1
|
Sagi-Dain L, Levy M, Matar R, Kahana S, Agmon-Fishman I, Klein C, Gurevitch M, Basel-Salmon L, Maya I. Exploring the human genomic landscape: patterns of common homozygosity regions in a large middle eastern cohort. Hum Mol Genet 2024:ddae123. [PMID: 39222050 DOI: 10.1093/hmg/ddae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Regions of Homozygosity (ROH) typically reflect normal demographic history of a human population, but may also relate to cryptic consanguinity, and, additionally, have been associated with specific medical conditions. The objective of this study was to investigate the location, size, and prevalence of common ROH segments in a Middle Eastern cohort. This retrospective study included 13 483 samples collected from all Chromosomal Microarray analyses (CMA) performed using Single Nucleotide Polymorphism (SNP) arrays at the genetic clinical laboratory of Rabin Medical Center between 2017-2023 (primary data set). An additional replication cohort including 100 842 samples from another SNP array platform, obtained from Maccabi Health Organization, was analyzed. Common ROH locations were defined as those ROH locations involving 1% or more of the samples. A total of 66 710 ROH segments, involving 13 035 samples (96.7%) were identified in the primary data set. Of the 4069 cytogenetic ROH locations, 68 were identified as common. The prevalence of non-common ROH was relatively high in affected individuals, and for acrocentric chromosomes, chromosomes associated with common trisomies, and non-imprinted chromosomes. In addition, differences in common ROH locations were observed between the primary and the replication cohorts. Our findings highlight the need for population-specific guidelines in determining ROH reporting cutoffs, considering factors such as population-specific prevalence and testing platform differences. Future research with larger, varied cohorts is essential to advance understanding of ROH's associations with medical conditions and to improve clinical practices accordingly.
Collapse
Affiliation(s)
- Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Levy
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Reut Matar
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Sarit Kahana
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Ifaat Agmon-Fishman
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Cochava Klein
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Merav Gurevitch
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Lina Basel-Salmon
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
- School of Medicine, Faculty of Medical and Health sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva 4920235, Israel
| | - Idit Maya
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
- School of Medicine, Faculty of Medical and Health sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Moch J, Radtke M, Liehr T, Eggermann T, Gilissen C, Pfundt R, Astuti G, Hentschel J, Schumann I. Automatized detection of uniparental disomies in a large cohort. Hum Genet 2024; 143:955-964. [PMID: 39012485 PMCID: PMC11303498 DOI: 10.1007/s00439-024-02687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Uniparental disomy (UPD) is the inheritance of both homologues of a chromosome from only one parent. The detection of UPDs in sequencing data is not well established and a common gap in genetic diagnostics. We applied our in-house UPD detection pipeline to evaluate a cohort of 9212 samples, including multigene panels as well as exome sequencing data in a single, duo or trio constellation. We used the results to inform the design of our publicly available web app altAFplotter. UPDs categorized as heterodisomy, whole chromosome or segmental isodisomy were identified and validated with microsatellites, multiplex ligation-dependent probe amplification as well as Sanger sequencing. We detected 14 previously undiagnosed UPDs including nine isodisomies, four segmental isodisomies as well as one heterodisomy on chromosome 22. We characterized eight findings as potentially causative through homozygous pathogenic variants or imprinting disorders. Overall, our study demonstrates the utility of our UPD detection pipeline with our web app, altAFplotter, to reliably identify UPDs. This not only increases the diagnostic yield of cases with growth and metabolic disturbances, as well as developmental delay, but also enhances the understanding of UPDs that may be relevant for recurrence risks and genetic counseling.
Collapse
Affiliation(s)
- Johanna Moch
- Institute of Human Genetics, Leipzig University, Leipzig, Germany
| | | | - Thomas Liehr
- Institute of Human Genetics, Jena University, Jena, Germany
| | - Thomas Eggermann
- Institute of Human Genetics and Genomic Medicine, Aachen University, Aachen, Germany
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Galuh Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julia Hentschel
- Institute of Human Genetics, Leipzig University, Leipzig, Germany
| | - Isabell Schumann
- Institute of Human Genetics, Leipzig University, Leipzig, Germany.
