1
|
Ghazali N, Rahman NA, Kannan TP, Ahmad A, Sulong S. Identification of copy neutral loss of heterozygosity on chromosomes 1p, 1q, and 6p among nonsyndromic cleft lip and/or without cleft palate with hypodontia. BMC Oral Health 2023; 23:945. [PMID: 38031027 PMCID: PMC10685534 DOI: 10.1186/s12903-023-03464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Nonsyndromic cleft lip and/or without cleft palate (NSCL/P) with or without hypodontia is a common developmental aberration in humans and animals. This study aimed to identify the loss of heterozygosity (LOH) involved in hypodontia and NSCL/P pathogenesis. METHODS This is a cross-sectional study that conducted genome-wide copy number analysis using CytoScan 750K array on salivary samples from Malay subjects with NSCL/P with or without hypodontia aged 7-13 years. To confirm the significant results, simple logistic regression was employed to conduct statistical data analysis using SPSS software. RESULTS The results indicated the most common recurrent copy neutral LOH (cnLOH) observed at 1p33-1p32.3, 1q32.2-1q42.13 and 6p12.1-6p11.1 loci in 8 (13%), 4 (7%), and 3 (5%) of the NSCL/P subjects, respectively. The cnLOHs at 1p33-1p32.3 (D1S197), 1q32.2-1q42.13 (D1S160), and 6p12.1-6p11.1 (D1S1661) were identified observed in NSCL/P and noncleft children using microsatellite analysis markers as a validation analysis. The regions affected by the cnLOHs at 1p33-1p32.3, 1q32.2-1q42.13, and 6p12.1-6p11.1 loci contained selected genes, namely FAF1, WNT3A and BMP5, respectively. There was a significant association between the D1S197 (1p33-32.3) markers containing the FAF1 gene among NSCL/P subjects with or without hypodontia compared with the noncleft subjects (p-value = 0.023). CONCLUSION The results supported the finding that the genetic aberration on 1p33-32.3 significantly contributed to the development of NSCL/P with or without hypodontia. These results have an exciting prospect in the promising field of individualized preventive oral health care.
Collapse
Affiliation(s)
- Norliana Ghazali
- School of Dental Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Normastura Abd Rahman
- School of Dental Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Thirumulu Ponnuraj Kannan
- School of Dental Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Azlina Ahmad
- School of Dental Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia (USM), Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Wang H, Wang X, Yan D, Sun H, Chen Q, Li M, Dong X, Pan Y, Lu S. Genome-wide association study identifying genetic variants associated with carcass backfat thickness, lean percentage and fat percentage in a four-way crossbred pig population using SLAF-seq technology. BMC Genomics 2022; 23:594. [PMID: 35971078 PMCID: PMC9380336 DOI: 10.1186/s12864-022-08827-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022] Open
Abstract
Background Carcass backfat thickness (BFT), carcass lean percentage (CLP) and carcass fat percentage (CFP) are important to the commercial pig industry. Nevertheless, the genetic architecture of BFT, CLP and CFP is still elusive. Here, we performed a genome-wide association study (GWAS) based on specific-locus amplified fragment sequencing (SLAF-seq) to analyze seven fatness-related traits, including five BFTs, CLP, and CFP on 223 four-way crossbred pigs. Results A total of 227, 921 highly consistent single nucleotide polymorphisms (SNPs) evenly distributed throughout the genome were used to perform GWAS. Using the mixed linear model (MLM), a total of 20 SNP loci significantly related to these traits were identified on ten Sus scrofa chromosomes (SSC), of which 10 SNPs were located in previously reported quantitative trait loci (QTL) regions. On SSC7, two SNPs (SSC7:29,503,670 and rs1112937671) for average backfat thickness (ABFT) exceeded 1% and 10% Bonferroni genome-wide significance levels, respectively. These two SNP loci were located within an intron region of the COL21A1 gene, which was a protein-coding gene that played an important role in the porcine backfat deposition by affecting extracellular matrix (ECM) remodeling. In addition, based on the other three significant SNPs on SSC7, five candidate genes, ZNF184, ZNF391, HMGA1, GRM4 and NUDT3 were proposed to influence BFT. On SSC9, two SNPs for backfat thickness at 6–7 ribs (67RBFT) and one SNP for CLP were in the same locus region (19 kb interval). These three SNPs were located in the PGM2L1 gene, which encoded a protein that played an indispensable role in glycogen metabolism, glycolysis and gluconeogenesis as a key enzyme. Finally, one significant SNP on SSC14 for CLP was located within the PLBD2 gene, which participated in the lipid catabolic process. Conclusions A total of two regions on SSC7 and SSC9 and eight potential candidate genes were found for fatness-related traits in pigs. The results of this GWAS based on SLAF-seq will greatly advance our understanding of the genetic architecture of BFT, CLP, and CFP traits. These identified SNP loci and candidate genes might serve as a biological basis for improving the important fatness-related traits of pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08827-8.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China.,Faculty of Animal Science, Xichang University, Xichang, 615000, Sichuan, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Hao Sun
