1
|
Finsterer J, Scorza FA. Myotonic Dystrophy-1 and Parkinson's Disease: Clarify the Role of CTG-repeat Size and Variants in VPS13C, SYNJ1, and DNAJC6. Ann Indian Acad Neurol 2023; 26:847-848. [PMID: 38022484 PMCID: PMC10666877 DOI: 10.4103/aian.aian_642_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/20/2023] [Accepted: 09/03/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
2
|
Huang Y, Chen Z, Xu Y, Liu L, Tang H, He L, Zhang J, Zhou H, Xu Y, Zhao J, Wu L, Xu K. Proteomic changes of the bilateral M1 and spinal cord in hemiplegic cerebral palsy mouse: Effects of constraint-induced movement therapy. Behav Brain Res 2023; 452:114583. [PMID: 37454934 DOI: 10.1016/j.bbr.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hemiplegic cerebral palsy (HCP) is a non-progressive movement and posture disorder that affects one side of the body. Constraint-induced movement therapy (CIMT) can improve the hand function of children with HCP. We used label-free proteomic quantification technology to evaluate proteomic changes in the bilateral M1 and spinal cord in HCP mouse induced by hypoxia/ischemia and CIMT. Nissl staining showed reduced neuron density in the HCP mice's lesioned and contralesional M1. The rotarod test and grip strength test showed motor dysfunction in mice with HCP and improved motor ability after CIMT. A total of 5147 proteins were identified. Fifty-one, five, and sixty common differentially expressed proteins (DEPs), which were co-regulated by HCP and CIMT, were found in the lesioned M1, the contralesional M1 and the spinal cord respectively. The significant proteins included alpha-centractin, metaxin complex, PKC, septin 11, choline transporter-like proteins, protein 4.1, teneurin-4, and so on, which mainly related to synapse stability, neuronal development and maintenance, axon development, and myelin formation. The KEGG pathways of HCP-induced DEPs mainly related to lipid metabolism, synaptic remodeling, SNARE interactions in vesicular transport and axon formation. The CIMT-induced DEPs were mainly related to synaptic remodeling and axon formation in the lesioned M1 and spinal cord. This study investigated the proteomic changes of the bilateral M1 and spinal cord as well as the CIMT-induced proteomic changes in HCP mice, which might provide new insights into the therapy of HCP.
Collapse
Affiliation(s)
- Yuan Huang
- School of Medicine, South China University of Technology, Guangzhou 510655, China; Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Jingbo Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Yi Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Jingyi Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Lilan Wu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China
| | - Kaishou Xu
- School of Medicine, South China University of Technology, Guangzhou 510655, China; Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120 Guangzhou, China.
| |
Collapse
|
3
|
Wang Q, Xia C, Zhu A, Bao Y, Lu J, Chen Y, Xu J, Wang B, Naman CB, Li L, Wang Q, Liu H, Liang H, Cui W. Discrepancy of synaptic and microtubular protein phosphorylation in the hippocampus of APP/PS1 and MAPT×P301S transgenic mice at the early stage of Alzheimer's disease. Metab Brain Dis 2023; 38:1983-1997. [PMID: 37160613 DOI: 10.1007/s11011-023-01209-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/02/2023] [Indexed: 05/11/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, and is caused by multiple pathological factors, such as the overproduction of β-amyloid (Aβ) and the hyperphosphorylation of tau. However, there is limited knowledge of the mechanisms underlying AD pathogenesis and no effective biomarker for the early diagnosis of this disorder. Thus in this study, a quantitative phosphoproteomics analysis was performed to evaluate global protein phosphorylation in the hippocampus of Aβ overexpressing APP/PS1 transgenic mice and tau overexpressing MAPT×P301S transgenic mice, two in vivo AD model systems. These animals, up to ten weeks old, do not exhibit cognitive dysfunctions and are widely used to simulate early-stage AD patients. The number of differentially phosphorylated proteins (DPPs) was greater for APP/PS1 transgenic mice than for MAPT×P301S transgenic mice. The function of the DPPs in APP/PS1 transgenic mice was mainly related to synapses, while the function of the DPPs in MAPT×P301S transgenic mice was mainly related to microtubules. In addition, an AD core network was established including seven phosphoproteins differentially expressed in both animal models, and the function of this core network was related to synapses and oxidative stress. The results of this study suggest that Aβ and tau induce different protein phosphorylation profiles in the early stage of AD, leading to the dysfunctions in synapses and microtubule, respectively. And the detection of same DPPs in these animal models might be used for early AD diagnosis.