| |
Collapse
|
3
|
Liu YD, Tan DD, Song DY, Fan YB, Fu XN, Ge L, Wei W, Xiong H. Uniparental disomy for chromosome 1 with POMGNT1 splice-site variant causes muscle-eye-brain disease. Front Genet 2023; 14:1170089. [PMID: 37342771 PMCID: PMC10277930 DOI: 10.3389/fgene.2023.1170089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
POMGNT1, encoding protein O-mannose beta-1,2-N-acetylglucosaminyltransferase 1, is one of the genes responsible for dystroglycanopathy (DGP), which includes multiple phenotypes such as muscle-eye-brain disease (MEB), congenital muscular dystrophy with intellectual disability, and limb-girdle muscular dystrophy Here, we report a case of MEB that is the result of a homozygous variant of POMGNT1 that is revealed through uniparental disomy (UPD). An 8-month-old boy was admitted with mental and motor retardation, hypotonia, esotropia, early onset severe myopia, and structural brain abnormalities. A panel testing of genetic myopathy-related genes was used to identify a homozygous c.636C>T (p.Phe212Phe) variant in exon 7 of POMGNT1 in the patient, a heterozygous c.636C>T variant in the father, and the wild type in the mother. Quantitative polymerase chain reaction (q-PCR) revealed no abnormal copy numbers in exon 7. Trio-based whole-exome sequencing (trio-WES) revealed a possible paternal UPD on chromosome 1 of the patient. Chromosomal microarray analysis (CMA) revealed a 120,451 kb loss of heterozygosity (LOH) on 1p36.33-p11.2, encompassing POMGNT1, and a 99,319 kb loss of heterozygosity on 1q21.2-q44, which indicated UPD. Moreover, RNA sequencing (RNA-seq) verified that the c.636C>T variant was a splice-site variant, leading to skipping of exon 7 (p.Asp179Valfs*23). In conclusion, to the best of our knowledge, we present the first case of MEB caused by UPD, providing valuable insights into the genetic mechanisms underlying this condition.
Collapse
Affiliation(s)
- Yi-Dan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dan-Dan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dan-Yu Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan-Bin Fan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiao-Na Fu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lin Ge
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Wei
- Beijing Kangso Medical Inspection Co., Ltd., Beijing, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Chograni M, Alahdal HM, Rejili M. Autosomal recessive congenital cataract is associated with a novel 4-bp splicing deletion mutation in a novel C10orf71 human gene. Hum Genomics 2023; 17:41. [PMID: 37179318 PMCID: PMC10182639 DOI: 10.1186/s40246-023-00492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Congenital cataract is one of the most genetically heterogeneous ocular conditions with different genes involved in its etiology. Here, we describe the analysis of a new candidate gene of a congenital bilateral cataract associated with polymalformative syndrome, moderate global developmental delay, microcephaly, axial hypotonia, intrauterine growth restriction and facial dysmorphism for two affected siblings. Molecular analysis included exome sequencing and genome wide homozygosity mapping revealed a region of homozygosity shared by the two affected siblings at 10q11.23. The new C10orf71 gene was included in this interval and direct sequencing of this gene revealed an already described homozygous c. 2123T > G mutation (p. L708R) for the two affected subjects. Interestingly, we revealed in contrast a 4-bp deletion on the 3'-splicing acceptor site of intron 3-exon 4, namely defined as IVS3-5delGCAA. The C10Orf71 gene expression analysis using RT-PCR showed an expression pattern in different fetal organs and tissues as well as in leukocytes and confirmed that the IVS3-5delGCAA deletion of the C10orf71 gene is a splicing mutation responsible for the shortening of the C10orf71 protein in the two related patients. The C10orf71 gene has not been described to date as associated to the autosomal recessive phenotype.
Collapse
Affiliation(s)
- M Chograni
- Faculté de Médecine de Tunis, Laboratoire Génétique Humaine, University Tunis El Manar, Tunis, Tunisia
| | - H M Alahdal
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - M Rejili
- Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
5
|
Genome-wide rare variant score associates with morphological subtypes of autism spectrum disorder. Nat Commun 2022; 13:6463. [PMID: 36309498 PMCID: PMC9617891 DOI: 10.1038/s41467-022-34112-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 02/06/2023] Open
Abstract
Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.
Collapse
|
6
|
Molloy B, Jones ER, Linhares ND, Buckley PG, Leahy TR, Lynch B, Knerr I, King MD, Gorman KM. Uniparental disomy screen of Irish rare disorder cohort unmasks homozygous variants of clinical significance in the TMCO1 and PRKRA genes. Front Genet 2022; 13:945296. [PMID: 36186440 PMCID: PMC9515794 DOI: 10.3389/fgene.2022.945296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
A uniparental disomy (UPD) screen using whole genome sequencing (WGS) data from 164 trios with rare disorders in the Irish population was performed to identify large runs of homozygosity of uniparental origin that may harbour deleterious recessive variants. Three instances of whole chromosome uniparental isodisomy (UPiD) were identified: one case of maternal isodisomy of chromosome 1 and two cases of paternal isodisomy of chromosome 2. We identified deleterious homozygous variants on isodisomic chromosomes in two probands: a novel p (Glu59ValfsTer20) variant in TMCO1, and a p (Pro222Leu) variant in PRKRA, respectively. The overall prevalence of whole chromosome UPiD in our cohort was 1 in 55 births, compared to 1 in ∼7,500 births in the general population, suggesting a higher frequency of UPiD in rare disease cohorts. As a distinct mechanism underlying homozygosity compared to biallelic inheritance, the identification of UPiD has important implications for family planning and cascade testing. Our study demonstrates that UPD screening may improve diagnostic yields by prioritising UPiD chromosomes during WGS analysis.
