1
|
Chen X, Zhou L, Han Y, Lin S, Zhou L, Wang W, Zhang W, Xuan S, Yu J, Zheng W. miR-497-5p Expression and Biological Activity in Gastric Cancer. J Cancer 2024; 15:3995-4006. [PMID: 38911367 PMCID: PMC11190777 DOI: 10.7150/jca.90087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background: This research aims to investigate the expression and biological roles of miR-497-5p in gastric cancer (GC), and its possible mechanisms. Methods: Real Time Quantitative PCR (RT-qPCR) was performed to detect miR-497-5p in GC and normal tissues, as well as GC cell lines versus normal gastric mucosal cells (GES-1). The effects of miR-497-5p overexpression on proliferation were measured by the cell counting kit-8 (CCK8) assay and ethidium bromide (EdU) assay. Flow cytometry was used to assess the cell cycle. The migration and invasion were evaluated by scratch assay and Transwell assay, respectively. Gene targets of miR-497-5p were predicted using "multiMiR" R package combined with mirTarPathway database. And then luciferase reporter experiment was used to evaluate the activity of ERBB2 by miR-497-5p mimics in GC cell line. Besides, functional experiments were performed to verify the impact of miR-497-5p /ERBB2 on phenotypes of GC cells. Results: Compared with the normal tissues and mucosal cells, miR-497-5p was reduced in GC tissues and GC cell lines. miR-497-5p significantly decreased proliferation, migration, and invasion capacity, with an elevated apoptosis ratio of gastric cancer cells. Bioinformatics indicated that ERBB2 might be the potential target of miR-497-5p Dual-luciferase reporter experiments showed it adversely regulated ERBB2 3'UTR luciferase activity. The expression of ERBB2 in GC tissues and cells is significantly higher compared to normal tissues and cells. Over-expression of ERBB2 in gastric cancer cells significantly reduced miR-497-5p's inhibitory effect on the malignant behavior of GC cells. Conclusion: miR-497-5p was significantly down-regulated in GC tissues and cells, which inhibited the malignant features of GC cells by targeting ERBB2.
Collapse
Affiliation(s)
- Xin Chen
- Department of Medical Laboratory, Dongtai People's Hospital, Nantong University School of Medicine,Dongtai 224200, Jiangsu, P. R. China
| | - Linlin Zhou
- Department of Oncology, Dongtai People's Hospital, Nantong University School of Medicine, Dongtai 224200, Jiangsu, P. R. China
| | - Yaqin Han
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Suping Lin
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Li Zhou
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Wei Wang
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Wei Zhang
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Shihai Xuan
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Jianxiu Yu
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Wenjie Zheng
- Clinical Trial Center, Affiliated Hospital of Nantong University, Nantong 226001, P. R. China
| |
Collapse
|
2
|
Zhang Z, Zhou Y, Liang S. Correlation Between miR-497-5p Expression With Clinicopathological Characteristics and Prognosis in Patients With Breast Cancer. Appl Immunohistochem Mol Morphol 2024; 32:200-205. [PMID: 38497335 DOI: 10.1097/pai.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Breast cancer (BC) comprises multiple biological and histologic properties. MicroRNAs show key functions in cancer prognosis. This paper explored the relationship between miR-497-5p with clinicopathological characteristics and prognosis in BC. Cancer tissues and normal adjacent tissues (NATs) were collected from 140 included patients with BC. The clinical baseline data, including age, tumor size, pathologic grade, clinical stage, modified Scraff-Bloom-Richardson grade, and lymph node metastasis, were recorded. miR-497-5p expression in cancer tissues and NAT was determined by reverse transcription-quantitative polymerase chain reaction. Patients with BC were followed up for 5 years to record their survival. Patients were divided into the miR-497-5p low expression and high expression groups to assess the correlation between miR-497-5p expression with clinicopathological characteristics and overall survival of patients. The role of miR-497-5p as an independent risk factor for death was further analyzed by a multivariate Cox regression model. miR-497-5p was downregulated in BC tissues than NAT. Tumor size, clinical stage, and lymph node metastasis showed significant differences among patients with high and low miR-497-5p expression levels. Patients with BC with low miR-497-5p expression presented decreased survival. Lowly-expressed miR-497-5p was an independent risk factor for death in patients. Collectively, cancer tissue miR-497-5p low expression increases the risk of death and serves as an independent risk factor for death in patients with BC.
Collapse
Affiliation(s)
- Zhiying Zhang
- Department of Hematology and Blood and Marrow Transplantation
| | - Ying Zhou
- Department of Integrated Chinese and Western Medicine, Tianjin Cancer Hospital Airport Hospital, Tianjin
| | - Shujing Liang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Gao C, Zhu R, Shen J, Xu T, She Y, Chen Z. RBM12 regulates the progression of hepatocellular cancer via miR-497-5p/CPNE1 Axis. ENVIRONMENTAL RESEARCH 2023; 239:117203. [PMID: 37793588 DOI: 10.1016/j.envres.2023.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC), also called hepatocellular cancer, has emerged as a highly prevalent malignancy globally. By binding to specific RNA via one or more spherical RNA Domains (RBDs) or RNA Motifs (RBMs), RNA Binding Proteins (RBPs) can affect RNA modification, splicing, localization, translation, and stability. METHODS This paper builds on previous research by further investigating the impact of RBM12 on LC progression. In order to determine the effect of RBM12 expression on the prognosis of patients with hepatocellular cancer, we first investigated its expression in liver cancer cells (LCC) and tissues. The effect of RBM12 on the malignant biological behavior of LCC was subsequently detected using cytological experiments. To explore the upstream mechanism affecting RBM12, we predicted the miRNA targeting RBM12. According to the database, miR-497-5p was the best candidate gene. The double Luciferase reporter gene experiment was executed to validate the bounding of miR-497-5p with RBM12. RESULTS According to the cytological experiments, a high RBM12 expression promoted the propagation, migration, and invasion of LCC and impeded liver cancer cell apoptosis. By secreting TGF-β1, RBM12 could induce the EMT process. The miR-497-5p expression is suppressed in hepatocellular cancer. As shown by the CCK8, plate cloning, Transwell, EDU, and other experiments, miR-497-5p suppressed RBM12 expression and tumor growth. The double Luciferase reporter gene system was utilized to verify the combination of miR-497-5p and RBM12. The CPNE1 is a downstream gene regulated by RBM12. A high CPNE1 expression was exhibited in LCC and tissues. The CPNE1 is essential in the process where RBM12 promotes the incidence and progression of liver cancer. CONCLUSIONS By elucidating the exact molecular mechanism through which RBM12 promotes the initiation and progression of LC, thus, the current investigation provides some reference for the clinical management of LC.
