1
|
Yan RE, Chae JK, Dahmane N, Ciaramitaro P, Greenfield JP. The Genetics of Chiari 1 Malformation. J Clin Med 2024; 13:6157. [PMID: 39458107 PMCID: PMC11508843 DOI: 10.3390/jcm13206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Chiari malformation type 1 (CM1) is a structural defect that involves the herniation of the cerebellar tonsils through the foramen magnum, causing mild to severe neurological symptoms. Little is known about the molecular and developmental mechanisms leading to its pathogenesis, prompting current efforts to elucidate genetic drivers. Inherited genetic disorders are reported in 2-3% of CM1 patients; however, CM1, including familial forms, is predominantly non-syndromic. Recent work has focused on identifying CM1-asscoiated variants through the study of both familial cases and de novo mutations using exome sequencing. This article aims to review the current understanding of the genetics of CM1. We discuss three broad classes of CM1 based on anatomy and link them with genetic lesions, including posterior fossa-linked, macrocephaly-linked, and connective tissue disorder-linked CM1. Although the genetics of CM1 are only beginning to be understood, we anticipate that additional studies with diverse patient populations, tissue types, and profiling technologies will reveal new insights in the coming years.
Collapse
Affiliation(s)
- Rachel E. Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - John K. Chae
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Palma Ciaramitaro
- Neuroscience Department, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy;
| | - Jeffrey P. Greenfield
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| |
Collapse
|
2
|
Hennocq Q, Garcelon N, Bongibault T, Bouygues T, Marlin S, Amiel J, Boutaud L, Douillet M, Lyonnet S, Pingault V, Picard A, Rio M, Attie-Bitach T, Khonsari RH, Roux N. Artificial intelligence-based diagnosis in fetal pathology using external ear shapes. Prenat Diagn 2024; 44:1150-1158. [PMID: 38635411 DOI: 10.1002/pd.6577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Here we trained an automatic phenotype assessment tool to recognize syndromic ears in two syndromes in fetuses-=CHARGE and Mandibulo-Facial Dysostosis Guion Almeida type (MFDGA)-versus controls. METHOD We trained an automatic model on all profile pictures of children diagnosed with genetically confirmed MFDGA and CHARGE syndromes, and a cohort of control patients, collected from 1981 to 2023 in Necker Hospital (Paris) with a visible external ear. The model consisted in extracting landmarks from photographs of external ears, in applying geometric morphometry methods, and in a classification step using machine learning. The approach was then tested on photographs of two groups of fetuses: controls and fetuses with CHARGE and MFDGA syndromes. RESULTS The training set contained a total of 1489 ear photographs from 526 children. The validation set contained a total of 51 ear photographs from 51 fetuses. The overall accuracy was 72.6% (58.3%-84.1%, p < 0.001), and 76.4%, 74.9%, and 86.2% respectively for CHARGE, control and MFDGA fetuses. The area under the curves were 86.8%, 87.5%, and 90.3% respectively for CHARGE, controls, and MFDGA fetuses. CONCLUSION We report the first automatic fetal ear phenotyping model, with satisfactory classification performances. Further validations are required before using this approach as a diagnostic tool.
Collapse
Affiliation(s)
- Quentin Hennocq
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Laboratoire 'Forme et Croissance Du Crâne', Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Thomas Bongibault
- Imagine Institute, INSERM UMR1163, Paris, France
- Laboratoire 'Forme et Croissance Du Crâne', Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Bouygues
- Imagine Institute, INSERM UMR1163, Paris, France
- Laboratoire 'Forme et Croissance Du Crâne', Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sandrine Marlin
- Imagine Institute, INSERM UMR1163, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jeanne Amiel
- Imagine Institute, INSERM UMR1163, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Lucile Boutaud
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | - Stanislas Lyonnet
- Imagine Institute, INSERM UMR1163, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Vèronique Pingault
- Imagine Institute, INSERM UMR1163, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Arnaud Picard
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Marlèe Rio
- Imagine Institute, INSERM UMR1163, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Tania Attie-Bitach
- Imagine Institute, INSERM UMR1163, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Roman H Khonsari
- Imagine Institute, INSERM UMR1163, Paris, France
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Laboratoire 'Forme et Croissance Du Crâne', Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nathalie Roux
- Imagine Institute, INSERM UMR1163, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Nguyen QD, Tran TNA, Nguyen HT. Crouzon syndrome with acanthosis nigricans: A case report and literature review. Dermatol Reports 2022. [DOI: 10.4081/dr.2023.9620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Crouzon’s syndrome with acanthosis nigricans is an autosomal dominant disease, with typical features of classic Crouzon craniosynostosis, verrucous hyperplasia, and hyperpigmentation of the skin. While several mutations in FGFR2 cause classic Crouzon syndrome, Crouzon syndrome with acanthosis nigricans results from a point mutation in the fibroblast growth factor receptor 3 gene (FGFR3). We report an 8-year-old Vietnamese girl diagnosed with Crouzon syndrome with acanthosis nigricans, showing typical clinical features, including a crouzonoid face and dark plaques on skin. Genetic testing showed a missense variation in FGFR3, associated with Crouzon syndrome with acanthosis nigricans. Following diagnosis, we treated acanthosis nigricans with 10% urea cream. This case study and literature review discusses the cutaneous manifestations and dermatological treatments, while demonstrating the importance of clinical examination and evaluation of the patient’s medical history during diagnosis. Our findings contribute to the global pool of data, providing practical insights into the manifestations of Crouzon syndrome.