Collapse
Affiliation(s)
- Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Chenglong Xia
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - An Zhu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yongjie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiani Lu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yuan Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiayi Xu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Binbin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315211, China
| | - Liping Li
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Qinwen Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.
- Ningbo Kangning Hospital, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
5
|
Maj M, Taylor CL, Landau K, Toriello HV, Li D, Bhoj EJ, Hakonarson H, Nelson B, Gluschitz S, Walker RH, Sobering AK. A novel SYNJ1 homozygous variant causing developmental and epileptic encephalopathy in an Afro-Caribbean individual. Mol Genet Genomic Med 2022; 11:e2064. [PMID: 36148638 PMCID: PMC9834178 DOI: 10.1002/mgg3.2064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND SYNJ1 encodes Synaptojanin-1, a dual-function poly-phosphoinositide phosphatase that is expressed in the brain to regulate neuronal synaptic vesicle dynamics. Biallelic SYNJ1 variants cause a spectrum of clinical manifestations, from early onset parkinsonism to developmental and epileptic encephalopathy. METHODS Proband-only exome sequencing was used to identify a homozygous SYNJ1 pathogenic variant in an individual with epileptic encephalopathy. Sanger sequencing was used to confirm the variant. RESULTS We present an Afro-Caribbean female who developed uncontrollable seizures shortly after birth, accompanied by developmental delay and severe generalized dystonia. She had homozygosity for a novel c.242-2A > G variant in SYNJ1 with both parents being heterozygous carriers. An older sister was reported to have had a similar presentation but was not examined. Both siblings died at an approximate age of 16 years. CONCLUSIONS We report a novel pathogenic variant in SYNJ1 present in homozygosity leading to developmental and epileptic encephalopathy. Currently, there are only 4 reports describing 10 individuals with SYNJ1-related developmental and epileptic encephalopathy. This case expands the clinical knowledge and the allelic heterogeneity associated with SYNJ1 variants.
Collapse
Affiliation(s)
- Mary Maj
- Department of BiochemistrySt. George's University School of MedicineSt. George'sGrenada
| | - Christie L. Taylor
- Augusta University/University of Georgia Medical Partnership Campus of the Medical College of GeorgiaAthensGeorgiaUSA
| | - Kevin Landau
- Department of BiochemistrySt. George's University School of MedicineSt. George'sGrenada
| | - Helga V. Toriello
- Department of Pediatrics and Human DevelopmentMichigan State UniversityEast LansingMichiganUSA
| | - Dong Li
- Center for Applied GenomicsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Division of Human Genetics, Department of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Elizabeth J. Bhoj
- Center for Applied GenomicsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Division of Human Genetics, Department of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- Department of Pediatrics and Human DevelopmentMichigan State UniversityEast LansingMichiganUSA,Center for Applied GenomicsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Beverly Nelson
- Pediatrics WardGrenada General HospitalSt. George'sGrenada,Clinical Teaching UnitSt. George's University School of MedicineSt. George'sGrenada
| | - Sarah Gluschitz
- Department of Anatomical SciencesSt. George's University School of MedicineSt. George'sGrenada
| | - Ruth H. Walker
- Department of NeurologyJames J. Peters Veterans Affairs Medical CenterBronxNew YorkUSA,Department of NeurologyMount Sinai School of MedicineNew York CityNew YorkUSA
| | - Andrew K. Sobering
- Department of BiochemistrySt. George's University School of MedicineSt. George'sGrenada,Department of Basic Sciences, University of Georgia Health Sciences CampusAugusta University/University of Georgia Medical PartnershipAthensGeorgiaUSA,Windward Islands Research and Education FoundationSt. George'sGrenada
| |
Collapse
|
6
|
Tariq K, Luikart BW. Striking a balance: PIP 2 and PIP 3 signaling in neuronal health and disease. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 1:86-100. [PMID: 35098253 PMCID: PMC8797975 DOI: 10.37349/ent.2021.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphoinositides are membrane phospholipids involved in a variety of cellular processes like growth, development, metabolism, and transport. This review focuses on the maintenance of cellular homeostasis of phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidylinositol 3,4,5-trisphosphate (PIP3). The critical balance of these PIPs is crucial for regulation of neuronal form and function. The activity of PIP2 and PIP3 can be regulated through kinases, phosphatases, phospholipases and cholesterol microdomains. PIP2 and PIP3 carry out their functions either indirectly through their effectors activating integral signaling pathways, or through direct regulation of membrane channels, transporters, and cytoskeletal proteins. Any perturbations to the balance between PIP2 and PIP3 signaling result in neurodevelopmental and neurodegenerative disorders. This review will discuss the upstream modulators and downstream effectors of the PIP2 and PIP3 signaling, in the context of neuronal health and disease.
