1
|
Aniol CV, Prokop JW, Rajasekaran S, Pageau S, Elizer SK, VanSickle EA, Bupp CP. Dilated coronary arteries in a 2-month-old with RIT1-associated Noonan syndrome: a case report. BMC Pediatr 2023; 23:1. [PMID: 36593444 PMCID: PMC9806447 DOI: 10.1186/s12887-022-03818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Noonan Syndrome is caused by variants in a variety of genes found in the RAS/MAPK pathway. As more causative genes for Noonan Syndrome have been identified, more phenotype variability has been found, particularly congenital heart defects. Here, we report a case of dilated coronary arteries in a pediatric patient with a RIT1 variant to add to the body of literature around this rare presentation of Noonan Syndrome. CASE PRESENTATION: A 2-month-old female was admitted due to increasing coronary artery dilation and elevated inflammatory markers. Rapid whole genome sequencing was performed and a likely pathogenic RIT1 variant was detected. This gene has been associated with a rare form of Noonan Syndrome and associated heart defects. Diagnosis of the RIT1 variant also gave reassurance about the patient's cardiac findings and allowed for more timely discharge as she was discharged to home the following day. CONCLUSIONS: This case highlights the importance of the association between dilated coronary arteries and Noonan syndrome and that careful cardiac screening should be advised in patients diagnosed with Noonan syndrome. In addition, this case emphasizes the importance of involvement of other subspecialities to determine a diagnosis. Through multidisciplinary medicine, the patient was able to return home in a timely manner with a diagnosis and the reassurance that despite her dilated coronary arteries and elevated inflammatory markers there was no immediate concern to her health.
Collapse
Affiliation(s)
- Claudia V. Aniol
- grid.461417.10000 0004 0445 646XCollege of Osteopathic Medicine, Rocky Vista University, Parker, CO USA
| | - Jeremy W. Prokop
- grid.17088.360000 0001 2150 1785Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI USA ,grid.17088.360000 0001 2150 1785Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI USA ,Corewell Health Office of Research, Grand Rapids, MI USA
| | - Surender Rajasekaran
- grid.17088.360000 0001 2150 1785Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI USA ,Corewell Health Office of Research, Grand Rapids, MI USA ,grid.413656.30000 0004 0450 6121Pediatric Critical Care Medicine, Helen DeVos Children’s Hospital, Grand Rapids, MI USA
| | - Spencer Pageau
- Corewell Health Office of Research, Grand Rapids, MI USA
| | - Sydney K. Elizer
- grid.413656.30000 0004 0450 6121Department of Internal Medicine and Pediatrics, Helen DeVos Children’s Hospital, Grand Rapids, MI USA
| | - Elizabeth A. VanSickle
- grid.413656.30000 0004 0450 6121Medical Genetics, Corewell Health and Helen DeVos Children’s Hospital, 25 Michigan St NE, Suite 2000, Grand Rapids, MI 49503 USA
| | - Caleb P. Bupp
- grid.17088.360000 0001 2150 1785Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI USA ,grid.413656.30000 0004 0450 6121Medical Genetics, Corewell Health and Helen DeVos Children’s Hospital, 25 Michigan St NE, Suite 2000, Grand Rapids, MI 49503 USA
| |
Collapse
|
2
|
Tano S, Kotani T, Yoshihara M, Nakamura N, Matsuo S, Ushida T, Imai K, Ito M, Oka Y, Sato E, Hayashi S, Ogi T, Kajiyama H. A case of non-immune hydrops fetalis with maternal mirror syndrome diagnosed by trio-based exome sequencing: An autopsy case report and literature review. Mol Genet Metab Rep 2022; 33:100925. [PMID: 36274670 PMCID: PMC9579035 DOI: 10.1016/j.ymgmr.2022.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022] Open
Abstract
Non-immune hydrops fetalis (NIHF) indicates the risk for stillbirth. Although the causes vary and most NIHFs have no identifiable cause, recent advances in exome sequencing have increased diagnostic rates. We report a case of NIHF that developed into a giant cystic hygroma complicated by maternal mirror syndrome. Trio-based exome sequencing showed a de novo heterozygous missense variant in the RIT1 (NM_006912: c.246 T > G [p.F82L]). The RIT1 variants are known causative variants of Noonan syndrome (NS; OMIM #163950). The location of the RIT1 variants in the previously reported NS cases with NIHF or/and maternal mirror syndrome was mainly in the switch II region, including the present case. While a further accumulation of cases is needed, exome sequencing, which can identify the variant type in detail, might help predict the phenotype and severity of NIHF.