Collapse
Affiliation(s)
- Cheng Gao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China; Medical College of Nantong University, Nantong, Jiangsu 226001, China
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jianbo Shen
- Medical College of Nantong University, Nantong, Jiangsu 226001, China; Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Tianxin Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China; Medical College of Nantong University, Nantong, Jiangsu 226001, China
| | - YongJun She
- Department of Anesthesiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
4
|
Li X, Zhao X, Li J, Zhang X. Circ_001422 aggravates osteosarcoma progression through targeting miR-497-5p/E2F3 axis. J Biochem Mol Toxicol 2023; 37:e23392. [PMID: 37287369 DOI: 10.1002/jbt.23392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Circular RNAs exert vital functions in the pathogenesis of osteosarcoma (OS). Circ_001422 has been confirmed to be involved in regulating OS progression, but its specific mechanism has not been clearly studied. This work aimed to analyze circ_001422's role in OS cell biological behaviors and the possible molecular mechanisms. This work carried out reverse transcription-quantitative polymerase chain reaction for detecting circ_001422, E2F3 and miR-497-5p levels, whereas Cell counting kit-8 together with Transwell assays for measuring cell growth, migration as well as invasion abilities. Relation of miR-497-5p with E2F3, as well as circ_001422 with miR-497-5p was analyzed through dual-luciferase reporter gene assay. Protein level was identified by western blot. According to our results, circ_001422 expression within OS tissue significantly increased compared with corresponding healthy samples. Inhibition of circ_001422 significantly decreased OS cell growth, invasion and migration. From mechanism research, miR-497-5p was proved as circ_001422's target, and E2F3 was miR-497-5p's target. Besides, miR-497-5p downregulation or E2F3 overexpression abolished circ_001422 inhibition-mediated inhibition on OS cell proliferation, invasion and migration. Collectively, this study has first suggested circ_001422's role in enhancing OS proliferation, migration as well as invasion via miR-497-5p/E2F3 axis. Our results will offer new ideas and new anti-OS targets.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaozhan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Wang H, Lan S, Wang L, Zhao J, Jia X, Xu J, Sun G, Liu L, Gong S, Wang N, Shan B, Zhang F, Zhang Z. Expression of circ-PHC3 enhances ovarian cancer progression via regulation of the miR-497-5p/SOX9 pathway. J Ovarian Res 2023; 16:142. [PMID: 37468993 DOI: 10.1186/s13048-023-01170-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/25/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Accumulating studies have reported indispensable functions of circular RNAs (circRNA) in tumor progression through regulation of gene expression. However, circRNA expression profiles and functions in human ovarian carcinoma (OC) are yet to be fully established. METHODS In this research, deep sequencing of circRNAs from OC samples and paired adjacent normal tissues was performed to establish expression profiles and circ-PHC3 levels between the groups further compared using RT-qPCR. The effects of ectopic overexpression of miR-497-5p and SOX9 and siRNA-mediated knockdown of circ-PHC3 and an miR-497-5p inhibitor were explored to clarify the regulatory mechanisms underlying circ-PHC3 activity in OC proliferation and metastasis. Information from public databases and the luciferase reporter assay were further utilized to examine the potential correlations among circ-PHC3, miR-497-5p and SOX9. RESULTS Our results showed significant upregulation of circ-PHC3 in both OC cell lines and tissues. In the luciferase reporter assay, downregulation of circ-PHC3 led to suppression of metastasis and proliferation, potentially through targeted effects on the miR-497-5p/SOX9 axis in OC. SOX9 overexpression or miR-497-5p suppression rescued OC cell proliferation and invasion following silencing of circ-PHC3. Moreover, SOX9 inhibition induced restoration of OC cell invasion and proliferation under conditions of overexpression of miR-497-5p. Thus, circ-PHC3 appears to exert effects on cancer stem cell differentiation through regulation of the miR-497-5p/SOX9 axis. CONCLUSION Taken together, our findings suggest that circ-PHC3 enhances OC progression through functioning as an miR-497-5p sponge to promote SOX9 expression, supporting its potential as a promising candidate target for OC therapy.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China
| | - Suwei Lan
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China
| | - Lingxiang Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China
| | - Jingyun Zhao
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinzhuan Jia
- Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Xu
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China
- Department of Gynecology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangyu Sun
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China
| | - Leilei Liu
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China
| | - Shan Gong
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China
| | - Na Wang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China
| | - Baoen Shan
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fenghua Zhang
- Department of Breast & Thyroid Surgery, Hebei General Hospital, No.348 Heping West Road, Shijiazhuang, 050051, Hebei, China.
| | - Zhengmao Zhang
- Department of Gynecology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050011, China.
| |
Collapse
|
6
|
Ding Q, Zhu W, Zhu S, Zhou X. Sanguinarine promotes apoptosis of hepatocellular carcinoma cells via regulating the miR-497-5p/CDK4 axis. Am J Transl Res 2022; 14:8539-8551. [PMID: 36628219 PMCID: PMC9827319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/14/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To determine the effect of sanguinarine on the biological behavior of hepatocellular carcinoma (HCC) cells via regulating the miR-497-5p/cyclin-dependent kinase 4 (CDK4) axis. METHODS Swiss Target Prediction was used for target prediction of sanguinarine. The targets were analyzed with KEGG enrichment analysis, and CDK4 was included in this study. Target prediction website, Diana tools enrichment analysis, and dual-luciferase reporter assay were adopted to identify the target miRNAs for CDK4. We measured expression levels of CDK4 and miR-497-5p in cancerous tissues, normal liver L02 cells, HepG2 HCC cells and sanguinarine-treated HepG2 cells. The expression of CDK4/miR-497-5p in HCC cells was intervened by treating HCC cells with sanguinarine. Cell proliferation, invasion and apoptosis were measured with CCK8, Transwell and flow cytometry, respectively. RESULTS CDK4 was shown to be a target for sanguinarine. Compared with L02 cells, CDK4 expression in HCC cells was significantly increased, but sanguinarine inhibited the CDK4 expression in HCC cells. The proliferation and invasion of HCC cells were inhibited, and the apoptosis was promoted by sanguinarine, but these effects were reversed by CDK4 overexpression (both P<0.05). miR-497-5p was confirmed to be a target miRNA for CDK4, and its expression was decreased in HCC cells but could be promoted by sanguinarine. The effect of miR-497-5p knockdown on HCC cells was partially reversed by si-CDK4. CONCLUSION Sanguinarine inhibits the proliferation and invasion of HCC cells, and induces the apoptosis of HCC cells by regulating the expression of miR-497-5p/CDK4.