Collapse
Affiliation(s)
- B. Molloy
- Genuity Science, Dublin, Ireland
- *Correspondence: B. Molloy,
| | | | | | | | - T. R. Leahy
- Department of Paediatric Immunology, Children’s Health Ireland at Crumlin, Dublin, Ireland
- Department of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland
| | - B. Lynch
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - I. Knerr
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - M. D. King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - K. M. Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Narita K, Muramatsu H, Narumi S, Nakamura Y, Okuno Y, Suzuki K, Hamada M, Yamaguchi N, Suzuki A, Nishio Y, Shiraki A, Yamamori A, Tsumura Y, Sawamura F, Kawaguchi M, Wakamatsu M, Kataoka S, Kato K, Asada H, Kubota T, Muramatsu Y, Kidokoro H, Natsume J, Mizuno S, Nakata T, Inagaki H, Ishihara N, Yonekawa T, Okumura A, Ogi T, Kojima S, Kaname T, Hasegawa T, Saitoh S, Takahashi Y. Whole-exome analysis of 177 pediatric patients with undiagnosed diseases. Sci Rep 2022; 12:14589. [PMID: 36028527 PMCID: PMC9418234 DOI: 10.1038/s41598-022-14161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Recently, whole-exome sequencing (WES) has been used for genetic diagnoses of patients who remain otherwise undiagnosed. WES was performed in 177 Japanese patients with undiagnosed conditions who were referred to the Tokai regional branch of the Initiative on Rare and Undiagnosed Diseases (IRUD) (TOKAI-IRUD). This study included only patients who had not previously received genome-wide testing. Review meetings with specialists in various medical fields were held to evaluate the genetic diagnosis in each case, which was based on the guidelines of the American College of Medical Genetics and Genomics. WES identified diagnostic single-nucleotide variants in 66 patients and copy number variants (CNVs) in 11 patients. Additionally, a patient was diagnosed with Angelman syndrome with a complex clinical phenotype upon detection of a paternally derived uniparental disomy (UPD) [upd(15)pat] wherein the patient carried a homozygous DUOX2 p.E520D variant in the UPD region. Functional analysis confirmed that this DUOX2 variant was a loss-of-function missense substitution and the primary cause of congenital hypothyroidism. A significantly higher proportion of genetic diagnoses was achieved compared to previous reports (44%, 78/177 vs. 24-35%, respectively), probably due to detailed discussions and the higher rate of CNV detection.
Collapse
Affiliation(s)
- Kotaro Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoya Yamaguchi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Atsushi Suzuki
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yosuke Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ayako Yamamori
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yusuke Tsumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumi Sawamura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kohji Kato
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Asada
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Tetsuo Kubota
- Department of Pediatrics, Anjo Kosei Hospital, Anjo, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiji Mizuno
- Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Kasugai, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takahiro Yonekawa
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
8
|
Gonzales PR, Andersen EF, Brown TR, Horner VL, Horwitz J, Rehder CW, Rudy NL, Robin NH, Thorland EC, On Behalf Of The Acmg Laboratory Quality Assurance Committee. Interpretation and reporting of large regions of homozygosity and suspected consanguinity/uniparental disomy, 2021 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24:255-261. [PMID: 34906464 DOI: 10.1016/j.gim.2021.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Genomic testing, including single-nucleotide variation (formerly single-nucleotide polymorphism)-based chromosomal microarray and exome and genome sequencing, can detect long regions of homozygosity (ROH) within the genome. Genomic testing can also detect possible uniparental disomy (UPD). Platforms that can detect ROH and possible UPD have matured since the initial American College of Medical Genetics and Genomics (ACMG) standard was published in 2013, and the detection of ROH and UPD by these platforms has shown utility in diagnosis of patients with genetic/genomic disorders. The presence of these segments, when distributed across multiple chromosomes, may indicate a familial relationship between the proband's parents. This technical standard describes the detection of possible consanguinity and UPD by genomic testing, as well as the factors confounding the inference of a specific parental relationship or UPD. Current bioethical and legal issues regarding detection and reporting of consanguinity are also discussed.
Collapse
Affiliation(s)
| | - Erica F Andersen
- ARUP Laboratories, Salt Lake City, UT; The University of Utah, Salt Lake City, UT
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Horga A, Manole A, Mitchell AL, Bugiardini E, Hargreaves IP, Mowafi W, Bettencourt C, Blakely EL, He L, Polke JM, Woodward CE, Dalla Rosa I, Shah S, Pittman AM, Quinlivan R, Reilly MM, Taylor RW, Holt IJ, Hanna MG, Pitceathly RDS, Spinazzola A, Houlden H. Uniparental isodisomy of chromosome 2 causing MRPL44-related multisystem mitochondrial disease. Mol Biol Rep 2021; 48:2093-2104. [PMID: 33742325 DOI: 10.1007/s11033-021-06188-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.