Collapse
Affiliation(s)
- Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
7
|
Mishra R, Sengül GF, Candiello E, Schu P. Synaptic AP2 CCV life cycle regulation by the Eps15, ITSN1, Sgip1/AP2, synaptojanin1 interactome. Sci Rep 2021; 11:8007. [PMID: 33850201 PMCID: PMC8044098 DOI: 10.1038/s41598-021-87591-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
The AP1/σ1B knockout causes impaired synaptic vesicle recycling and enhanced protein sorting into endosomes, leading to severe intellectual disability. These disturbances in synaptic protein sorting induce as a secondary phenotype the upregulation of AP2 CCV mediated endocytosis. Synapses contain canonical AP2 CCV and AP2 CCV with a more stable coat and thus extended life time. In AP1/σ1B knockout synapses, pool sizes of both CCV classes are doubled. Additionally, stable CCV of the knockout are more stabilised than stable wt CCV. One mechanism responsible for enhanced CCV stabilisation is the reduction of synaptojanin1 CCV levels, the PI-4,5-P2 phosphatase essential for AP2 membrane dissociation. To identify mechanisms regulating synaptojanin1 recruitment, we compared synaptojanin1 CCV protein interactome levels and CCV protein interactions between both CCV classes from wt and knockout mice. We show that ITSN1 determines synaptojanin1 CCV levels. Sgip1/AP2 excess hinders synaptojanin1 binding to ITSN1, further lowering its levels. ITSN1 levels are determined by Eps15, not Eps15L1. In addition, the data reveal that reduced amounts of pacsin1 can be counter balanced by its enhanced activation. These data exemplify the complexity of CCV life cycle regulation and indicate how cargo proteins determine the life cycle of their CCV.
Collapse
Affiliation(s)
- R Mishra
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, England, UK
| | - G F Sengül
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - E Candiello
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Institute for Cancer Research and Treatment (IRCC), Turin, Italy
| | - P Schu
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
8
|
Lesage S, Mangone G, Tesson C, Bertrand H, Benmahdjoub M, Kesraoui S, Arezki M, Singleton A, Corvol JC, Brice A. Clinical Variability of SYNJ1-Associated Early-Onset Parkinsonism. Front Neurol 2021; 12:648457. [PMID: 33841314 PMCID: PMC8027075 DOI: 10.3389/fneur.2021.648457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Autosomal recessive early-onset parkinsonism is clinically and genetically heterogeneous. Mutations of three genes, PRKN, PINK1, and DJ-1 cause pure phenotypes usually characterized by levodopa-responsive Parkinson's disease. By contrast, mutations of other genes, including ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, VPS13C, and PTRHD1, cause rarer, more severe diseases with a poor response to levodopa, generally with additional atypical features. We performed data mining on a gene panel or whole-exome sequencing in 460 index cases with early-onset (≤ 40 years) Parkinson's disease, including 57 with autosomal recessive disease and 403 isolated cases. We identified two isolated cases carrying biallelic mutations of SYNJ1 (double-heterozygous p.D791fs/p.Y232H and homozygous p. Y832C mutations) and two siblings with the recurrent homozygous p.R258Q mutation. All four variants were absent or rare in the Genome Aggregation Database, were predicted to be deleterious on in silico analysis and were found to be highly conserved between species. The patient with both the previously unknown p.D791fs and p.Y232H mutations presented with dystonia-parkinsonism accompanied by a frontal syndrome and oculomotor disturbances at the age of 39. In addition, two siblings from an Algerian consanguineous family carried the homozygous p.R258Q mutation and presented generalized tonic-clonic seizures during childhood, with severe intellectual disability, followed by progressive parkinsonism during their teens. By contrast, the isolated patient with the homozygous p. Y832C mutation, diagnosed at the age of 20, had typical parkinsonism, with no atypical symptoms and slow disease progression. Our findings expand the mutational spectrum and phenotypic profile of SYNJ1-related parkinsonism.
