Cerruela-García G, Cuevas-Muñoz JM, García-Pedrajas N. Graph-Based Feature Selection Approach for Molecular Activity Prediction.
J Chem Inf Model 2022;
62:1618-1632. [PMID:
35315648 PMCID:
PMC9006223 DOI:
10.1021/acs.jcim.1c01578]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
In the construction
of QSAR models for the prediction of molecular
activity, feature selection is a common task aimed at improving the
results and understanding of the problem. The selection of features
allows elimination of irrelevant and redundant features, reduces the
effect of dimensionality problems, and improves the generalization
and interpretability of the models. In many feature selection applications,
such as those based on ensembles of feature selectors, it is necessary
to combine different selection processes. In this work, we evaluate
the application of a new feature selection approach to the prediction
of molecular activity, based on the construction of an undirected
graph to combine base feature selectors. The experimental results
demonstrate the efficiency of the graph-based method in terms of the
classification performance, reduction, and redundancy compared to
the standard voting method. The graph-based method can be extended
to different feature selection algorithms and applied to other cheminformatics
problems.
Collapse