- Faculty of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China
| | - Yuchun Pan
- Faculty of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, No. 95 of Jinhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
3
|
Chen S, Jia Z, Cai M, Ye M, Wu D, Wan T, Zhang B, Wu P, Xu Y, Guo Y, Tian C, Ma D, Ma J. SP1-Mediated Upregulation of Long Noncoding RNA ZFAS1 Involved in Non-syndromic Cleft Lip and Palate via Inactivating WNT/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:662780. [PMID: 34268302 PMCID: PMC8275830 DOI: 10.3389/fcell.2021.662780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Non-syndromic cleft lip and palate (NSCLP) is one of the most common congenital malformations with multifactorial etiology. Although long non-coding RNAs (lncRNAs) have been implicated in the development of lip and palate, their roles in NSCLP are not fully elucidated. This study aimed to investigate how dysregulated lncRNAs contribute to NSCLP. Using lncRNA sequencing, bioinformatics analysis, and clinical tissue sample detection, we identified that lncRNA ZFAS1 was significantly upregulated in NSCLP. The upregulation of ZFAS1 mediated by SP1 transcription factor (SP1) inhibited expression levels of Wnt family member 4 (WNT4) through the binding with CCCTC-binding factor (CTCF), subsequently inactivating the WNT/β-catenin signaling pathway, which has been reported to play a significant role on the development of lip and palate. Moreover, in vitro, the overexpression of ZFAS1 inhibited cell proliferation and migration in human oral keratinocytes and human umbilical cord mesenchymal stem cells (HUC-MSCs) and also repressed chondrogenic differentiation of HUC-MSCs. In vivo, ZFAS1 suppressed cell proliferation and numbers of chondrocyte in the zebrafish ethmoid plate. In summary, these results indicated that ZFAS1 may be involved in NSCLP by affecting cell proliferation, migration, and chondrogenic differentiation through inactivating the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shiyu Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming Cai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mujie Ye
- Children's Hospital of Fudan University, Shanghai, China
| | - Dandan Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Wan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peixuan Wu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuexin Xu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuntao Guo
- Medical Laboratory of Nantong ZhongKe, Nantong, China
| | - Chan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Peking University, Beijing, China
| | - Duan Ma
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
5
|
Lang AE, Lundquist EA. The Collagens DPY-17 and SQT-3 Direct Anterior-Posterior Migration of the Q Neuroblasts in C. elegans. J Dev Biol 2021; 9:jdb9010007. [PMID: 33669899 PMCID: PMC8006237 DOI: 10.3390/jdb9010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cell adhesion molecules and their extracellular ligands control morphogenetic events such as directed cell migration. The migration of neuroblasts and neural crest cells establishes the structure of the central and peripheral nervous systems. In C. elegans, the bilateral Q neuroblasts and their descendants undergo long-range migrations with left/right asymmetry. QR and its descendants on the right migrate anteriorly, and QL and its descendants on the left migrate posteriorly, despite identical patterns of cell division, cell death, and neuronal generation. The initial direction of protrusion of the Q cells relies on the left/right asymmetric functions of the transmembrane receptors UNC-40/DCC and PTP-3/LAR in the Q cells. Here, we show that Q cell left/right asymmetry of migration is independent of the GPA-16/Gα pathway which regulates other left/right asymmetries, including nervous system L/R asymmetry. No extracellular cue has been identified that guides initial Q anterior versus posterior migrations. We show that collagens DPY-17 and SQT-3 control initial Q direction of protrusion. Genetic interactions with UNC-40/DCC and PTP-3/LAR suggest that DPY-17 and SQT-3 drive posterior migration and might act with both receptors or in a parallel pathway. Analysis of mutants in other collagens and extracellular matrix components indicated that general perturbation of collagens and the extracellular matrix (ECM) did not result in directional defects, and that the effect of DPY-17 and SQT-3 on Q direction is specific. DPY-17 and SQT-3 are components of the cuticle, but a role in the basement membrane cannot be excluded. Possibly, DPY-17 and SQT-3 are part of a pattern in the cuticle and/or basement membrane that is oriented to the anterior–posterior axis of the animal and that is deciphered by the Q cells in a left–right asymmetric fashion. Alternatively, DPY-17 and SQT-3 might be involved in the production or stabilization of a guidance cue that directs Q migrations. In any case, these results describe a novel role for the DPY-17 and SQT-3 collagens in directing posterior Q neuroblast migration.