Collapse
Affiliation(s)
- Suzanne Lesage
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | - Graziella Mangone
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | - Christelle Tesson
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | - Hélène Bertrand
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | | | | | | | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, CIC Neurosciences, Paris, France
| |
Collapse
|
9
|
Desale SE, Chinnathambi S. Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer's disease. Cell Commun Signal 2021; 19:28. [PMID: 33627135 PMCID: PMC7905611 DOI: 10.1186/s12964-021-00715-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is one of the neurodegenerative diseases, characterized by the accumulation of abnormal protein deposits, which disrupts signal transduction in neurons and other glia cells. The pathological protein in neurodegenerative diseases, Tau and amyloid-β contribute to the disrupted microglial signaling pathways, actin cytoskeleton, and cellular receptor expression. The important secondary messenger lipids i.e., phosphatidylinositols are largely affected by protein deposits of amyloid-β in Alzheimer's disease. Phosphatidylinositols are the product of different phosphatidylinositol kinases and the state of phosphorylation at D3, D4, and D5 positions of inositol ring. Phosphatidylinositol 3,4,5-triphosphate (PI 3, 4, 5-P3) involves in phagocytic cup formation, cell polarization, whereas Phosphatidylinositol 4,5-bisphosphate (PI 4, 5-P2)-mediates the process of phagosomes formation and further its fusion with early endosome.. The necessary activation of actin-binding proteins such as Rac, WAVE complex, and ARP2/3 complex for the actin polymerization in the process of phagocytosis, migration is regulated and maintained by PI 3, 4, 5-P3 and PI 4, 5-P2. The ratio and types of fatty acid intake can influence the intracellular secondary lipid messengers along with the cellular content of phaphatidylcholine and phosphatidylethanolamine. The Amyloid-β deposits and extracellular Tau seeds disrupt phosphatidylinositides level and actin cytoskeletal network that hamper microglial-signaling pathways in AD. We hypothesize that being a lipid species intracellular levels of phosphatidylinositol would be regulated by dietary fatty acids. Further we are interested to understand phosphoinositide-based signaling cascades in phagocytosis and actin remodeling. Video Abstract.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
| |
Collapse
|
10
|
Gao Y, Nicolson T. Temporal Vestibular Deficits in synaptojanin 1 ( synj1) Mutants. Front Mol Neurosci 2021; 13:604189. [PMID: 33584199 PMCID: PMC7874208 DOI: 10.3389/fnmol.2020.604189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
The lipid phosphatase synaptojanin 1 (synj1) is required for the disassembly of clathrin coats on endocytic compartments. In neurons such activity is necessary for the recycling of endocytosed membrane into synaptic vesicles. Mutations in zebrafish synj1 have been shown to disrupt the activity of ribbon synapses in sensory hair cells. After prolonged mechanical stimulation of hair cells, both phase locking of afferent nerve activity and the recovery of spontaneous release of synaptic vesicles are diminished in synj1 mutants. Presumably as a behavioral consequence of these synaptic deficits, synj1 mutants are unable to maintain an upright posture. To probe vestibular function with respect to postural control in synj1 mutants, we developed a method for assessing the vestibulospinal reflex (VSR) in larvae. We elicited the VSR by rotating the head and recorded tail movements. As expected, the VSR is completely absent in pcdh15a and lhfpl5a mutants that lack inner ear function. Conversely, lhfpl5b mutants, which have a selective loss of function of the lateral line organ, have normal VSRs, suggesting that the hair cells of this organ do not contribute to this reflex. In contrast to mechanotransduction mutants, the synj1 mutant produces normal tail movements during the initial cycles of rotation of the head. Both the amplitude and temporal aspects of the response are unchanged. However, after several rotations, the VSR in synj1 mutants was strongly diminished or absent. Mutant synj1 larvae are able to recover, but the time required for the reappearance of the VSR after prolonged stimulation is dramatically increased in synj1 mutants. Collectively, the data demonstrate a behavioral correlate of the synaptic defects caused by the loss of synj1 function. Our results suggest that defects in synaptic vesicle recycling give rise to fatigue of ribbons synapses and possibly other synapses of the VS circuit, leading to the loss of postural control.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| | - Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| |
Collapse
|
11
|