Collapse
Affiliation(s)
- Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Clínico San Carlos and Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Andreea Manole
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Alice L Mitchell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Enrico Bugiardini
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Walied Mowafi
- Neurosciences Department, Calderdale Royal Hospital, Halifax, HX3 0PW, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Emma L Blakely
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - James M Polke
- Neurogenetic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Catherine E Woodward
- Neurogenetic Unit, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Alan M Pittman
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Robert W Taylor
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
- Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Antonella Spinazzola
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
10
|
Quinodoz M, Peter VG, Bedoni N, Royer Bertrand B, Cisarova K, Salmaninejad A, Sepahi N, Rodrigues R, Piran M, Mojarrad M, Pasdar A, Ghanbari Asad A, Sousa AB, Coutinho Santos L, Superti-Furga A, Rivolta C. AutoMap is a high performance homozygosity mapping tool using next-generation sequencing data. Nat Commun 2021; 12:518. [PMID: 33483490 PMCID: PMC7822856 DOI: 10.1038/s41467-020-20584-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Homozygosity mapping is a powerful method for identifying mutations in patients with recessive conditions, especially in consanguineous families or isolated populations. Historically, it has been used in conjunction with genotypes from highly polymorphic markers, such as DNA microsatellites or common SNPs. Traditional software performs rather poorly with data from Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS), which are now extensively used in medical genetics. We develop AutoMap, a tool that is both web-based or downloadable, to allow performing homozygosity mapping directly on VCF (Variant Call Format) calls from WES or WGS projects. Following a training step on WES data from 26 consanguineous families and a validation procedure on a matched cohort, our method shows higher overall performances when compared with eight existing tools. Most importantly, when tested on real cases with negative molecular diagnosis from an internal set, AutoMap detects three gene-disease and multiple variant-disease associations that were previously unrecognized, projecting clear benefits for both molecular diagnosis and research activities in medical genetics. Homozygosity mapping is a useful tool for identifying candidate mutations in recessive conditions, however application to next generation sequencing data has been sub-optimal. Here, the authors present AutoMap, which efficiently identifies runs of homozygosity in whole exome/genome sequencing data.
Collapse
Affiliation(s)
- Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Virginie G Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Institute of Experimental Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nicola Bedoni
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Béryl Royer Bertrand
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Katarina Cisarova
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Sepahi
- Noncommunicable Diseases Research Center, Fasa University of Sciences, Fasa, Iran
| | - Raquel Rodrigues
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Center (CAML), Lisbon, Portugal
| | - Mehran Piran
- Noncommunicable Diseases Research Center, Fasa University of Sciences, Fasa, Iran.,Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK
| | - Ali Ghanbari Asad
- Noncommunicable Diseases Research Center, Fasa University of Sciences, Fasa, Iran
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Center (CAML), Lisbon, Portugal.,Medical Faculty, Lisbon University, Lisbon, Portugal
| | | | - Andrea Superti-Furga
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland. .,Department of Ophthalmology, University of Basel, Basel, Switzerland. .,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
11
|
Prenatal Detection of Uniparental Disomies (UPD): Intended and Incidental Finding in the Era of Next Generation Genomics. Genes (Basel) 2020; 11:genes11121454. [PMID: 33287348 PMCID: PMC7761756 DOI: 10.3390/genes11121454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Prenatal detection of uniparental disomy (UPD) is a methodological challenge, and a positive testing result requires comprehensive considerations on the clinical consequences as well as ethical issues. Whereas prenatal testing for UPD in families which are prone to UPD formation (e.g., in case of chromosomal variants, imprinting disorders) is often embedded in genetic counselling, the incidental identification of UPD is often more difficult to manage. With the increasing application of high-resolution test systems enabling the identification of UPD, an increase in pregnancies with incidental detection of UPD can be expected. This paper will cover the current knowledge on uniparental disomies, their clinical consequences with focus on prenatal testing, genetic aspects and predispositions, genetic counselling, as well as methods (conventional tests and high-throughput assays).
Collapse
|
12
|
Beecroft SJ, Lamont PJ, Edwards S, Goullée H, Davis MR, Laing NG, Ravenscroft G. The Impact of Next-Generation Sequencing on the Diagnosis, Treatment, and Prevention of Hereditary Neuromuscular Disorders. Mol Diagn Ther 2020; 24:641-652. [PMID: 32997275 DOI: 10.1007/s40291-020-00495-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
The impact of high-throughput sequencing in genetic neuromuscular disorders cannot be overstated. The ability to rapidly and affordably sequence multiple genes simultaneously has enabled a second golden age of Mendelian disease gene discovery, with flow-on impacts for rapid genetic diagnosis, evidence-based treatment, tailored therapy development, carrier-screening, and prevention of disease recurrence in families. However, there are likely many more neuromuscular disease genes and mechanisms to be discovered. Many patients and families remain without a molecular diagnosis following targeted panel sequencing, clinical exome sequencing, or even genome sequencing. Here we review how massively parallel, or next-generation, sequencing has changed the field of genetic neuromuscular disorders, and anticipate future benefits of recent technological innovations such as RNA-seq implementation and detection of tandem repeat expansions from short-read sequencing.