Collapse
Affiliation(s)
- Quanhua Ding
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of SciencesNingbo 315000, Zhejiang, China,Ningbo Institute of Life and Health Industry, University of Chinese Academy of SciencesNingbo 315000, Zhejiang, China,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang ProvinceNingbo 315000, Zhejiang, China
| | - Weina Zhu
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of SciencesNingbo 315000, Zhejiang, China
| | - Shenghao Zhu
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of SciencesNingbo 315000, Zhejiang, China
| | - Xinfeng Zhou
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of SciencesNingbo 315000, Zhejiang, China,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang ProvinceNingbo 315000, Zhejiang, China,Department of Hepatobiliary Surgery, Hwa Mei Hospital, University of Chinese Academy of SciencesNingbo 315000, Zhejiang, China
| |
Collapse
|
7
|
Lu M, Gao Q, Wang Y, Ren J, Zhang T. LINC00511 promotes cervical cancer progression by regulating the miR-497-5p/MAPK1 axis. Apoptosis 2022; 27:800-811. [PMID: 36103025 PMCID: PMC9617969 DOI: 10.1007/s10495-022-01768-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) exhibits a crucial role in multiple human malignancies. The expression of lncRNA LINC00511, reportedly, is aberrantly up-regulated in several types of tumors. Our research was aimed at deciphering the role and mechanism of LINC00511 in the progression of cervical cancer (CC). METHOD Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to quantify the expression levels of LINC00511, miR-497-5p and MAPK1 mRNA in CC tissues and cell lines. Cell counting kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU) and Transwell assays were conducted for detecting the proliferation, migration and invasion of CC cells. Dual-luciferase reporter gene experiments were performed to verify the targeting relationships amongst LINC00511, miR-497-5p and MAPK1. Besides, MAPK1 expression in CC cells was detected via Western blot after LINC00511 and miR-497-5p were selectively regulated. RESULTS Up-regulation of LINC00511 expression in CC tissues and cell lines was observed, which was in association with tumor size, clinical stage and lymph node metastasis of the patients. LINC00511 overexpression facilitated the proliferation, migration and invasion of CC cells, while opposite effects were observed after knockdown of LINC00511. Mechanistically, LINC00511 was capable of targeting miR-497-5p and up-regulating MAPK1 expression. CONCLUSION LINC00511/miR-497-5p/MAPK1 axis regulates CC progression.
Collapse
Affiliation(s)
- Mingming Lu
- Department of Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Shaanxi, China
| | - Qing Gao
- Department of Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Shaanxi, China
| | - Yafei Wang
- Department of Obstetrics and Gynecology, Medical Colleage, Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Jie Ren
- Department of Obstetrics and Gynecology, Medical Colleage, Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Tingting Zhang
- Department of Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Shaanxi, China.
- Department of Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, China.
| |
Collapse
|
8
|
Ye R, Lu X, Liu J, Duan Q, Xiao J, Duan X, Yue Z, Liu F. CircSOD2 Contributes to Tumor Progression, Immune Evasion and Anti-PD-1 Resistance in Hepatocellular Carcinoma by Targeting miR-497-5p/ANXA11 Axis. Biochem Genet 2022; 61:597-614. [PMID: 36008700 DOI: 10.1007/s10528-022-10273-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Circular RNAs (circRNAs) can function as functional molecules in hepatocellular carcinoma (HCC). Herein, circRNA superoxide dismutase 2 (circSOD2) was researched in HCC progression and immune system. The real-time polymerase chain reaction (qRT-PCR) was used for quantification of circSOD2, microRNA-497-5p (miR-497-5p) and Annexin A11 (ANXA11). Cell assays were performed by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) and colony formation assays for proliferation, flow cytometry for apoptosis and cell cycle, wound healing assay for migration and transwell assay for migration/invasion. ANXA11 and metastatic protein levels were measured by western blot. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to analyze target binding. CD8+ T cell immunity was assessed by Immunohistochemistry (IHC) assay, and the effect of circSOD2 on programmed cell death 1 (PD-1) immune checkpoint inhibitors (anti-PD-1) therapy was evaluated by mice xenograft assay. CircSOD2 was upregulated in HCC tissues and cells. Knockdown of circSOD2 resulted in HCC cell growth inhibition, apoptosis promotion, cell cycle arrest and metastasis suppression. Mechanically, circSOD2 promoted HCC development by acting as a miR-497-5p sponge and miR-497-5p played a tumor-inhibitory role in HCC cells by targeting ANXA11. Moreover, circSOD2 induced upregulation of ANXA11 expression by interacting with miR-497-5p. Also, the promoting effects of circSOD2 on immune evasion and anti-PD-1 resistance were related to miR-497-5p/ANXA11 axis. This study elucidated the pivotal function of circSOD2 in HCC progression and immunosuppression by mediating miR-497-6p/ANXA11 axis. CircSOD2/miR-497-5p/ANXA11 axis was a novel view of circRNA research in HCC.
Collapse
Affiliation(s)
- Rong Ye
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Xingyu Lu
- Outpatient department, Ganzhou City Third People's Hospital, Ganzhou, 341001, China
| | - Jianping Liu
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Qing Duan
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Junqi Xiao
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Xunhong Duan
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Zhibiao Yue
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China.
| | - Fengen Liu
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China.
| |
Collapse
|
9
|
Circular RNA MELK Promotes Chondrocyte Apoptosis and Inhibits Autophagy in Osteoarthritis by Regulating MYD88/NF-κB Signaling Axis through MicroRNA-497-5p. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7614497. [PMID: 35992546 PMCID: PMC9356867 DOI: 10.1155/2022/7614497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a rheumatic disease and its pathogenesis involves the dysregulation of noncoding RNAs. Therefore, the regulatory mechanism of circular RNA MELK (circMELK) was specified in this work. OA human cartilage tissue was collected, and circMELK, miR-497-5p, and myeloid differentiation factor 88 (MYD88) expression were examined. Human chondrocytes were stimulated with interleukin- (IL-) 1β and interfered with vectors altering circMELK, miR-497-5p, and MyD88 expression to observe their effects on cell viability, cell cycle and apoptosis, autophagy, and inflammation. The binding relationship between RNAs was verified. The data presented that OA cartilage tissues presented raised circMELK and MYD88 and inhibited miR-497-5p expression. IL-1β suppressed cell viability, prevented cell cycle, and induced apoptosis, autophagy, and inflammation of chondrocytes. Functionally, IL-1β-induced changes of chondrocytes could be attenuated by suppressing circMELK or overexpressing miR-497-5p. circMELK acted as a sponge of miR-497-5p while miR-497-5p was a regulator of MYD88. MYD88 restricted the effect of overexpressing miR-497-5p on IL-1β-stimulated chondrocytes. MYD88 triggered nuclear factor-kappaB (NF-κB) pathway activation. Shortly, CircMELK promotes chondrocyte apoptosis and inhibits autophagy in OA by regulating MYD88/NF-κB signaling axis through miR-497-5p. Our study proposes a new molecular mechanism for the development of OA.