Collapse
Affiliation(s)
- Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan,Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Aichi, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan,Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan,Corresponding author at: Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan.
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Noriyuki Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan,Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Aichi, Japan
| | - Seiko Matsuo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Miharu Ito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Aichi, Japan,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Emi Sato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shin Hayashi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Aichi, Japan,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Bertola DR, Castro MAA, Yamamoto GL, Honjo RS, Ceroni JR, Buscarilli MM, Freitas AB, Malaquias AC, Pereira AC, Jorge AAL, Passos‐Bueno MR, Kim CA. Phenotype–genotype analysis of 242 individuals with
RASopathies
: 18‐year experience of a tertiary center in Brazil. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:896-911. [DOI: 10.1002/ajmg.c.31851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Débora R. Bertola
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
- Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | - Matheus A. A. Castro
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Guilherme L. Yamamoto
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Rachel S. Honjo
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - José Ricardo Ceroni
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Michele M. Buscarilli
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Amanda B. Freitas
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Alexsandra C. Malaquias
- Unidade de Endocrinologia‐Genetica LIM 25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo São Paulo Brazil
| | - Alexandre C. Pereira
- Laboratório de Genética e Cardiologia Molecular Instituto do Coração, do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Alexander A. L. Jorge
- Unidade de Endocrinologia‐Genetica LIM 25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo São Paulo Brazil
| | | | - Chong A. Kim
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
4
|
Van R, Cuevas-Navarro A, Castel P, McCormick F. The molecular functions of RIT1 and its contribution to human disease. Biochem J 2020; 477:2755-2770. [PMID: 32766847 PMCID: PMC7787054 DOI: 10.1042/bcj20200442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
RIT1 is a member of the Ras family of GTPases that direct broad cellular physiological responses through tightly controlled signaling networks. The canonical Ras GTPases are well-defined regulators of the RAF/MEK/ERK pathway and mutations in these are pathogenic in cancer and a class of developmental disorders termed RASopathies. Emerging clinical evidences have now demonstrated a role for RIT1 in RASopathies, namely Noonan syndrome, and various cancers including lung adenocarcinoma and myeloid malignancies. While RIT1 has been mostly described in the context of neuronal differentiation and survival, the mechanisms underlying aberrant RIT1-mediated signaling remain elusive. Here, we will review efforts undertaken to characterize the biochemical and functional properties of the RIT1 GTPase at the molecular, cellular, and organismal level, as well as provide a phenotypic overview of different human conditions caused by RIT1 mutations. Deeper understanding of RIT1 biological function and insight to its pathogenic mechanisms are imperative to developing effective therapeutic interventions for patients with RIT1-mutant Noonan syndrome and cancer.
Collapse
Affiliation(s)
- Richard Van
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| |
Collapse
|
5
|
Aly SA, Boyer KM, Muller BA, Marini D, Jones CH, Nguyen HH. Complicated ventricular arrhythmia and hematologic myeloproliferative disorder in RIT1-associated Noonan syndrome: Expanding the phenotype and review of the literature. Mol Genet Genomic Med 2020; 8:e1253. [PMID: 32396283 PMCID: PMC7336743 DOI: 10.1002/mgg3.1253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background Noonan syndrome is an autosomal dominant disorder secondary to RASopathies, which are caused by germ‐line mutations in genes encoding components of the RAS mitogen‐activated protein kinase pathway. RIT1 (OMIM *609591) was recently reported as a disease gene for Noonan syndrome. Methods and Results We present a patient with RIT1‐associated Noonan syndrome, who in addition to the congenital heart defect, had monocytosis, myeloproliferative disorder, and accelerated idioventricular rhythm that was associated with severe hemodynamic instability. Noonan syndrome was suspected given the severe pulmonary stenosis, persistent monocytosis, and “left‐shifted” complete blood counts without any evidence of an infectious process. Genetic testing revealed that the patient had a heterozygous c.221 C>G (pAla74Gly) mutation in the RIT1. Conclusion We report a case of neonatal Noonan syndrome associated with RIT1 mutation. The clinical suspicion for Noonan syndrome was based only on the congenital heart defect, persistent monocytosis, and myeloproliferative process as the child lacked all other hallmarks characteristics of Noonan syndrome. However, the patient had an unusually malignant ventricular dysrhythmia that lead to his demise. The case highlights the fact that despite its heterogeneous presentation, RIT1‐associated Noonan syndrome can be extremely severe with poor outcome.