Collapse
Affiliation(s)
- Sarah J Beecroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | | | - Samantha Edwards
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Hayley Goullée
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Mark R Davis
- Neurogenetic Unit, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, WA, Australia
| | - Nigel G Laing
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia.,Neurogenetic Clinic, Royal Perth Hospital, Perth, Australia
| | - Gianina Ravenscroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia. .,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia.
| |
Collapse
|
13
|
Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity. J Mol Diagn 2020; 22:1205-1215. [PMID: 32619640 PMCID: PMC7477492 DOI: 10.1016/j.jmoldx.2020.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Autozygosity is associated with an increased risk of genetic rare disease, thus being a relevant factor for clinical genetic studies. More than 2400 exome sequencing data sets were analyzed and screened for autozygosity on the basis of detection of >1 Mbp runs of homozygosity (ROHs). A model was built to predict if an individual is likely to be a consanguineous offspring (accuracy, 98%), and probability of consanguinity ranges were established according to the total ROH size. Application of the model resulted in the reclassification of the consanguinity status of 12% of the patients. The analysis of a subset of 79 consanguineous cases with the Rare Disease (RD)–Connect Genome-Phenome Analysis Platform, combining variant filtering and homozygosity mapping, enabled a 50% reduction in the number of candidate variants and the identification of homozygous pathogenic variants in 41 patients, with an overall diagnostic yield of 52%. The newly defined consanguinity ranges provide, for the first time, specific ROH thresholds to estimate inbreeding within a pedigree on disparate exome sequencing data, enabling confirmation or (re)classification of consanguineous status, hence increasing the efficiency of molecular diagnosis and reporting on secondary consanguinity findings, as recommended by American College of Medical Genetics and Genomics guidelines.
Collapse
|
14
|
Brodehl A, Weiss J, Debus JD, Stanasiuk C, Klauke B, Deutsch MA, Fox H, Bax J, Ebbinghaus H, Gärtner A, Tiesmeier J, Laser T, Peterschröder A, Gerull B, Gummert J, Paluszkiewicz L, Milting H. A homozygous DSC2 deletion associated with arrhythmogenic cardiomyopathy is caused by uniparental isodisomy. J Mol Cell Cardiol 2020; 141:17-29. [PMID: 32201174 DOI: 10.1016/j.yjmcc.2020.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/27/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
AIMS We aimed to unravel the genetic, molecular and cellular pathomechanisms of DSC2 truncation variants leading to arrhythmogenic cardiomyopathy (ACM). METHODS AND RESULTS We report a homozygous 4-bp DSC2 deletion variant c.1913_1916delAGAA, p.Q638LfsX647hom causing a frameshift carried by an ACM patient. Whole exome sequencing and comparative genomic hybridization analysis support a loss of heterozygosity in a large segment of chromosome 18 indicating segmental interstitial uniparental isodisomy (UPD). Ultrastructural analysis of the explanted myocardium from a mutation carrier using transmission electron microscopy revealed a partially widening of the intercalated disc. Using qRT-PCR we demonstrated that DSC2 mRNA expression was substantially decreased in the explanted myocardial tissue of the homozygous carrier compared to controls. Western blot analysis revealed absence of both full-length desmocollin-2 isoforms. Only a weak expression of the truncated form of desmocollin-2 was detectable. Immunohistochemistry showed that the truncated form of desmocollin-2 did not localize at the intercalated discs. In vitro, transfection experiments using induced pluripotent stem cell derived cardiomyocytes and HT-1080 cells demonstrated an obvious absence of the mutant truncated desmocollin-2 at the plasma membrane. Immunoprecipitation in combination with fluorescence measurements and Western blot analyses revealed an abnormal secretion of the truncated desmocollin-2. CONCLUSION In summary, we unraveled segmental UPD as the likely genetic reason for a small homozygous DSC2 deletion. We conclude that a combination of nonsense mediated mRNA decay and extracellular secretion is involved in DSC2 related ACM.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany.
| | - Jürgen Weiss
- Institute for Clinical Biochemistry and Pathobiochemistry, Cellular Morphology, German Diabetes Center, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Jana Davina Debus
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Bärbel Klauke
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Marcus André Deutsch
- Department of Cardio-Thoracic Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Henrik Fox
- Department of Cardio-Thoracic Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Jördis Bax
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Jens Tiesmeier
- Hospital Luebbecke-Rhaden, Muehlenkreis Hospitalsd, Medical-Campus OWL of the Ruhr-University Bochum, Virchowstr. 65, 32132 Luebbecke, Germany
| | - Thorsten Laser
- Center for Congenital Heart Defects, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Andreas Peterschröder
- Institute for Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Brenda Gerull
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Jan Gummert
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany; Department of Cardio-Thoracic Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Lech Paluszkiewicz
- Department of Cardio-Thoracic Surgery, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545 Bad Oeynhausen, Germany.