Collapse
|
10
|
Huang L, Guan S, Feng L, Wei J, Wu L. Integrated analysis identified NPNT as a potential key regulator in tumor metastasis of hepatocellular carcinoma. Gene 2022; 825:146436. [PMID: 35304239 DOI: 10.1016/j.gene.2022.146436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the lethal malignancies worldwide. Tumor metastasis is the main cause of HCC related death. Although progress has been made in the mechanism study of HCC in the past decades, the underlying mechanism of HCC metastasis has not been fully illustrated. In the present study, bioinformatic analysis including weighted gene co-expression network analysis (WGCNA), differentially expressed gene analysis, and gene enrichment analysis were applied to discover genes correlated with HCC metastasis. Immunohistochemistry (IHC) assays were applied to detect the expression of NPNT in HCC samples. Cell transfection, wound healing, matrigel transwell assays, and western blot assays were utilized to evaluate the effects of NPNT on cell migration and invasion and signaling pathway variation. We found that NPNT was up-regulated in HCC tumor tissues compared with normal tissues. Especially, NPNT was highly expressed in metastatic tumor compared with non-metastatic HCC tumors. Down-regulation of NPNT via siRNA transfection inhibited cell migration, invasion, and FAK/PI3K/AKT signaling pathway in HCC. Our results demonstrate that NPNT is a potential key regulator in HCC metastasis.
Collapse
Affiliation(s)
- Lingkun Huang
- Medical College, Guangxi University, Nanning 530004, China
| | - Shuzhen Guan
- Medical College, Guangxi University, Nanning 530004, China
| | - Lin Feng
- Department of Pathology, the first Medical Center of PLA General Hospital, Beijing, China
| | - Jinrui Wei
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Zhang H, Wang R, Tang X, Li J, Li J, Wang M. FASN Targeted by miR-497-5p Regulates Cell Behaviors in Cervical Cancer. Nutr Cancer 2022; 74:3026-3034. [PMID: 35156481 DOI: 10.1080/01635581.2022.2036351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Haiyan Zhang
- Department of Obstetrics and Gynecology, Tangshan Gongren Hospital, Tangshan, China
| | - Runmei Wang
- Department of Obstetrics and Gynecology, Linyi County People’s Hospital, Dezhou, China
| | - Xuerui Tang
- Department of Internal Medicine, Tangshan Gongren Hospital, Tangshan, China
| | - Jun Li
- Department of Obstetrics and Gynecology, Tangshan central Hospital, Tangshan, China
| | - Jie Li
- Department of Obstetrics and Gynecology, Tangshan Gongren Hospital, Tangshan, China
| | - Mingxin Wang
- The First Department of Oncology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
12
|
Hu J, Xiang X, Guan W, Lou W, He J, Chen J, Fu Y, Lou G. MiR-497-5p down-regulates CDCA4 to restrains lung squamous cell carcinoma progression. J Cardiothorac Surg 2021; 16:330. [PMID: 34772428 PMCID: PMC8588708 DOI: 10.1186/s13019-021-01698-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND So far, few have concerned miR-497-5p in lung squamous cell carcinoma (LUSC). METHODS MiR-497-5p expression in LUSC was measured by qRT-PCR. Its impacts on tumor-related cell behaviors were investigated by CCK8 assay, scratch healing assay, flow cytometry and Transwell invasion methods. In addition, interaction between miR-497-5p and CDCA4 in LUSC was also elucidated through rescue experiment, western blot, dual-luciferase, and bioinformatics analysis. RESULTS Low level of miR-497-5p was confirmed in LUSC tissue and cells. Overexpressed miR-497-5p markedly inhibited cancer progression. miR-497-5p restrained CDCA4 expression. Rescue assay showed that overexpressing miR-497-5p eliminated effect of overexpressed CDCA4. CONCLUSION By targeting CDCA4, miR-497-5p restrained development of LUSC.
Collapse
Affiliation(s)
- Jiangwei Hu
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Xinqin Xiang
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Wei Guan
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Weihua Lou
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Junming He
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Jian Chen
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Yin Fu
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Guoliang Lou
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China.
| |
Collapse
|
13
|
Sun D, Zhao T, Long K, Wu M, Zhang Z. Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells. Eur J Pharmacol 2021; 907:174261. [PMID: 34144025 DOI: 10.1016/j.ejphar.2021.174261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Triclosan is a promising candidate of fatty acid synthase (FASN) inhibitor by blocking FASN activity, but its effect on FASN expression and the underling epigenetic mechanism remain elusive. In this study, the effect of triclosan on FASN mRNA and protein expressions in human HepG2 cells and the regulatory role of microRNAs (miRNAs) in the downregulation of FASN induced by triclosan were explored through experiments and bioinformatics analysis. The results showed that triclosan not only directly inhibited FASN activity, but also significantly decreased FASN mRNA and protein levels in human liver HepG2 cells. Nine miRNAs targeting FASN mRNA degradation were identified by miRNA prediction tools, and the expression levels of these nine miRNAs were then detected by real-time quantitative PCR. Triclosan significantly increased the expressions of the six miRNAs, namely miR-15a, miR-107, miR-195, miR-424, miR-497 and miR-503, leading to the downregulation of FASN. Further investigation revealed that the six triclosan-upregulated miRNAs played an important regulatory role in lipid metabolism and cell cycle by gene ontology annotations and pathway analysis. Consistent with the results of bioinformatics analyses, triclosan significantly reduced the intracellular lipid content by triglyceride assay, oil red O, BODIPY 493/503 and Nile Red staining, thereby inhibiting the growth of HepG2 cells through apoptosis. Taken together, our study reveals that triclosan downregulates FASN expression through a variety of miRNAs, providing new insight for triclosan as a FASN inhibitor candidate to regulate lipid metabolism in human hepatoma cells.