Xu J, Sun M, Li X, Huang L, Gao Z, Gao J, Xie A. MicroRNA expression profiling after recurrent febrile seizures in rat and emerging role of miR-148a-3p/SYNJ1 axis. Sci Rep 2021; 11:1262. [PMID: 33441699 PMCID: PMC7806659 DOI: 10.1038/s41598-020-79543-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Febrile seizures (FSs) are common neurological disorders in both infants and children, although the precise underlying mechanism remains to be explored, especially in the expression pattern and function of microRNAs (miRNAs). In this report, we aimed to screen new potential miRNAs and examine the role of miR-148a-3p in hippocampal neurons in FS rats via Synaptojanin-1 (SYNJ1). Thirty rats were randomly divided into the normal and FS model groups, which were investigated by miRNA array. This process identified 31 differentially expressed (20 upregulated and 11 downregulated) miRNAs and potential miRNA target genes. In addition, hippocampal neurons were assigned into five groups for different transfections. Apoptosis was detected by TUNEL and flow cytometry. SYNJ1 was identified as a target gene of miR-148-3p. In vitro experiments revealed that inhibition of miR-148a-3p decreased neuronal cell apoptosis. Moreover, overexpression of miR-148a-3p resulted in activation of PI3K/Akt signaling pathway and the apoptosis of hippocampal neurons. MiR-148a-3p inhibitor could reverse the above events. Taken together, our data demonstrated that the hippocampal miRNA expression profiles of a rat model of FS provide a large database of candidate miRNAs and neuron-related target genes. Furthermore, miR-148a-3p acted as a apoptosis enhcaner via the activation of the SYNJ1/PI3K/Akt signaling pathway, highlighting a potential therapeutic target in the treatment of infants with hyperthermia-induced brain injury.
Collapse
Affiliation(s)
- Jian Xu
- grid.268079.20000 0004 1790 6079Department of Neurology, Maternal and Child Health Hospital of Weifang Medical University, Weifang, 261011 China ,grid.268079.20000 0004 1790 6079Department of Clinical Lab, Maternal and Child Health Hospital of Weifang Medical University, Weifang, 261011 China
| | - Mingqiang Sun
- grid.268079.20000 0004 1790 6079Department of Clinical Lab, Maternal and Child Health Hospital of Weifang Medical University, Weifang, 261011 China
| | - Xiaodong Li
- grid.268079.20000 0004 1790 6079Department of Pediatric, Maternal and Child Health Hospital of Weifang Medical University, Weifang, 261011 China
| | - Lei Huang
- grid.239573.90000 0000 9025 8099Department of Cancer Blood Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Zhenzhong Gao
- grid.268079.20000 0004 1790 6079Department of Pediatric, Maternal and Child Health Hospital of Weifang Medical University, Weifang, 261011 China
| | - Jian Gao
- grid.268079.20000 0004 1790 6079Department of Pediatric, Maternal and Child Health Hospital of Weifang Medical University, Weifang, 261011 China
| | - Anmu Xie
- grid.268079.20000 0004 1790 6079Department of Neurology, Maternal and Child Health Hospital of Weifang Medical University, Weifang, 261011 China
| |
Collapse
|
12
|
First-line exome sequencing in Palestinian and Israeli Arabs with neurological disorders is efficient and facilitates disease gene discovery. Eur J Hum Genet 2020; 28:1034-1043. [PMID: 32214227 PMCID: PMC7382450 DOI: 10.1038/s41431-020-0609-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
A high rate of consanguinity leads to a high prevalence of autosomal recessive disorders in inbred populations. One example of inbred populations is the Arab communities in Israel and the Palestinian Authority. In the Palestinian Authority in particular, due to limited access to specialized medical care, most patients do not receive a genetic diagnosis and can therefore neither receive genetic counseling nor possibly specific treatment. We used whole-exome sequencing as a first-line diagnostic tool in 83 Palestinian and Israeli Arab families with suspected neurogenetic disorders and were able to establish a probable genetic diagnosis in 51% of the families (42 families). Pathogenic, likely pathogenic or highly suggestive candidate variants were found in the following genes extending and refining the mutational and phenotypic spectrum of these rare disorders: ACO2, ADAT3, ALS2, AMPD2, APTX, B4GALNT1, CAPN1, CLCN1, CNTNAP1, DNAJC6, GAMT, GPT2, KCNQ2, KIF11, LCA5, MCOLN1, MECP2, MFN2, MTMR2, NT5C2, NTRK1, PEX1, POLR3A, PRICKLE1, PRKN, PRX, SCAPER, SEPSECS, SGCG, SLC25A15, SPG11, SYNJ1, TMCO1, and TSEN54. Further, this cohort has proven to be ideal for prioritization of new disease genes. Two separately published candidate genes (WWOX and PAX7) were identified in this study. Analyzing the runs of homozygosity (ROHs) derived from the Exome sequencing data as a marker for the rate of inbreeding, revealed significantly longer ROHs in the included families compared with a German control cohort. The total length of ROHs correlated with the detection rate of recessive disease-causing variants. Identification of the disease-causing gene led to new therapeutic options in four families.