| |
Collapse
|
15
|
Xiao B, Wang L, Liu H, Fan Y, Xu Y, Sun Y, Qiu W. Uniparental isodisomy caused autosomal recessive diseases: NGS-based analysis allows the concurrent detection of homogenous variants and copy-neutral loss of heterozygosity. Mol Genet Genomic Med 2019; 7:e00945. [PMID: 31454184 PMCID: PMC6785455 DOI: 10.1002/mgg3.945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Uniparental disomy (UPD) leading to autosomal recessive (AR) diseases is rare. We found an unusual homozygous state in two nonconsanguineous families, and only one parent in each family was a heterozygote. Methods Two patients with homozygosity for pathogenic variants were revealed by whole‐exome sequencing (WES), further Sanger sequencing found that only one of the parents was a heterozygote. Initial genotype and copy number variations analysis from WES data of probands involving whole chromosomes 1 and 9 containing these two pathogenic variants were performed, genome‐wide single‐nucleotide polymorphism (SNP) array analysis was used to confirm these results. Results Whole‐exome sequencing identified a homozygous c.3423_3424delTG mutation in AGL in patient 1 and a homozygous c.241‐1G>C mutation in SURF1 in patient 2. Further parental testing found that only the two patients’ healthy fathers were heterozygous. WES‐based copy number and genotype analysis found a copy‐neutral loss of heterozygosity (LOH) of whole chromosome 1 in patient 1 and of whole chromosomes 9 and 10 in patient 2. Further genome‐wide SNP array and family haplotype analyses confirmed whole paternal uniparental isodisomy (UPiD) 1 in patient 1 and paternal UPiD 9 and maternal UPiD 10 in patient 2. Therefore, UPiD caused AR monogenic glycogen storage disease type‐III (GSDIII) in patient 1 and Leigh syndrome in patient 2 through non‐Mendelian inheritance of two mutant copies of a gene from each patient's father. Conclusion Our report highlights that a single NGS‐based analysis could allow us to find homozygous sequence variants and copy‐neutral LOH in such cases. Our report also describes the first case of GSDIII caused by UPiD 1 and Leigh syndrome caused by UPiD 9.
Collapse
Affiliation(s)
- Bing Xiao
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Lili Wang
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Huili Liu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yanjie Fan
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yan Xu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yu Sun
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenjuan Qiu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
16
|
Li H, Yang H, Lv N, Ma C, Li J, Shang Q. Whole exome sequencing and methylation‑specific multiplex ligation‑dependent probe amplification applied to identify Angelman syndrome due to paternal uniparental disomy in two unrelated patients. Mol Med Rep 2019; 20:1178-1186. [PMID: 31173236 PMCID: PMC6625451 DOI: 10.3892/mmr.2019.10339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/17/2019] [Indexed: 12/29/2022] Open
Abstract
Angelman syndrome (AS) is a congenital neuro-developmental disorder typically occurring due to functional defects of the UBE3A gene caused by uniparental disomy (UPD), translocation or single gene mutation. UBE3A gene exhibits imprinting expression, and only maternal inherited alleles express functional UBE3A protein in the brain. The common method to diagnose AS is single nucleotide polymorphism array or methylation‑specific multiplex ligation‑dependent probe amplification (MS‑MLPA). In recent years, whole exome sequencing (WES) has been increasingly used in the genetic diagnosis of a variety of indications, exhibiting great advantages as a comprehensive and unbiased testing method. In the present study, the cases of two unrelated patients with Robertsonian‑like translocation in chromosome 15, namely 45,XX,der(15;15)(q10;q10) and 45,XY,der(15;15)(q10;q10), are reported. The first case was diagnosed with AS by WES and validated by Sanger sequencing. In contrast to 42.84% homozygous variants on all chromosomes, 92.69% homozygosity variants were observed on chromosome 15. A homozygous stretch identifier was applied and identified a homozygous region across the entire chromosome 15. Sanger sequencing was used to further determine the subtype and confirm that two homozygous variants on chromosome 15 with low allele frequency (<0.01) were derived only from the father and not from the mother, thereby indicating a paternal UPD case, classified as isodisomy. MS‑MLPA results of the other AS patient with the same karyotype indicated that he had a high possibility of paternal UPD at chromosome 15. Taken together, the current study suggested the potential application of WES in detecting and facilitating the diagnosis of UPD.
Collapse
Affiliation(s)
- Haibei Li
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| | - Haiqi Yang
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, Guangdong 518060, P.R. China
| | - Nan Lv
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| | - Caiyun Ma
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| | - Jingjie Li
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| | - Qing Shang
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| |
Collapse
|
17
|
CHEN D, QI M. [Research progress on uniparental disomy in cancer]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:560-566. [PMID: 31901032 PMCID: PMC8800777 DOI: 10.3785/j.issn.1008-9292.2019.10.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 06/10/2023]
Abstract
Uniparental disomy (UPD) refers to a chromosome defect that an individual's homologous chromosome or segments are inherited from one parent. UPD can cause either aberrant patterns of genomic imprinting or homozygosity of mutations, leading to various diseases, including cancer. The mechanisms of UPD formation are diverse but largely due to the incorrect chromosome separation during cell division. UPD does not alter the number of gene copies, thus is difficult to be detected by conventional cytogenetic techniques effectively. Assisted by the new techniques such as single nucleotide polymorphism arrays, more and more UPD-related cases have been reported recently. UPD events are non-randomly distributed across cancer types, which play important role in the occurrence, development and metastasis of cancer. Here we review the research progress on the formation mechanisms, detection methods, the involved chromosomal regions and genes, and clinical significance of UPD; and also discuss the directions for future studies in this field.
