1
|
Filograna R, Gerlach J, Choi HN, Rigoni G, Barbaro M, Oscarson M, Lee S, Tiklova K, Ringnér M, Koolmeister C, Wibom R, Riggare S, Nennesmo I, Perlmann T, Wredenberg A, Wedell A, Motori E, Svenningsson P, Larsson NG. PARKIN is not required to sustain OXPHOS function in adult mammalian tissues. NPJ Parkinsons Dis 2024; 10:93. [PMID: 38684669 PMCID: PMC11058849 DOI: 10.1038/s41531-024-00707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Loss-of-function variants in the PRKN gene encoding the ubiquitin E3 ligase PARKIN cause autosomal recessive early-onset Parkinson's disease (PD). Extensive in vitro and in vivo studies have reported that PARKIN is involved in multiple pathways of mitochondrial quality control, including mitochondrial degradation and biogenesis. However, these findings are surrounded by substantial controversy due to conflicting experimental data. In addition, the existing PARKIN-deficient mouse models have failed to faithfully recapitulate PD phenotypes. Therefore, we have investigated the mitochondrial role of PARKIN during ageing and in response to stress by employing a series of conditional Parkin knockout mice. We report that PARKIN loss does not affect oxidative phosphorylation (OXPHOS) capacity and mitochondrial DNA (mtDNA) levels in the brain, heart, and skeletal muscle of aged mice. We also demonstrate that PARKIN deficiency does not exacerbate the brain defects and the pro-inflammatory phenotype observed in mice carrying high levels of mtDNA mutations. To rule out compensatory mechanisms activated during embryonic development of Parkin-deficient mice, we generated a mouse model where loss of PARKIN was induced in adult dopaminergic (DA) neurons. Surprisingly, also these mice did not show motor impairment or neurodegeneration, and no major transcriptional changes were found in isolated midbrain DA neurons. Finally, we report a patient with compound heterozygous PRKN pathogenic variants that lacks PARKIN and has developed PD. The PARKIN deficiency did not impair OXPHOS activities or induce mitochondrial pathology in skeletal muscle from the patient. Altogether, our results argue that PARKIN is dispensable for OXPHOS function in adult mammalian tissues.
Collapse
Affiliation(s)
- Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Jule Gerlach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hae-Na Choi
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Giovanni Rigoni
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michela Barbaro
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Oscarson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Seungmin Lee
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Tiklova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Riggare
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Elisa Motori
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
3
|
Mor-Shaked H, Paz-Ebstein E, Basal A, Ben-Haim S, Grobe H, Heymann S, Israel Z, Namnah M, Nitzan A, Rosenbluh C, Saada A, Tzur T, Yanovsky-Dagan S, Zaidel-Bar R, Harel T, Arkadir D. Levodopa-responsive dystonia caused by biallelic PRKN exon inversion invisible to exome sequencing. Brain Commun 2021; 3:fcab197. [PMID: 34514401 PMCID: PMC8421701 DOI: 10.1093/braincomms/fcab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Biallelic pathogenic variants in PRKN (PARK2), encoding the E3 ubiquitin ligase parkin, lead to early-onset Parkinson's disease. Structural variants, including duplications or deletions, are common in PRKN due to their location within the fragile site FRA6E. These variants are readily detectable by copy number variation analysis. We studied four siblings with levodopa-responsive dystonia by exome sequencing followed by genome sequencing. Affected individuals developed juvenile levodopa-responsive dystonia with subsequent appearance of parkinsonism and motor fluctuations that improved by subthalamic stimulation. Exome sequencing and copy number variation analysis were not diagnostic, yet revealed a shared homozygous block including PRKN. Genome sequencing revealed an inversion within PRKN, with intronic breakpoints flanking exon 5. Breakpoint junction analysis implicated non-homologous end joining and possibly replicative mechanisms as the repair pathways involved. Analysis of cDNA indicated skipping of exon 5 (84 bp) that was replaced by 93 bp of retained intronic sequence, preserving the reading frame yet altering a significant number of residues. Balanced copy number inversions in PRKN are associated with a severe phenotype. Such structural variants, undetected by exome analysis and by copy number variation analysis, should be considered in the relevant clinical setting. These findings raise the possibility that PRKN structural variants are more common than currently estimated.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Emuna Paz-Ebstein
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Simona Ben-Haim
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Nuclear Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel.,Institute of Nuclear Medicine, University College London and UCL Hospitals, NHS Trust, London NW1 2BU, UK
| | - Hanna Grobe
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Sami Heymann
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurosurgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Zvi Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurosurgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Montaser Namnah
- Department of Neurology, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Chaggai Rosenbluh
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tomer Tzur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Plastic Surgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | | | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - David Arkadir