Collapse
|
4
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Acanthosis Nigricans: An Updated Review. Curr Pediatr Rev 2022; 19:68-82. [PMID: 36698243 DOI: 10.2174/1573396318666220429085231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Early recognition of acanthosis nigricans is important because acanthosis nigricans can be a cutaneous manifestation of a variety of systemic disorders and, rarely, as a sign of internal malignancy. OBJECTIVE The purpose of this article is to familiarize pediatricians with the clinical manifestations, evaluation, diagnosis, and management of acanthosis nigricans. METHODS A search was conducted in November 2021in PubMed Clinical Queries using the key term "acanthosis nigricans". The search strategy included all clinical trials, observational studies, and reviews published within the past 10 years. Only papers published in the English literature were included in this review. The information retrieved from the above search was used in the compilation of the present article. RESULTS Acanthosis nigricans is characterized by symmetric, hyperpigmented, and velvety plaques with ill-defined borders, typically involving intertriginous areas. Obesity is the most common cause of acanthosis nigricans which is increasingly observed in obese children and adolescents and can serve as a cutaneous marker of insulin resistance. Early recognition of acanthosis nigricans is important because acanthosis nigricans can also be a cutaneous manifestation of a variety of systemic disorders and, rarely, as a sign of internal malignancy. This may consist of weight reduction, discontinuation of causative drugs, treatment of underlying endocrinopathy, or treatment of an underlying malignancy. For patients with isolated acanthosis nigricans and for those whose underlying cause is not amenable to treatment, treatment of the lesion may be considered for cosmetic reasons. Topical retinoids, vitamin D analogs, chemical peels, and other keratolytics are often used for the treatment of localized lesions. Seldom, systemic therapy such as oral retinoids may be considered for extensive or generalized acanthosis nigricans and acanthosis nigricans unresponsive to topical therapy. Other uncommon treatment modalities include dermabrasion, laser therapy, and surgical removal. CONCLUSION Although acanthosis nigricans is treatable, a complete cure is difficult to achieve. The underlying cause should be treated, if possible, to resolve and prevent the recurrence of acanthosis nigricans. The diagnosis is mainly clinical, based on the characteristic appearance (symmetrically distributed, hyperpigmented, velvety, papillomatous, hyperkeratotic plaques with ill-defined borders) and the typical sites (intertriginous areas, flexural area, and skin folds) of the lesions. The diagnosis might be difficult for lesions that have atypical morphology or are in an unusual location. Clinicians should be familiar with the clinical signs, evaluation, diagnosis, and therapy of acanthosis nigricans because of the link between it and underlying diseases.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, and Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| |
Collapse
|
5
|
Provenzano A, La Barbera A, Scagnet M, Pagliazzi A, Traficante G, Pantaleo M, Tiberi L, Vergani D, Kurtas NE, Guarducci S, Bargiacchi S, Forzano G, Artuso R, Palazzo V, Kura A, Giordano F, di Feo D, Mortilla M, De Filippi C, Mattei G, Garavelli L, Giusti B, Genitori L, Zuffardi O, Giglio S. Chiari 1 malformation and exome sequencing in 51 trios: the emerging role of rare missense variants in chromatin-remodeling genes. Hum Genet 2020; 140:625-647. [PMID: 33337535 PMCID: PMC7981314 DOI: 10.1007/s00439-020-02231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3–5 mm or more, the frequency of which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Andrea La Barbera
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Scagnet
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Angelica Pagliazzi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marilena Pantaleo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Nehir Edibe Kurtas
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Silvia Guarducci
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Flavio Giordano
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Daniele di Feo
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marzia Mortilla
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Claudio De Filippi
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| |
Collapse
|
6
|
Rymer K, Shiang R, Hsiung A, Pandya A, Bigdeli T, Webb BT, Rhodes J. Expanding the phenotype for the recurrent p.Ala391Glu variant in FGFR3: Beyond crouzon syndrome and acanthosis nigricans. Mol Genet Genomic Med 2019; 7:e656. [PMID: 31016899 PMCID: PMC6565579 DOI: 10.1002/mgg3.656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/22/2023] Open
Abstract
Background Craniosynostosis, or premature fusion of the skull sutures, is a group of disorders that can present in isolation (nonsyndromic) or be associated with other anomalies (syndromic). Delineation of syndromic craniosynostosis is confounded due to phenotypic overlap, variable expression as well as molecular heterogeneity. We report on an infant who presented at birth with multisuture synostosis, turribrachycephaly, midface hypoplasia, beaked nose, low set ears, a high palate and short squat appearing thumbs, and great toes without deviation. The additional MRI findings of choanal stenosis and a Chiari I malformation suggested a diagnosis of Pfeiffer syndrome. First tier molecular testing did not reveal a pathogenic variant. Methods Whole exome sequencing on DNA samples from the proband and her unaffected parents was utilized to delineate the variant causative for the Pfeiffer syndrome diagnosis. Results On whole exome sequencing, a de novo NM_000142.4:c.1428C>A missense variant causing a p.Ala391Glu amino acid change in FGFR3 has been identified. The p.Ala391Glu change has been predominantly identified in patients with Crouzon syndrome with acanthosis nigricans. Conclusions This finding illustrates the first reported case of a child with an overlap with Pfeiffer syndrome to have the p.Ala391Glu variant.
Collapse
Affiliation(s)
- Karen Rymer
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Anting Hsiung
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Arti Pandya
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Tim Bigdeli
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York
| | - Bradley T Webb
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jennifer Rhodes
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|