Collapse
Affiliation(s)
| | - Ming QI
- 祁鸣(1957-), 男, 博士, 教授, 博士生导师, 主要从事遗传与基因组医学研究; E-mail:
;
https://orcid.org/0000-0002-8421-6727
| |
Collapse
|
18
|
Phillips J, Courel S, Rebelo AP, Bis-Brewer DM, Bardakjian T, Dankwa L, Hamedani AG, Züchner S, Scherer SS. POLG mutations presenting as Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2019; 24:213-218. [PMID: 30843307 DOI: 10.1111/jns.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022]
Abstract
We report on two patients, with different POLG mutations, in whom axonal neuropathy dominated the clinical picture. One patient presented with late onset sensory axonal neuropathy caused by a homozygous c.2243G>C (p.Trp748Ser) mutation that resulted from uniparental disomy of the long arm of chromosome 15. The other patient had a complex phenotype that included early onset axonal Charcot-Marie-Tooth disease (CMT) caused by compound heterozygous c.926G>A (p.Arg309His) and c.2209G>C (p.Gly737Arg) mutations.
Collapse
Affiliation(s)
- Jade Phillips
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steve Courel
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Adriana P Rebelo
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Dana M Bis-Brewer
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Tanya Bardakjian
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Nakashima M, Negishi Y, Hori I, Hattori A, Saitoh S, Saitsu H. A case of early-onset epileptic encephalopathy with a homozygous TBC1D24 variant caused by uniparental isodisomy. Am J Med Genet A 2019; 179:645-649. [PMID: 30680869 DOI: 10.1002/ajmg.a.61056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/03/2018] [Accepted: 01/06/2019] [Indexed: 11/11/2022]
Abstract
TBC1D24-related disorders are rare neurodevelopmental disorders that show a broad range of neuropsychiatric deficits and are mostly inherited in an autosomal recessive manner. Here we describe a case with early-onset epileptic encephalopathy, in whom exome sequencing detected a novel pathogenic homozygous c.442G>A, p.(Glu148Lys) variant in TBC1D24. She showed severe developmental delay, congenital sensorineural hearing loss and seizures, but the combination of a high dose phenobarbital and potassium bromide was very effective for the seizures. Sanger sequencing revealed that her mother was a heterozygous carrier of the TBC1D24 variant, but her father showed only wild-type alleles. Homozygosity mapping analysis using exome data showed loss of the heterozygosity region at 16p13.3-p13.13 encompassing TBC1D24. Genotyping analysis using rare variants within loss of the heterozygosity region indicated that the patient has a homozygous haplotype inherited from her mother, indicating maternal segmental uniparental isodisomy (UPiD). These data clearly show that exome sequencing is a powerful tool to perform comprehensive genetic analysis.
Collapse
Affiliation(s)
- Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaka Negishi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ikumi Hori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
20
|
Bis-Brewer DM, Züchner S. Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. Front Neurol 2018; 9:958. [PMID: 30534106 PMCID: PMC6275194 DOI: 10.3389/fneur.2018.00958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hereditary Spastic Paraplegia is an extraordinarily heterogeneous disease caused by over 50 Mendelian genes. Recent applications of next-generation sequencing, large scale data analysis, and data sharing/matchmaking, have discovered a quickly expanding set of additional HSP genes. Since most recently discovered HSP genes are rare causes of the disease, there is a growing concern of a persisting diagnostic gap, estimated at 30-40%, and even higher for sporadic cases. This missing heritability may not be fully closed by classic Mendelian mutations in protein coding genes. Here we show strategies and published examples of broadening areas of attention for Mendelian and non-Mendelian causes of HSP. We suggest a more inclusive perspective on the potential final architecture of HSP genomics. Efforts to narrow the heritability gap will ultimately lead to more precise and comprehensive genetic diagnoses, which is the starting point for emerging, highly specific gene therapies.
Collapse
Affiliation(s)
- Dana M. Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
Sajan SA, Powis Z, Helbig KL, Nagakura H, Immken L, Tang S, Alcaraz WA. Diagnostic exome sequencing identifies GLI2 haploinsufficiency and chromosome 20 uniparental disomy in a patient with developmental anomalies. Clin Case Rep 2018; 6:1208-1213. [PMID: 29988648 PMCID: PMC6028413 DOI: 10.1002/ccr3.1575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 01/31/2023] Open
Abstract
Clinical diagnostic exome sequencing (DES) is currently infrequently used for detecting uniparental disomy (UPD). We present a patient with a dual diagnosis of GLI2 haploinsufficiency as well as UPD of chromosome 20, both identified through DES. We therefore recommend routine UPD analysis during DES to identify this genetic aberration.