Collapse
Affiliation(s)
- Donglei Sun
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Keyan Long
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Mei Wu
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
14
|
Zhou QY, Yang HM, Liu JX, Xu N, Li J, Shen LP, Zhang YZ, Koda S, Zhang BB, Yu Q, Chen JX, Zheng KY, Yan C. MicroRNA-497 induced by Clonorchis sinensis enhances the TGF-β/Smad signaling pathway to promote hepatic fibrosis by targeting Smad7. Parasit Vectors 2021; 14:472. [PMID: 34521449 PMCID: PMC8442346 DOI: 10.1186/s13071-021-04972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background Various stimuli, including Clonorchis sinensis infection, can cause liver fibrosis. Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs) with massive production of extracellular matrix (ECM). Our previous study showed that the TGF-β1-induced Smad signaling pathway played a critical role in the activation of HSCs during liver fibrosis induced by worm infection; however, the mechanisms that modulate the TGF-β/Smad signaling pathway are still poorly understood. Accumulating evidence demonstrates that miRNAs act as an important regulator of activation of HSCs during liver fibrosis. Methods The target of miR-497 was determined by bioinformatics analysis combined with a dual-luciferase activity assay. LX-2 cells were transfected with miR-497 inhibitor and then stimulated with TGF-β1 or excretory/secretory products of C. sinensis (CsESPs), and activation of LX-2 was assessed using qPCR or western blot. In vivo, the mice treated with CCl4 were intravenously injected with a single dose of adeno-associated virus serotype 8 (AAV8) that overexpressed anti-miR-497 sequences or their scramble control for 6 weeks. Liver fibrosis and damage were assessed by hematoxylin and eosin (H&E) staining, Masson staining, and qPCR; the activation of the TGF-β/Smad signaling pathway was detected by qPCR or western blot. Results In the present study, the expression of miR-497 was increased in HSCs activated by TGF-β1 or ESPs of C. sinensis. We identified that Smad7 was the target of miR-497 using combined bioinformatics analysis with luciferase activity assays. Transfection of anti-miR-497 into HSCs upregulated the expression of Smad7, leading to a decrease in the level of p-Smad2/3 and subsequent suppression of the activation of HSCs induced by TGF-β1 or CsESPs. Furthermore, miR-497 inhibitor delivered by highly-hepatotropic (rAAV8) inhibited TGF-β/smads signaling pathway by targeting at Smad7 to ameliorate CCL4-induced liver fibrosis. Conclusions The present study demonstrates that miR-497 promotes liver fibrogenesis by targeting Smad7 to promote TGF-β/Smad signaling pathway transduction both in vivo and in vitro, which provides a promising therapeutic strategy using anti-miR-497 against liver fibrosis. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Qian-Yang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China.,Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hui-Min Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Ji-Xin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Na Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Jing Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Li-Ping Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Yu-Zhao Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Center of Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, People's Republic of China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China. .,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Key Laboratory of Infection and Immunity, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, People's Republic of China. .,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
The Expression of Circulating miR-497 and Metadherin in Hepatocellular Carcinoma: Relation to the Tumor Characteristics and Patients' Survival. ACTA ACUST UNITED AC 2021; 57:medicina57090866. [PMID: 34577789 PMCID: PMC8468780 DOI: 10.3390/medicina57090866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/27/2023]
Abstract
Objectives: This study aimed to evaluate the prognostic significance and relationship of miR-497 and metadherin to hepatocellular carcinoma (HCC) tumor characteristics and patients’ survival. Methods: This study enrolled 120 (60 HCC patients and 60 healthy) subjects. Serum miR-497 and metadherin mRNA relative expression were analyzed by real-time quantitative reverse transcription polymerase chain reaction. The overall survival (OS) of HCC patients was assessed using the Kaplan–Meier curve and log-rank test. Results: Serum miR-497 showed statistically significant downregulation in HCC patients compared to controls (p < 0.001). Serum metadherin mRNA relative expression was significantly upregulated in HCC patients compared to controls (p < 0.001). Both serum miR-497 and metadherin mRNA expression were significantly associated with the number of tumor foci (p = 0.028 and 0.001, respectively), tumor size (p = 0.022 and <0.001, respectively), nodal metastasis (p = 0.003 and 0.003, respectively), distant metastasis (p = 0.003 and 0.003, respectively), vascular invasion (p = 0.040 and <0.001, respectively), and BCLC staging (p = 0.043 and 0.004, respectively). The overall survival was lower in patients with low miR-497 expression (p = 0.046) and in patients with high metadherin expression (p < 0.001). Conclusions: The expression levels of miR-497 showed downregulation in HCC patients, but metadherin expression showed upregulation. Both markers were inversely related and closely correlated with tumor characteristics and patients’ survival.
Collapse
|
16
|
Ma Q, Dai X, Lu W, Qu X, Liu N, Zhu C. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis. Biochem Biophys Res Commun 2021; 556:72-78. [PMID: 33839417 DOI: 10.1016/j.bbrc.2021.03.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Even though long non-coding RNA (lncRNA) MEG8 plays vital roles in carcinogenesis of malignances, its roles and mechanisms in hemangioma remain unknown. Therefore, we evaluate the oncogenic roles of MEG8 in hemangioma. Small interfering RNA (siRNA)-mediated depletion of MEG8 inhibited the proliferation and increased MDA level in human hemangioma endothelial cells (HemECs). The inhibitors of ferroptosis (ferrostatin-1 and liproxstatin-1) abolished the MEG8 silence induced cell viability loss. Knockdown of MEG8 increased the miR-497-5p expression and reduced the mRNA and protein levels of NOTCH2. Using a dual-luciferase assay, we confirmed the binding between MEG8 and miR-497-5p, and between the miR-497-5p and 3'UTR of NOTCH2. We further found that silencing MEG8 significantly decreased the expressions of SLC7A11 and GPX4 both in mRNA and protein level and had no effect on the level of AIFM2. Importantly, blocking miR-497-5p abrogated the effects of MEG8 loss on cell viability, MDA level and expression levels of NOTCH2, SLC7A11 and GPX4 in HemECs. Taken together, our results suggested that knockdown of long non-coding RNA MEG8 inhibited the proliferation and induced the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis.