Collapse
Affiliation(s)
- Safwat A. Aly
- Department of PediatricsRush University Medical CollegeChicagoILUSA
- Division of CardiologyDepartment of PediatricsThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Kenneth M. Boyer
- Department of PediatricsRush University Medical CollegeChicagoILUSA
| | | | - Davide Marini
- Division of CardiologyDepartment of PediatricsThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Carolyn H. Jones
- Department of PediatricsRush University Medical CollegeChicagoILUSA
| | - Hoang H. Nguyen
- Department of PediatricsRush University Medical CollegeChicagoILUSA
| |
Collapse
|
6
|
Young children with Noonan syndrome: evaluation of feeding problems. Eur J Pediatr 2020; 179:1683-1688. [PMID: 32394265 PMCID: PMC7547990 DOI: 10.1007/s00431-020-03664-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
Noonan syndrome (NS) is a common genetic syndrome with a high variety in phenotype. Even though genetic testing is possible, NS is still a clinical diagnosis. Feeding problems are often present in infancy. We investigated the feeding status of 108 patients with clinically and genetically confirmed NS. Only patients with a documented feeding status before the age of 6 were included. A distinction was made between patients with early onset feeding problems (< 1 year) and children with late onset feeding problems (> 1 year). Seventy-one of 108 patients had feeding problems, of which 40 patients required tube feeding. Children with a genetic mutation other than PTPN11 and SOS1 had significantly more feeding problems in the first year. Fifty-two of all 108 patients experienced early onset feeding problems, of which 33 required tube feeding. A strong decrease in prevalence of feeding problems was found after the first year of life. Fifteen children developed feeding problems later in life, of which 7 required tube feeding.Conclusion: Feeding problems occur frequently in children with NS, especially in children with NS based on genetic mutations other than PTPN11 and SOS1. Feeding problems develop most often in infancy and decrease with age. What is Known: • Young children with Noonan syndrome may have transient feeding problems. • Most of them will need tube feeding. What is New: • This is the first study of feeding problems in patients with clinically and genetically proven Noonan syndrome. • Feeding problems most often develop in infancy and resolve between the age of 1 and 2.
Collapse
|
7
|
Koh AL, Tan ES, Brett MS, Lai AHM, Jamuar SS, Ng I, Tan EC. The spectrum of genetic variants and phenotypic features of Southeast Asian patients with Noonan syndrome. Mol Genet Genomic Med 2019; 7:e00581. [PMID: 30784236 PMCID: PMC6465663 DOI: 10.1002/mgg3.581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/28/2022] Open
Abstract
Background Noonan syndrome (NS) is an autosomal dominant disorder that belongs to a group of developmental disorders called RASopathies with overlapping features and multiple causative genes. The aim of the study was to identify mutations underlying this disorder in patients from Southeast Asia and characterize their clinical presentations. Methods Patients were identified from the hospital's Genetics clinics after assessment by attending clinical geneticists. A targeted gene panel was used for next‐generation sequencing on genomic DNA extracted from the blood samples of 17 patients. Results Heterozygous missense variants were identified in 13 patients: eight were in PTPN11, three in SOS1, and one each in RIT1 and KRAS. All are known variants that have been reported in patients with NS. Of the 13 patients with identified variants, 10 had short stature, the most common feature for NS. Four of the eight patients with PTPN11 variants had atrial septal defect. Only two had pulmonary stenosis which is reported to be common for PTPN11 mutation carriers. Another two had hypertrophic cardiomyopathy, a feature which is negatively associated with PTPN11 mutations. Conclusions Our study provides the mutation and phenotypic spectrum of NS from a new population group. The molecular testing yield of 76% is similar to other studies and shows that the targeted panel approach is useful for identifying genetic mutations in NS which has multiple causative genes. The molecular basis for the phenotypes of the remaining patients remains unknown and would need to be uncovered via sequencing of additional genes or other investigative methods.
Collapse
Affiliation(s)
- Ai-Ling Koh
- Department of Paediatrics, KK Women's & Children's Hospital, Singapore
| | - Ee-Shien Tan
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| | - Maggie S Brett
- Research Laboratory, KK Women's & Children's Hospital, Singapore
| | - Angeline H M Lai
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| | - Saumya Shekhar Jamuar
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| | - Ivy Ng
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| | - Ene-Choo Tan
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Research Laboratory, KK Women's & Children's Hospital, Singapore
| |
Collapse
|