metastasis. In conclusion, we identified the oncogenic role of circCSNK1G3 in RCC progression and demonstrated the regulatory role of circCSNK1G3 induced miR‐181b expression, which leads to TIMP3‐mediated EMT process, thus resulting in tumour growth and metastasis in RCC. This study reveals the promise of circCSNK1G3 to be developed as a potential diagnostic and prognostic biomarker in the clinic. And the roles of circCSNK1G3 in cancer research deserve further investigation.
Collapse
Affiliation(s)
- Wen Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang-Yi-Yan Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei-Min Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Bing Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Yi-Sha Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Harvey NR, Voisin S, Lea RA, Yan X, Benton MC, Papadimitriou ID, Jacques M, Haupt LM, Ashton KJ, Eynon N, Griffiths LR. Investigating the influence of mtDNA and nuclear encoded mitochondrial variants on high intensity interval training outcomes. Sci Rep 2020; 10:11089. [PMID: 32632177 PMCID: PMC7338527 DOI: 10.1038/s41598-020-67870-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondria supply intracellular energy requirements during exercise. Specific mitochondrial haplogroups and mitochondrial genetic variants have been associated with athletic performance, and exercise responses. However, these associations were discovered using underpowered, candidate gene approaches, and consequently have not been replicated. Here, we used whole-mitochondrial genome sequencing, in conjunction with high-throughput genotyping arrays, to discover novel genetic variants associated with exercise responses in the Gene SMART (Skeletal Muscle Adaptive Response to Training) cohort (n = 62 completed). We performed a Principal Component Analysis of cohort aerobic fitness measures to build composite traits and test for variants associated with exercise outcomes. None of the mitochondrial genetic variants but eight nuclear encoded variants in seven separate genes were found to be associated with exercise responses (FDR < 0.05) (rs11061368: DIABLO, rs113400963: FAM185A, rs6062129 and rs6121949: MTG2, rs7231304: AFG3L2, rs2041840: NDUFAF7, rs7085433: TIMM23, rs1063271: SPTLC2). Additionally, we outline potential mechanisms by which these variants may be contributing to exercise phenotypes. Our data suggest novel nuclear-encoded SNPs and mitochondrial pathways associated with exercise response phenotypes. Future studies should focus on validating these variants across different cohorts and ethnicities.
Collapse
Affiliation(s)
- N R Harvey
- Health Sciences and Medicine Faculty, Bond University, Robina, QLD, 4226, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - S Voisin
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - R A Lea
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - X Yan
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - M C Benton
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - I D Papadimitriou
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - M Jacques
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - L M Haupt
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - K J Ashton
- Health Sciences and Medicine Faculty, Bond University, Robina, QLD, 4226, Australia
| | - N Eynon
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, 3011, Australia
| | - L R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
3
|
Rainero I, Vacca A, Govone F, Gai A, Pinessi L, Rubino E. Migraine: Genetic Variants and Clinical Phenotypes. Curr Med Chem 2019; 26:6207-6221. [DOI: 10.2174/0929867325666180719120215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Migraine is a common, chronic neurovascular disorder caused by a complex interaction
between genetic and environmental risk factors. In the last two decades, molecular genetics
of migraine have been intensively investigated. In a few cases, migraine is transmitted as a
monogenic disorder, and the disease phenotype cosegregates with mutations in different genes
like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine,
candidate genes as well as genome-wide association studies have shown that a large number of
genetic variants may increase the risk of developing migraine. At present, few studies investigated
the genotype-phenotype correlation in patients with migraine. The purpose of this review
was to discuss recent studies investigating the relationship between different genetic variants
and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in
migraineurs is complicated by several confounding factors and, to date, only polymorphisms
of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional
genomic studies and network analyses are needed to clarify the complex pathways underlying
migraine and its clinical phenotypes.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Alessandro Vacca
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Flora Govone
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Annalisa Gai
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Lorenzo Pinessi
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Elisa Rubino
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| |
Collapse
|
4
|
The metabolic face of migraine - from pathophysiology to treatment. Nat Rev Neurol 2019; 15:627-643. [PMID: 31586135 DOI: 10.1038/s41582-019-0255-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Migraine can be regarded as a conserved, adaptive response that occurs in genetically predisposed individuals with a mismatch between the brain's energy reserve and workload. Given the high prevalence of migraine, genotypes associated with the condition seem likely to have conferred an evolutionary advantage. Technological advances have enabled the examination of different aspects of cerebral metabolism in patients with migraine, and complementary animal research has highlighted possible metabolic mechanisms in migraine pathophysiology. An increasing amount of evidence - much of it clinical - suggests that migraine is a response to cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity and that the attack itself helps to restore brain energy homeostasis and reduces harmful oxidative stress levels. Greater understanding of metabolism in migraine offers novel therapeutic opportunities. In this Review, we describe the evidence for abnormalities in energy metabolism and mitochondrial function in migraine, with a focus on clinical data (including neuroimaging, biochemical, genetic and therapeutic studies), and consider the relationship of these abnormalities with the abnormal sensory processing and cerebral hyper-responsivity observed in migraine. We discuss experimental data to consider potential mechanisms by which metabolic abnormalities could generate attacks. Finally, we highlight potential treatments that target cerebral metabolism, such as nutraceuticals, ketone bodies and dietary interventions.
Collapse
|
5
|
Update on the diagnostic considerations for neurogenic nasal and sinus symptoms: A current review suggests adding a possible diagnosis of migraine. Am J Otolaryngol 2019; 40:306-311. [PMID: 30473169 DOI: 10.1016/j.amjoto.2018.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Treatment of rhinosinusitis (RS) is one of the leading reasons for prescriptions of antibiotics, although they often fail to provide symptomatic relief. Appropriately diagnosing and treating patients presenting with RS for whom antibiotic therapy has failed or who have normal CT findings is a controversial topic. One explanation is that what these patients are experiencing is misinformation from the trigeminal nerve and autonomic nervous system. Midfacial pain and pressure with rhinorrhea and nasal congestion do not represent an infectious, or even inflammatory, condition within the sinus or nasal cavities, but a mirage that is best treated as a migraine variant. Observations Although there is not enough research to definitively prove this alternate etiology, we are reaching a tipping point where the clinical implications, real-world experience, and evolving literature support this possible alternate etiology. Four key factors support a midfacial migraine that mimics RS: 1) Pathophysiology: current pathophysiology literature offers a model of how migraine attacks could replicate clinical presentations of RS; 2) Clinical presentation: patients with infectious RS and midfacial migraine have similar symptomatic presentation, similar demographics, but poorly correlated radiological information; 3) Diagnosis: clinical studies support the proposition that there are alternative diagnostic tools for distinguishing patients with midfacial migraine; and 4) Prognosis: Select RS patients show significant improvement with migraine treatment. CONCLUSIONS We encourage medical professionals to consider migraine disease as a form of sensory misinformation and as a possible etiology of RS complaints. Clinicians can ask validated questions to determine if possible migraine could be an underlying cause, and there are standard preventative treatments for migraine that could alleviate patient symptoms. Dysfunctional vasomotor activity may be the root of the disturbances, particularly when antibiotic therapy fails and CT findings are discordant with symptoms. Until there is a diagnostic test for migraine, clinicians need to question a patient's self-diagnosis of rhinosinusitis. More research is needed to definitively answer this important question.
Collapse
|