Collapse
Affiliation(s)
- Qingjie Ma
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Xiaolin Dai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weiwei Lu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaowen Qu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Na Liu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Chongtao Zhu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
17
|
Li Y, Hua K, Jin J, Fang L. miR-497 inhibits proliferation and invasion in triple-negative breast cancer cells via YAP1. Oncol Lett 2021; 22:580. [PMID: 34122631 PMCID: PMC8190776 DOI: 10.3892/ol.2021.12841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR)-497 has been reported as a tumor suppressor in various cancer types. Nonetheless, the regulation of triple-negative breast cancer (TNBC) by miR-497 remains poorly understood. The present study aimed to investigate the potential function and mechanism of miR-497 in TNBC. A total of 36 TNBC and matched non-cancerous tissue samples were collected for analysis. Reverse transcription-quantitative PCR was performed to detect the miR-497 levels in TNBC tissue. The association between miR-497 expression, clinical characteristics and survival was then analyzed. To investigate the role of miR-497 in TNBC, MTT, colony formation, Transwell invasion, cell cycle and cell apoptosis assays were conducted following transfection of miR-497 mimics into the MDA-MB-231 and MDA-MB-468 cell lines. Luciferase reporter assays and western blot analysis were used to confirm the regulation of a putative target of miR-497. The results indicated that the expression of miR-497 was downregulated in the TNBC specimens. Further analysis demonstrated that the expression of miR-497 was downregulated in patients with advanced TNBC stages and that low miR-497 was associated with poor prognosis in patients with TNBC. Transfection of miR-497 mimics inhibited TNBC cell proliferation and increased cell apoptosis in MDA-MB-231 and MDA-MB-468 cells. Moreover, cell migration was inhibited following overexpression of miR-497, which also led to the arrest of the breast cancer cells in the G0/G1 phase of the cell cycle. Yes-associated protein 1 (YAP1), a critical molecule in the Hippo pathway, was identified as a target of miR-497. Notably, the protein and mRNA expression levels of YAP1 in MDA-MB-231 and MDA-MB-468 cells were downregulated following overexpression of miR-497. Overall, the findings of the present study indicated that miR-497 inhibited TNBC cell proliferation and migration and induced cell apoptosis by negatively regulating YAP1 expression. Thus, targeting miR-497 may represent a potential strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Breast and Thyroid Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213164, P.R. China
| | - Kaiyao Hua
- School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Jiali Jin
- Department of Neurology, Kongjiang Hospital of Yangpu District, Shanghai 200093, P.R. China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai No. 10 People's Hospital, Clinical College of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
18
|
Cao Z, Wang H, Zhu X. The Role of Serum miR-497 on the Predictive Index of Early Diagnosis and Poor Prognosis of Atherosclerosis Cerebral Infarction. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:927-937. [PMID: 34183951 PMCID: PMC8223575 DOI: 10.18502/ijph.v50i5.6110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Serum miR-497 can be used as a predictive index of the early diagnosis and poor prognosis of atherosclerosis cerebral infarction (ATCI). Methods: Overall, 135 ATCI patients, treated in The Second Affiliated Hospital of Nantong University, Nantong 226001, P.R.China from Apr 2012 to Jan 2015, were included in ATCI group. Whereas, 77 patients with non-atherosclerosis cerebral infarction were put in the control group. RT-qPCR was performed for detecting serum miR-497 expression, whose relationship with the patients’ clinicopathological parameters was analyzed. Receiver operating characteristic (ROC) curves were plotted to evaluate values of serum miR-497 for diagnosing ATCI patients and their 3-year and 5-year overall survival rates (OSRs). Cox regression analysis was conducted on prognostic factors of ATCI patients. Results: miR-497 remarkably rose in the serum of ATCI patients, and was correlated with histories of hypertension, smoking and diabetes mellitus (DM). Its areas under curves (AUCs) for diagnosing these pathological parameters were 0.803, 0.817 and 0.819, respectively. Its expression was higher in the serum of the patients with recurrence and poor prognoses. Its AUCs for predicting the two conditions were 0.924 and 0.937, respectively. The 3- and 5-year OSRs of patients with low expression were remarkably higher than those of patients with high expression. Conclusion: miR-497 and histories of hypertension, smoking and DM were independent prognostic factors affecting the 3-year OSR of ATCI patients. miR-497 expression rises in ATCI patients, so this miR is expected to become a serum diagnostic marker for ATCI.
Collapse
Affiliation(s)
- Zhiyong Cao
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong 226001, P.R.China
| | - Han Wang
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong 226001, P.R.China
| | - Xiangyang Zhu
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong 226001, P.R.China
| |
Collapse
|
19
|
Ceylan H. Identification of hub genes associated with obesity-induced hepatocellular carcinoma risk based on integrated bioinformatics analysis. Med Oncol 2021; 38:63. [PMID: 33900477 DOI: 10.1007/s12032-021-01510-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Obesity, which has become one of the biggest public health problems of the twenty-first century, accompanies many chronic conditions, including cancer. On the other hand, liver cancer, which is known to be associated with obesity, is considered another serious threat to public health. However, the underlying drivers of the development of obesity-associated hepatocellular carcinoma (HCC) remain blurry. The current study attempted to identify the key genes and pathways in the obesity-induced development of HCC using integrated bioinformatics analyses. Obesity and HCC-associated gene expression datasets were downloaded from Gene Expression Omnibus (GEO) and analyzed to identify overlapping differentially expressed genes (DEGs) and hub genes. The prognostic potentials, survival analysis, and expression levels of hub genes were further assessed. Moreover, the correlation between hub genes and the immune cells infiltration was analyzed. The findings of this research revealed that both mRNA and protein expression levels of the four hub genes (IGF1, ACADL, CYP2C9, and G6PD) involved in many important metabolic pathways are remarkably altered in both obese individuals and patients with HCC. The results demonstrated that these dysregulated genes in both obesity and HCC may serve as considerable targets for the prevention and treatment of HCC development in obese individuals.
Collapse
Affiliation(s)
- Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25400, Erzurum, Turkey.
| |
Collapse
|
20
|
Downregulation of miR-497-5p Improves Sepsis-Induced Acute Lung Injury by Targeting IL2RB. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6624702. [PMID: 33954185 PMCID: PMC8057895 DOI: 10.1155/2021/6624702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 03/13/2021] [Indexed: 01/04/2023]
Abstract
Introduction Acute lung injury (ALI) induced by sepsis is a process related to inflammatory reactions, which involves lung cell apoptosis and production of inflammatory cytokine. Here, lipopolysaccharide (LPS) was applied to stimulate the mouse or human normal lung epithelial cell line (BEAS-2B) to construct a sepsis model in vivo and in vitro, and we also investigated the effect of miR-497-5p on sepsis-induced ALI. Material and Methods. Before LPS treatment, miR-497-5p antagomir was injected intravenously into mice to inhibit miR-497-5p expression in vivo. Similarly, miR-497-5p was knocked down in BEAS-2B cells. Luciferase reporter assay was applied to predict and confirm the miR-497-5p target gene. Cell viability, apoptosis, the levels of miR-497-5p, IL2RB, SP1, inflammatory cytokine, and lung injury were assessed. Results In BEAS-2B cells, a significant increase of apoptosis and inflammatory cytokine was shown after LPS stimulation. In septic mice, increased inflammatory cytokine production and apoptosis in lung cells and pulmonary morphological abnormalities were shown. The miR-497-5p inhibitor transfection showed antiapoptotic and anti-inflammatory effects on BEAS-2B cells upon LPS stimulation. In septic mice, the miR-497-5p antagomir injection also alleviated ALI, apoptosis, and inflammation caused by sepsis. The downregulation of IL2RB in BEAS-2B cells reversed the protective effects of the miR-497-5p inhibitor against ALI. Conclusion In conclusion, downregulation of miR-497-5p reduced ALI caused by sepsis through targeting IL2RB, indicating the potential effect of miR-497-5p for improving ALI caused by sepsis.
Collapse
|
21
|
MicroRNA-497-5p Is Downregulated in Hepatocellular Carcinoma and Associated with Tumorigenesis and Poor Prognosis in Patients. Int J Genomics 2021; 2021:6670390. [PMID: 33816607 PMCID: PMC7987441 DOI: 10.1155/2021/6670390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) have been demonstrated to exhibit important regulatory roles in multiple malignancies, including hepatocellular carcinoma (HCC). hsa-miR-497-5p was reported to involve in cancer progression and poor prognosis in many kinds of tumors. However, the expression and its clinical significance of hsa-miR-497-5p in HCC remain unclear. Methods In the present study, we investigated the expression of hsa-miR-497-5p in HCC and analyzed the correction of clinical features with prognosis. The expression levels of hsa-miR-497-5p and potential target genes were analyzed in HCC and adjacent noncancerous tissues using The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) datasets. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze hsa-miR-497-5p levels in 328 HCC tissues and 30 paired adjacent noncancer tissues. Overall survival (OS) and progression-free survival (PFS) of patients with HCC were assessed using the Kaplan-Meier method and the log-rank test. Results The hsa-miR-497-5p expression levels were decreased, and its target genes ACTG1, CSNK1D, PPP1CC, and BIRC5 were upregulated in HCC tissues compared with normal tissues. Lower levels of hsa-miR-497-5p expression and higher levels of the four target genes were significantly associated with higher tumor diameter. Moreover, patients with lower hsa-miR-497-5p expression and higher target genes levels had shorter OS. Conclusion The expression levels of hsa-miR-497-5p may play an important regulatory role in HCC and are closely correlated with HCC progression and poor prognosis in patients. The hsa-miR-497-5p may be a specific therapeutic target for the treatment of HCC.