Collapse
Affiliation(s)
- Samin A. Sajan
- Department of Clinical GenomicsAmbry GeneticsAliso ViejoCAUSA
| | - Zöe Powis
- Department of Clinical GenomicsAmbry GeneticsAliso ViejoCAUSA
| | - Katherine L. Helbig
- Department of Clinical GenomicsAmbry GeneticsAliso ViejoCAUSA
- Present address:
Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | | | | | - Sha Tang
- Department of Clinical GenomicsAmbry GeneticsAliso ViejoCAUSA
| | | |
Collapse
|
22
|
Uniparental isodisomy as a cause of recessive Mendelian disease: a diagnostic pitfall with a quick and easy solution in medium/large NGS analyses. Eur J Hum Genet 2018; 26:1392-1395. [PMID: 29891879 DOI: 10.1038/s41431-018-0195-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023] Open
Abstract
Complete uniparental isodisomy (iUPD)-the presence of two identical chromosomes in an individual that originate from only a single parental homolog-is an underestimated cause of recessive Mendelian disease in humans. Correctly identifying iUPD in an index patient is of enormous consequence to correctly counseling the family/couple, as the recurrence risk for siblings is reduced from 25% to usually <1%. In medium/large-scale NGS analyses, we found that complete iUPD can be rapidly and straightforwardly inferred from a singleton dataset (index patient only) through a simple chromosome- and genotype-filtering step in <1 min. We discuss the opportunities of iUPD detection in medium/large-scale NGS analyses by example of a case of CHRNG-associated multiple pterygium syndrome due to complete maternal iUPD. Using computer simulations for several detection thresholds, we validate and estimate sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of the proposed screening method for reliable detection of complete iUPD. When screening for complete iUPD, our models suggest that a >85% proportion of homozygous calls on a single chromosome with ≥30 sufficiently interspaced called variants results in a sensitivity of 97.9% and specificity of 99.7%. The PPV is 95.1%, the NPV 99.9%. When this threshold is exceeded for a chromosome on which a patient harbors an apparently homozygous disease-associated variant, it should be sufficient cause to discuss iUPD as a plausible or probable mechanism of disease in the genetic analysis report, even when parental segregation has not (yet) been performed.
Collapse
|
23
|
Yin J, Li X, Zhang Z, Luo X, Wang L, Liu L. SPAG6 silencing induces apoptosis in the myelodysplastic syndrome cell line SKM‑1 via the PTEN/PI3K/AKT signaling pathway in vitro and in vivo. Int J Oncol 2018; 53:297-306. [PMID: 29749435 DOI: 10.3892/ijo.2018.4390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 11/05/2022] Open
Abstract
Apoptosis is a multi-step mechanism of cell self‑destruction for maintaining cellular homeostatic balance. Accumulating evidence indicates that abnormal apoptosis promotes the evolution and progression of myelodysplastic syndromes (MDS). As a novel cancer-testis antigen, sperm‑associated antigen 6 (SPAG6) has been reported to regulate apoptosis through the tumor necrosis factor-related apoptosis-inducing ligand signaling pathway in the MDS cell line SKM‑1. However, the mechanism of the intrinsic cell death pathway for apoptosis induction by SPAG6 silencing is unclear. In the present study, the in vitro effects of SPAG6 silencing were investigated in SKM‑1 cells through extensive biochemical and molecular approaches. Western blotting and reverse transcription-quantitative polymerase chain reaction were used to detect the expression of SPAG6 and activation of PTEN/PI3K/AKT signal pathway. Additionally, SKM‑1 cells transduced with SPAG6 short hairpin RNA (shRNA) lentivirus were treated with the phosphatidylionositol 3-kinase (PI3K) inhibitor LY294002 or pan caspase inhibitor z‑VAD‑fmk and the apoptosis rates were measured by flow cytometry, and the expressions of associated proteins were examined by western blot analysis. A mouse xenograft model was also used to further evaluate the effects of SPAG6 knockdown on inducing tumor apoptosis in vivo. Lentivirus-mediated knockdown of SPAG6 in SKM‑1 cells increased phosphatase and tensin homolog (PTEN) expression and reduced protein kinase B (AKT) phosphorylation, which in turn resulted in cell apoptosis as evidenced by induced myeloid leukaemia cell differentiation protein Mcl‑1 downregulation, cytochrome c release and increased caspase‑9 expression. Consistently, the PI3K inhibitor LY294002 synergistically enhanced apoptosis of SKM‑1 cells when co-administered with SPAG6 shRNA lentivirus. Furthermore, treatment with the pan caspase inhibitor z‑VAD‑fmk failed to prevent PTEN activation upon SPAG6 knockdown, suggesting that SPAG6-regulated PTEN expression was caspase activation-independent. In addition, SPAG6 knockdown was associated with DNMT1 downregulation, implying that SPAG6 may indirectly control PTEN expression via DNA methylation. Furthermore, tumor tissues from nonobese diabetic/severe combined immunodeficient mice inoculated with SPAG6-shRNA lentivirus pre-infected SKM‑1 cells exhibited significantly elevated apoptosis in the extrinsic and intrinsic pathways. These results demonstrate that SPAG6 silencing induces PTEN expression to regulate apoptosis though the PI3K/AKT pathway, indicating that SPAG6 may be a potential therapeutic target for MDS.
Collapse
Affiliation(s)
- Jiaxiu Yin
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinxin Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zaili Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|