Bacilieri M, Ciancetta A, Paoletta S, Federico S, Cosconati S, Cacciari B, Taliani S, Da Settimo F, Novellino E, Klotz KN, Spalluto G, Moro S. Revisiting a receptor-based pharmacophore hypothesis for human A(2A) adenosine receptor antagonists.
J Chem Inf Model 2013;
53:1620-37. [PMID:
23705857 DOI:
10.1021/ci300615u]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The application of both structure- and ligand-based design approaches represents to date one of the most useful strategies in the discovery of new drug candidates. In the present paper, we investigated how the application of docking-driven conformational analysis can improve the predictive ability of 3D-QSAR statistical models. With the use of the crystallographic structure in complex with the high affinity antagonist ZM 241385 (4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol), we revisited a general pharmacophore hypothesis for the human A(2A) adenosine receptor of a set of 751 known antagonists, by applying an integrated ligand- and structure-based approach. Our novel pharmacophore hypothesis has been validated by using an external test set of 29 newly synthesized human adenosine receptor antagonists.
Collapse