Collapse
|
22
|
Liu WW, Li WD, Zhang YJ, Zhang ML. Regulatory Effect of miR497-5p- CCNE1 Axis in Triple-Negative Breast Cancer Cells and Its Predictive Value for Early Diagnosis. Cancer Manag Res 2021; 13:439-447. [PMID: 33500658 PMCID: PMC7823138 DOI: 10.2147/cmar.s284277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To explore the regulatory role of miR497-5p-CCNE1 axis in triple-negative breast cancer (TNBC) cells and its predictive value for early diagnosis. METHODS Cancer tissue and adjacent tissue samples were collected from 86 patients with TNBC.RT-PCR was used to detect the expression of miR497-5p and CCNE1 (target gene) mRNA, determined by biological prediction in tissue and TNBC cells. ROC was used to analyze the diagnostic value of miR497-5p in TNBC. MTT, invasion, and flow cytometry were used to detect the proliferation, invasion, cycle, apoptosis rate, and expression of related proteins of TNBC cells with overexpression of miR497-5p or knockdown of CCNE1. RESULTS RT-qPCR results showed that miR497-5p levels were significantly downregulated in TNBC tissue and cells, while CCNE1 expression was significantly upregulated, and miR497-5p expression was negatively correlated with that of CCNE1 (P<0.001). ROC analysis showed that the AUC of miR497-5p for TNBC was >0.9, which had better diagnostic value. The cell tests revealed that miR497-5p played a role in tumor inhibition, including inhibiting proliferation and invasion of TNBC cells, blocking the cell cycle, and promoting apoptosis. Bioinformatic prediction and subsequent experiments revealed that CCNE1 was the direct target of miR497-5p. Furthermore, after knocking down the expression of CCNE1 in TNBC cells, the proliferation and invasion of TNBC cells were significantly inhibited, the cell cycle blocked, and the apoptosis rate significantly increased (P<0.001), and expression of the proapoptosis-related proteins Bax and caspase 3 (cleaved) were upregulated, while expression of the antiapoptosis-related protein BCL2 was downregulated (P<0.001). CONCLUSION miR497-5p inhibited the proliferation and invasion of TNBC cells by targeting CCNE1, blocked the cell cycle and promoted the apoptosis of TNBC cells, and had better diagnostic value for TNBC. miR497-5p can be used as a new potential target for the treatment of TNBC.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Breast Center, Cangzhou People’s Hospital, Cangzhou061000, Hebei Province, People’s Republic of China
| | - Wei-Dong Li
- Breast Center, Cangzhou People’s Hospital, Cangzhou061000, Hebei Province, People’s Republic of China
| | - Yan-Ju Zhang
- Breast Center, Cangzhou People’s Hospital, Cangzhou061000, Hebei Province, People’s Republic of China
| | - Man-Li Zhang
- Breast Center, Cangzhou People’s Hospital, Cangzhou061000, Hebei Province, People’s Republic of China
| |
Collapse
|
23
|
DLG1-AS1 is activated by MYC and drives the proliferation and migration of hepatocellular carcinoma cells through miR-497-5p/SSRP1 axis. Cancer Cell Int 2021; 21:16. [PMID: 33407499 PMCID: PMC7789637 DOI: 10.1186/s12935-020-01667-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to be biological regulators in hepatocellular carcinoma (HCC). DLG1 antisense RNA 1 (DLG1-AS1) has been found to be up-regulated in cervical cancer. However, its function and underlying mechanism in HCC remains unknown. Methods DLG1-AS1 expression was assessed in HCC cells and normal cell by RT-qPCR. Luciferase reporter assay, RNA pull down assay and RIP assay were used to demonstrate the interaction between DLG1-AS1 and miR-497-5p. Results DLG1-AS1 was highly expressed in HCC cells. Silencing of DLG1-AS1 led to the inhibition of HCC cell growth and migration. Besides, MYC induced the transcriptional activation of DLG1-AS1. MYC could facilitate HCC cellular processes by up-regulating DLG1-AS1. MiR-497-5p could interact with DLG1-AS1 in HCC cells. Down-regulation of miR-497-5p could reverse the impacts of DLG1-AS1 silencing on HCC cells. SSRP1 expression could be positively regulated by DLG1-AS1 but was negatively regulated by miR-497-5p. Knockdown of DLG1-AS1 suppressed tumor growth in nude mice. Conclusions DLG1-AS1 is activated by MYC and functions as an oncogene in HCC via miR-497-5p/SSRP1 axis. ![]()
Collapse
|
24
|
Hou Z, Wang Y, Xia N, Lv T, Yuan X, Song Y. Pseudogene KRT17P3 drives cisplatin resistance of human NSCLC cells by modulating miR-497-5p/mTOR. Cancer Sci 2020; 112:275-286. [PMID: 33179318 PMCID: PMC7780050 DOI: 10.1111/cas.14733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance is a major obstacle in non–small cell lung cancer (NSCLC) treatment. The pseudogene keratin 17 pseudogene 3 (KRT17P3) has been previously shown to be upregulated in lung cancer tissues of patients with cisplatin resistance. In the present study, RT‐qPCR was performed to evaluate KRT17P3 levels in plasma samples collected from 30 cisplatin‐resistant and 32 cisplatin‐sensitive patients. We found that the plasma level of KRT17P3 is upregulated in cisplatin‐resistant patients, and the increased expression of plasma KRT17P3 is associated with poor chemotherapy response. Functional studies demonstrated that KRT17P3 overexpression in cultured NSCLC cells increases cell viability and decreases apoptosis upon cisplatin treatment in vitro and in vivo, while KRT17P3 knockdown has the opposite effect. Mechanistically, bioinformatics analysis, RNA immunoprecipitation, and dual luciferase reporter assay indicated that KRT17P3 acts as a molecular sponge for miR‐497‐5p and relieves the binding of miR‐497‐5p to its target gene mTOR. Rescue experiments validated the functional interaction between KRT17P3, miR‐497‐5p, and mTOR. Taken together, our findings indicate that KRT17P3/miR‐497‐5p/mTOR regulates the chemosensitivity of NSCLC, suggesting a potential therapeutic target for cisplatin‐resistant NSCLC patients. KRT17P3 may be a potential peripheral blood marker of NSCLC patients resistant to cisplatin.