Collapse
|
13
|
Samanta D, Arya K. Electroclinical Findings of SYNJ1 Epileptic Encephalopathy. J Pediatr Neurosci 2020; 15:29-33. [PMID: 32435303 PMCID: PMC7227754 DOI: 10.4103/jpn.jpn_10_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/10/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023] Open
Abstract
Introduction Early-onset epileptic encephalopathies are among the most severe early-onset epilepsies, leading to progressive neurodegeneration. An increasing number of novel genetic causes continue to be uncovered as the primary etiology. Results We report a girl infant of Semitic (Saudi Arabian) descent who presented with multifocal seizures and later developed intractable infantile spasms and myoclonic seizures. Her clinical features and electroencephalography were consistent with early-onset epileptic encephalopathy. Whole exome sequence analysis showed homozygous novel pathogenic variant (variant p.Q287PfsX27; coding DNA c.858_862delACAAA) in the SYNJ1 gene. Conclusion This is a newly described early-onset epileptic encephalopathy secondary to a critical reduction of the dual phosphatase activity of SYNJ. Clinical features include early-onset intractable focal, myoclonic seizures, infantile spasms, and hypotonia progressing to spastic quadriparesis, opisthotonus, dystonia, profound developmental delay, and a progressive neurodegenerative course. Brain magnetic resonance imaging is usually normal. Electroencephalography shows diffuse slowing with multifocal epileptiform discharges or modified hypsarrhythmia. These findings further expand the clinical spectrum of synaptic dysregulation in patients with severe epilepsy and emphasize the importance of this biological pathway in seizure pathophysiology.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Kapil Arya
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| |
Collapse
|
14
|
Kuechler ER, Budzyńska PM, Bernardini JP, Gsponer J, Mayor T. Distinct Features of Stress Granule Proteins Predict Localization in Membraneless Organelles. J Mol Biol 2020; 432:2349-2368. [PMID: 32105731 DOI: 10.1016/j.jmb.2020.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Abstract
Recently generated proteomic data provides unprecedented insight into stress granule composition and stands as fruitful ground for further analysis. Stress granules are stress-induced biological assemblies that are of keen interest due to being linked to both long-term cell viability and a variety of protein aggregation-based diseases. Herein, we compile recently published stress granule composition data, formed specifically through heat and oxidative stress, for both mammalian (Homo sapiens) and yeast (Saccharomyces cerevisiae) cells. Interrogation of the data reveals that stress granule proteins are enriched in features that favor protein liquid-liquid phase separation, being highly disordered, soluble, and abundant while maintaining a high level of protein-protein interactions under basal conditions. Furthermore, these "stress granuleomes" are shown to be enriched for multidomained, RNA-binding proteins with increased potential for post-translational modifications. Findings are consistent with the notion that stress granule formation is driven by protein liquid-liquid phase separation. Furthermore, stress granule proteins appear poised near solubility limits while possessing the ability to dynamically alter their phase behavior in response to external threat. Interestingly, several features, such as protein disorder, are more prominent among stress granule proteins that share homologs between yeast and mammalian systems also found within stress-induced foci. We culminate results from our stress granule analysis into novel predictors for granule incorporation and validate the mammalian predictor's performance against multiple types of membraneless condensates and by colocalization microscopy.