Collapse
|
6
|
Drouin A, Wallbillich N, Theberge M, Liu S, Katz J, Bellovoda K, Se Yun Cheon S, Gootkind F, Bierman E, Zavras J, Berberich MJ, Kalocsay M, Guastaldi F, Salvadori N, Troulis M, Fusco DN. Impact of Zika virus on the human type I interferon osteoimmune response. Cytokine 2021; 137:155342. [PMID: 33130337 DOI: 10.1016/j.cyto.2020.155342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The developing field of osteoimmunology supports importance of an interferon (IFN) response pathway in osteoblasts. Clarifying osteoblast-IFN interactions is important because IFN is used as salvage anti-tumor therapy but systemic toxicity is high with variable clinical results. In addition, osteoblast response to systemic bursts and disruptions of IFN pathways induced by viral infection may influence bone remodeling. ZIKA virus (ZIKV) infection impacts bone development in humans and IFN response in vitro. Consistently, initial evidence of permissivity to ZIKV has been reported in human osteoblasts. HYPOTHESIS Osteoblast-like Saos-2 cells are permissive to ZIKV and responsive to IFN. METHODS Multiple approaches were used to assess whether Saos-2 cells are permissive to ZIKV infection and exhibit IFN-mediated ZIKV suppression. Proteomic methods were used to evaluate impact of ZIKV and IFN on Saos-2 cells. RESULTS Evidence is presented confirming Saos-2 cells are permissive to ZIKV and support IFN-mediated suppression of ZIKV. ZIKV and IFN differentially impact the Saos-2 proteome, exemplified by HELZ2 protein which is upregulated by IFN but non responsive to ZIKV. Both ZIKV and IFN suppress proteins associated with microcephaly/pseudo-TORCH syndrome (BI1, KI20A and UBP18), and ZIKV induces potential entry factor PLVAP. CONCLUSIONS Transient ZIKV infection influences osteoimmune state, and IFN and ZIKV activate distinct proteomes in Saos-2 cells, which could inform therapeutic, engineered, disruptions.
Collapse
Affiliation(s)
- Arnaud Drouin
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States; Department of Pathology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States
| | - Nicholas Wallbillich
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States
| | - Marc Theberge
- Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, United States
| | - Sharon Liu
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States
| | - Joshua Katz
- Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, United States
| | - Kamela Bellovoda
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - Scarlett Se Yun Cheon
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - Frederick Gootkind
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Emily Bierman
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Jason Zavras
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Matthew J Berberich
- Laboratory of Systems Pharmacology, Harvard Medical School, Armenise Building, 200 Longwood, Ave, Boston, MA 02115, United States
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Medical School, Armenise Building, 200 Longwood, Ave, Boston, MA 02115, United States
| | - Fernando Guastaldi
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Nicolas Salvadori
- Institut de recherche pour le développement (IRD)-PHPT, Marseille, France; Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Maria Troulis
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Dahlene N Fusco
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States.
| |
Collapse
|
7
|
Mohamad Shah NS, Sulong S, Wan Sulaiman WA, Halim AS. Two novel genes TOX3 and COL21A1 in large extended Malay families with nonsyndromic cleft lip and/or palate. Mol Genet Genomic Med 2019; 7:e635. [PMID: 30924295 PMCID: PMC6503016 DOI: 10.1002/mgg3.635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/09/2019] [Accepted: 02/11/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Nonsyndromic cleft lip and/or palate is one of the most common human birth defects worldwide that affects the lip and/or palate. The incidence of clefts varies among populations through ethnic, race, or geographical differences. The focus on Malay nonsyndromic cleft lip and/or palate (NSCL/P) is because of a scarce report on genetic study in relation to this deformity in Malaysia. We are interested to discuss about the genes that are susceptible to cause orofacial cleft formation in the family. METHODS Genome-wide linkage analysis was carried out on eight large extended families of NSCL/P with the total of 91 individuals among Malay population using microarray platform. Based on linkage analyses findings, copy number variation (CNV) of LPHN2, SATB2, PVRL3, COL21A1, and TOX3 were identified in four large extended families that showed linkage evidence using quantitative polymerase chain reaction (qPCR) as for a validation purpose. Copy number calculated (CNC) for each genes were determined with Applied Biosystems CopyCallerTM Software v2.0. Normal CNC of the target sequence expected was set at two. RESULTS Genome-wide linkage analysis had discovered several genes including TOX3 and COL21A1 in four different loci 4p15.2-p16.1, 6p11.2-p12.3, 14q13-q21, and 16q12.1. There was significant decreased, p < 0.05 of SATB2, COL21A1, and TOX3 copy number in extended families compared to the normal controls. CONCLUSION Novel linkage evidence and significant low copy number of COL21A1 and TOX3 in NSCLP family was confirmed. These genes increased the risks toward NSCLP formation in that family traits.
Collapse
Affiliation(s)
- Nurul Syazana Mohamad Shah
- Reconstructive Science Unit, School of Medical SciencesUniversiti Sains MalaysiaKubang KerianKelantanMalaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical SciencesUniversiti Sains MalaysiaKubang KerianKelantanMalaysia
| | - Wan Azman Wan Sulaiman
- Reconstructive Science Unit, School of Medical SciencesUniversiti Sains MalaysiaKubang KerianKelantanMalaysia
| | | |
Collapse
|