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurology, Hadassah Medical Organization, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Strianese O, Rizzo F, Ciccarelli M, Galasso G, D’Agostino Y, Salvati A, Del Giudice C, Tesorio P, Rusciano MR. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel) 2020; 11:E747. [PMID: 32640513 PMCID: PMC7397223 DOI: 10.3390/genes11070747] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Life expectancy has gradually grown over the last century. This has deeply affected healthcare costs, since the growth of an aging population is correlated to the increasing burden of chronic diseases. This represents the interesting challenge of how to manage patients with chronic diseases in order to improve health care budgets. Effective primary prevention could represent a promising route. To this end, precision, together with personalized medicine, are useful instruments in order to investigate pathological processes before the appearance of clinical symptoms and to guide physicians to choose a targeted therapy to manage the patient. Cardiovascular and neurodegenerative diseases represent suitable models for taking full advantage of precision medicine technologies applied to all stages of disease development. The availability of high technology incorporating artificial intelligence and advancement progress made in the field of biomedical research have been substantial to understand how genes, epigenetic modifications, aging, nutrition, drugs, microbiome and other environmental factors can impact health and chronic disorders. The aim of the present review is to address how precision and personalized medicine can bring greater clarity to the clinical and biological complexity of these types of disorders associated with high mortality, involving tremendous health care costs, by describing in detail the methods that can be applied. This might offer precious tools for preventive strategies and possible clues on the evolution of the disease and could help in predicting morbidity, mortality and detecting chronic disease indicators much earlier in the disease course. This, of course, will have a major effect on both improving the quality of care and quality of life of the patients and reducing time efforts and healthcare costs.
Collapse
Affiliation(s)
- Oriana Strianese
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Carmine Del Giudice
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
| | - Paola Tesorio
- Unit of Cardiology, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy;
| | - Maria Rosaria Rusciano
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| |
Collapse
|
5
|
Saleh A, Macia A, Muotri AR. Transposable Elements, Inflammation, and Neurological Disease. Front Neurol 2019; 10:894. [PMID: 31481926 PMCID: PMC6710400 DOI: 10.3389/fneur.2019.00894] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Transposable Elements (TE) are mobile DNA elements that can replicate and insert themselves into different locations within the host genome. Their propensity to self-propagate has a myriad of consequences and yet their biological significance is not well-understood. Indeed, retrotransposons have evaded evolutionary attempts at repression and may contribute to somatic mosaicism. Retrotransposons are emerging as potent regulatory elements within the human genome. In the diseased state, there is mounting evidence that endogenous retroelements play a role in etiopathogenesis of inflammatory diseases, with a disposition for both autoimmune and neurological disorders. We postulate that active mobile genetic elements contribute more to human disease pathogenesis than previously thought.
Collapse
Affiliation(s)
- Aurian Saleh
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Angela Macia
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Alysson R Muotri
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Bravo P, Darvish H, Tafakhori A, Azcona LJ, Johari AH, Jamali F, Paisán-Ruiz C. Molecular characterization of PRKN structural variations identified through whole-genome sequencing. Mol Genet Genomic Med 2018; 6:1243-1248. [PMID: 30328284 PMCID: PMC6305656 DOI: 10.1002/mgg3.482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
Background Early‐onset Parkinson's disease (PD) is the most common inherited form of parkinsonism, with the PRKN gene being the most frequently identified mutated. Exon rearrangements, identified in about 43.2% of the reported PD patients and with higher frequency in specific ethnicities, are the most prevalent PRKN mutations reported to date in PD patients. Methods In this study, three consanguineous families with early‐onset PD were subjected to whole‐genome sequencing (WGS) analyses that were followed by Sanger sequencing and droplet digital PCR to validate and confirm the disease segregation of the identified genomic variations and to determine their parental origin. Results Five different PRKN structural variations (SVs) were identified. Because the genomic sequences surrounding the break points of the identified SVs might hold important information about their genesis, these were also characterized for the presence of homology and repeated sequences. Conclusion We concluded that all identified PRKN SVs might originate through retrotransposition events.
Collapse
Affiliation(s)
- Paloma Bravo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Hossein Darvish
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital and Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Luis J Azcona
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,Department of Neurosciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Amir Hossein Johari
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Faezeh Jamali
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Coro Paisán-Ruiz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,Department of Genetics and Genomic sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York.,The Friedman Brain and Mindich Child Health and Development Institutes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|