Collapse
Affiliation(s)
- Erich R Kuechler
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Paulina M Budzyńska
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan P Bernardini
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Xie F, Chen S, Cen ZD, Chen Y, Yang DH, Wang HT, Zhang BR, Luo W. A novel homozygous SYNJ1 mutation in two siblings with typical Parkinson's disease. Parkinsonism Relat Disord 2019; 69:134-137. [PMID: 31751865 DOI: 10.1016/j.parkreldis.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/19/2019] [Accepted: 11/02/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Mutations in the SYNJ1 have been associated with early onset of atypical Parkinson's disease (PARK20). Patients with PARK20 exhibit a wide phenotypic variability. Here, we report the clinical and genetic findings in two affected siblings with a novel homozygous SYNJ1 mutation. METHODS A consanguineous family with two affected siblings with Parkinson's disease was recruited. Both siblings underwent detailed neurological examinations. Whole genome sequencing was performed in the proband. RESULTS Both affected siblings presented with pure parkinsonism with no other atypical symptoms and a slow disease progression. The proband had an excellent response to levodopa. Performing the levodopa challenge test in the proband's older brother resulted in improvements in the parkinsonism signs. Genetic analysis identified a homozygous missense mutation in SYNJ1 (c.2495A > G, p.Y832C) in both of siblings. In silico analyses revealed that the mutation was deleterious. CONCLUSIONS Screening for SNYJ1 should be considered in patients with typical levodopa-responsive Parkinson's disease.
Collapse
Affiliation(s)
- Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Dong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - You Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - De-Hao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao-Tian Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Raghu P, Joseph A, Krishnan H, Singh P, Saha S. Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Front Mol Neurosci 2019; 12:208. [PMID: 31507376 PMCID: PMC6716428 DOI: 10.3389/fnmol.2019.00208] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositides, the seven phosphorylated derivatives of phosphatidylinositol have emerged as regulators of key sub-cellular processes such as membrane transport, cytoskeletal function and plasma membrane signaling in eukaryotic cells. All of these processes are also present in the cells that constitute the nervous system of animals and in this setting too, these are likely to tune key aspects of cell biology in relation to the unique structure and function of neurons. Phosphoinositides metabolism and function are mediated by enzymes and proteins that are conserved in evolution, and analysis of knockouts of these in animal models implicate this signaling system in neural function. Most recently, with the advent of human genome analysis, mutations in genes encoding components of the phosphoinositide signaling pathway have been implicated in human diseases although the cell biological basis of disease phenotypes in many cases remains unclear. In this review we evaluate existing evidence for the involvement of phosphoinositide signaling in human nervous system diseases and discuss ways of enhancing our understanding of the role of this pathway in the human nervous system's function in health and disease.
Collapse
Affiliation(s)
- Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | | | | | | | | |
Collapse
|
17
|
Al Zaabi N, Al Menhali N, Al-Jasmi F. SYNJ1 gene associated with neonatal onset of neurodegenerative disorder and intractable seizure. Mol Genet Genomic Med 2017; 6:109-113. [PMID: 29179256 PMCID: PMC5823681 DOI: 10.1002/mgg3.341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
Background Synaptojanin 1 is encoded by the SYNJ1(MIM 604297) and plays a major role in phosphorylation and recycling of synaptic vesicles. Mutation of SYNJ1 is associated with two distinct phenotypes; a known homozygous missense mutation (p.Arg258Gln) associated with early‐onset Parkinson disease (MIM 615530), whereas mutation with complete loss of SYNJ1 function result in a lethal neurodegenerative disease with intractable seizure and tauopathies (MIM 617389). Methods We report two related children from consanguineous family presented with intractable seizure, profound developmental delay, failure to thrive, acquired microcephaly, and hypotonia. The brain MRI is normal and EEG showed hypsarrhythmia. Result The diagnosis was achieved via whole‐genome sequencing which showed homozygous mutation in SYNJ1 (c.709C>T, p.Gln237*). Conclusion A clinical pattern of neonatal‐onset intractable seizure, profound developmental delay, muscular hypotonia, hypsarrhythmia, and no focal abnormality of brain MRI should prompt initiation of molecular genetic analysis of SYNJ1. Establishment of the diagnosis permits genetic counseling, prevents patients undergoing unhelpful diagnostic procedures and allows for accurate prognosis.
Collapse
Affiliation(s)
- Nuha Al Zaabi
- Department of Pediatric, College of Medicine and Health Science, United Arab Emirates University, Al Ain, UAE
| | | | - Fatma Al-Jasmi
- Department of Pediatric, College of Medicine and Health Science, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|