Collapse
Affiliation(s)
- Zhibo Hou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China.,Department of Respiratory Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Ning Xia
- Department of Respiratory Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Xiaoqin Yuan
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China
| |
Collapse
|
25
|
Tang J, Zhu H, Lin J, Wang H. Knockdown of Circ_0081143 Mitigates Hypoxia-Induced Migration, Invasion, and EMT in Gastric Cancer Cells Through the miR-497-5p/EGFR Axis. Cancer Biother Radiopharm 2020; 36:333-346. [PMID: 32678674 DOI: 10.1089/cbr.2019.3512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jianjun Tang
- Department of General Surgery, Xiangyang No. 1 People's Hospital (Affiliated Hospital of Hubei University of Medicine), Xiangyang, China
| | - Hongyan Zhu
- Department of Oncology, Xiangyang No. 1 People's Hospital (Affiliated Hospital of Hubei University of Medicine), Xiangyang, China
| | - Jingjing Lin
- Department of Blood Transfusion, Xiangyang Traditional Chinese Medicine Hospital, Xiangyang, China
| | - Hongbo Wang
- Department of General Surgery, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, China
| |
Collapse
|
26
|
Chang H, Li J, Qu K, Wan Y, Liu S, Zheng W, Zhang Z, Liu C. CRIF1 overexpression facilitates tumor growth and metastasis through inducing ROS/NFκB pathway in hepatocellular carcinoma. Cell Death Dis 2020; 11:332. [PMID: 32382077 PMCID: PMC7205899 DOI: 10.1038/s41419-020-2528-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
CR6-interacting factor 1 (Crif1) is a mitochondrial protein which is required for the assembly of oxidative phosphorylation (OXPHOS) complexes. Our bioinformatics analysis based on Cancer Genome Atlas (TCGA) database revealed an aberrant overexpression of CRIF1 in hepatocellular carcinoma (HCC). However, the clinical significance and biological functions of CRIF1 are still unclear in this malignancy. Here, we report that CRIF1 is frequently overexpressed in HCC cells mainly due to the downregulation of miR-497-5p, which is associated with poor prognosis of patients with HCC. CRIF1-promoted HCC growth and metastasis by suppressing cell apoptosis and inducing cell cycle progression and epithelial to mesenchymal transition (EMT). Mechanistically, increased mitochondrial ROS production and consequently activation of the NFκB signaling pathway was found to be involved in the promotion of growth and metastasis by CRIF1 in HCC cells. In summary, CRIF1 plays an oncogenic role in HCC progression through activating ROS/NFKB pathway, implying CRIF1 as a potential prognostic factor and therapeutic target in HCC.
Collapse
Affiliation(s)
- Hulin Chang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Juntang Li
- Centre of Inflammation and Cancer Research, Anal-Colorectal Surgery Institute of PLA, Luoyang, 471031, Henan, China.,Department of Pathology, 150th Central Hospital of PLA, Luoyang, 471031, Henan, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yong Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Sinan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Zheng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Zhiyong Zhang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
27
|
Duan Y, Zhao M, Jiang M, Li Z, Ni C. LINC02476 Promotes the Malignant Phenotype of Hepatocellular Carcinoma by Sponging miR-497 and Increasing HMGA2 Expression. Onco Targets Ther 2020; 13:2701-2710. [PMID: 32280244 PMCID: PMC7132004 DOI: 10.2147/ott.s237069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/08/2020] [Indexed: 01/17/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) can promote hepatocellular carcinoma (HCC) initiation and progression. In this report, we examined the role of lncRNA LINC02476 in HCC. Methods The expression levels of different lncRNAs in HCC were explored using the TCGA database and lncRNA LINC02476 was selected for further study. The expression of LINC02476 in HCC tissues was determined by real-time PCR. The clinicopathological characteristics of HCC patients were analyzed relative to the expression of LINC02476. The expression of LINC02476 was downregulated in HCC cells using a lentiviral vector and different assays were performed to study cell growth, proliferation, invasion, apoptosis and the cell cycle. MiR-497 was selected as a miRNA that could interact with LINC02476 which was further tested by RNA immunoprecipitation. HMGA2 was selected as a possible target of miR-497, and their interaction was examined by a luciferase reporter assay. Results LINC02476 expression was elevated in HCC cell lines and HCC tissues. When LINC02476 was downregulated, the growth and the invasion of HCC cells decreased in vitro and in vivo. LINC02476 negatively regulated the expression of miR-497 by acting as a ceRNA. HMGA2 was directly targeted and inhibited by miR-497. Conclusion The results indicate that LINC02476 functions through the miR-497/HMGA2 axis and that it has a role in the growth and metastasis of HCC cells. Therefore, LINC02476 could be an interesting new molecular target in HCC therapies.
Collapse
Affiliation(s)
- Yuxia Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China.,Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Mengjing Zhao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Mengmeng Jiang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Zhi Li
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
28
|
Xu GS, Li ZW, Huang ZP, Brunicardi FC, Jia F, Song C, Zou HJ, Sun RF. MiR-497-5p inhibits cell proliferation and metastasis in hepatocellular carcinoma by targeting insulin-like growth factor 1. Mol Genet Genomic Med 2019; 7:e00860. [PMID: 31441605 PMCID: PMC6785451 DOI: 10.1002/mgg3.860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) play an important regulatory role in carcinogenesis and cancer progression. Aberrant expression of miR‐497‐5p has been reported in various human malignancies. However, the role of miR‐497‐5p in hepatocellular carcinoma (HCC) remains unclear. Results In this study, we found that miR‐497‐5p was downregulated in HCC tissues. The low level of miR‐497‐5p in HCC tumors was correlated with aggressive clinicopathological characteristics and predicted poor prognosis in HCC patients. The overexpression of miR‐497‐5p significantly inhibited HCC cell proliferation, colony formation, and metastasis in vitro and vivo. Bioinformatics analysis further identified insulin‐like growth factor 1 (IGF1) as a novel target of miR‐497‐5p in HCC cells. Conclusion Our study suggested that miR‐497‐5p regulates HCC cell survival, partially through downregulation of IGF1. Therefore, the miR‐497‐5p/IGF1 axis might serve as a novel therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Guo-Shu Xu
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zi-Wei Li
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zhi-Ping Huang
- Department of Hepatobiliary Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - F Charles Brunicardi
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Fu Jia
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, China
| | - Chao Song
- Department of Orthopedic, National Clinical Key Specialty, Yanan Hospital, Kunming Medical University, Kunming, China
| | - Hai-Jian Zou
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, China
| | - Rui-Fen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, China
| |
Collapse
|