1
|
Fedorov DG. Use of caps in the auxiliary basis set formulation of the fragment molecular orbital method. J Comput Chem 2024; 45:1540-1551. [PMID: 38490813 DOI: 10.1002/jcc.27345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
An auxiliary polarization formulation of the fragment molecular orbital (FMO) method is developed, combining a basis set correction computed for capped isolated fragments with a polarization obtained from uncapped fragments. For a set of organic and inorganic test systems, it is shown that the total energy and atomic charges are accurately reproduced with respect to full unfragmented calculations. It is demonstrated that the method is accurate for computing electronic excited states. The developed approach is applied to rank the isomers of chignolin from experimental NMR data (PDB: 1UAO) according to their relative energy. Contributions of polarization and basis set effects to pair interactions between fragments are elucidated.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
2
|
Abstract
Computational methods for modeling biochemical processes implemented in GAMESS package are reviewed; in particular, quantum mechanics combined with molecular mechanics (QM/MM), semi-empirical, and fragmentation approaches. A detailed summary of capabilities is provided for the QM/MM implementation in QuanPol program and the fragment molecular orbital (FMO) method. Molecular modeling and visualization packages useful for biochemical simulations with GAMESS are described. GAMESS capabilities with corresponding references are tabulated for reader's convenience.
Collapse
|
3
|
Abstract
Basic concepts in the analysis of binding using the fragment molecular orbital method are discussed at length: polarization, desolvation, and interaction. The components in the pair interaction energy decomposition analysis are introduced, and the analysis is illustrated for a water dimer and a protein-ligand complex.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
4
|
Abstract
This chapter describes the current status of development of the fragment molecular orbital (FMO) method for analyzing the electronic state and intermolecular interactions of biomolecular systems in solvent. The orbital energies and the inter-fragment interaction energies (IFIEs) for a specific molecular structure can be obtained directly by performing FMO calculations by exposing water molecules and counterions around biomolecular systems. Then, it is necessary to pay attention to the thickness of the water shell surrounding the biomolecules. The single-point calculation for snapshots from MD trajectory does not incorporate the effects of temperature and configurational fluctuation, but the SCIFIE (statistically corrected IFIE) method is proposed as a many-body correlated method that partially compensates for this deficiency. Furthermore, implicit continuous dielectric models have been developed as effective approaches to incorporating the screening effect of the solvent in thermal equilibrium, and we illustrate their usefulness for theoretical evaluation of IFIEs and ligand-binding free energy on the basis of the FMO-PBSA (Poisson-Boltzmann surface area) method and other computational methods.
Collapse
|
5
|
Śliwa P, Kurczab R, Kafel R, Drabczyk A, Jaśkowska J. Recognition of repulsive and attractive regions of selected serotonin receptor binding site using FMO-EDA approach. J Mol Model 2019; 25:114. [PMID: 30955095 DOI: 10.1007/s00894-019-3995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 12/28/2022]
Abstract
The complexes of selected long-chain arylpiperazines with homology models of 5-HT1A, 5-HT2A, and 5-HT7 receptors were investigated using quantum mechanical methods. The molecular geometries of the ligand-receptor complexes were firstly optimized with the Our own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) method. Next, the fragment molecular orbitals method with an energy decomposition analysis scheme (FMO-EDA) was employed to estimate the interaction energies in binding sites. The results clearly showed that orthosteric binding sites of studied serotonin receptors have both attractive and repulsive regions. In the case of 5-HT1A and 5-HT2A two repulsive areas, located in the lower part of the binding pocket, and one large area of attraction engaging many residues at the top of all helices were identified. Additionally, for the 5-HT7 receptor, the third area of destabilization located at the extracellular end of the helix 6 was found.
Collapse
Affiliation(s)
- Paweł Śliwa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska, 31-155, Kraków, Poland.
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smȩtna, 31-343, Kraków, Poland
| | - Rafał Kafel
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smȩtna, 31-343, Kraków, Poland
| | - Anna Drabczyk
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska, 31-155, Kraków, Poland
| | - Jolanta Jaśkowska
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska, 31-155, Kraków, Poland
| |
Collapse
|
6
|
Xie SX, Boone K, VanOosten SK, Yuca E, Song L, Ge X, Ye Q, Spencer P, Tamerler C. Peptide Mediated Antimicrobial Dental Adhesive System. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:557. [PMID: 33542835 PMCID: PMC7857482 DOI: 10.3390/app9030557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.
Collapse
Affiliation(s)
- Sheng-Xue Xie
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Kay VanOosten
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Department of Molecular Biology and Genetics, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Xueping Ge
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
7
|
Okiyama Y, Watanabe C, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson-Boltzmann Equation: II. Protein and Its Ligand-Binding System Studies. J Phys Chem B 2018; 123:957-973. [PMID: 30532968 DOI: 10.1021/acs.jpcb.8b09326] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, the electronic properties of bioactive proteins were analyzed using an ab initio fragment molecular orbital (FMO) methodology in solution: coupling with an implicit solvent model based on the Poisson-Boltzmann surface area called as FMO-PBSA. We investigated the solvent effects on practical and heterogeneous targets with uneven exposure to solvents unlike deoxyribonucleic acid analyzed in our recent study. Interfragment interaction energy (IFIE) and its decomposition analyses by FMO-PBSA revealed solvent-screening mechanisms that affect local stability inside ubiquitin protein: the screening suppresses excessiveness in bare charge-charge interactions and enables an intuitive IFIE analysis. The electrostatic character and associated solvation free energy also give consistent results as a whole to previous studies on the explicit solvent model. Moreover, by using the estrogen receptor alpha (ERα) protein bound to ligands, we elucidated the importance of specific interactions that depend on the electric charge and activatability as agonism/antagonism of the ligand while estimating the influences of the implicit solvent on the ligand and helix-12 bindings. The predicted ligand-binding affinities of bioactive compounds to ERα also show a good correlation with their in vitro activities. The FMO-PBSA approach would thus be a promising tool both for biological and pharmaceutical research targeting proteins.
Collapse
Affiliation(s)
- Yoshio Okiyama
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,Division of Medicinal Safety Science , National Institute of Health Sciences , 3-25-26 Tonomachi , Kawasaki-ku, Kawasaki , Kanagawa 210-9501 , Japan
| | - Chiduru Watanabe
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,RIKEN Center for Biosystems Dynamics Research , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| | - Kaori Fukuzawa
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,Faculty of Pharmaceutical Sciences , Hoshi University , 2-4-41 Ebara , Shinagawa-ku, Tokyo 142-8501 , Japan
| | - Yuji Mochizuki
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,Department of Chemistry and Research Center for Smart Molecules, Faculty of Science , Rikkyo University , 3-34-1 Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Tatsuya Nakano
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,Division of Medicinal Safety Science , National Institute of Health Sciences , 3-25-26 Tonomachi , Kawasaki-ku, Kawasaki , Kanagawa 210-9501 , Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics , Kobe University , 1-1 Rokkodai, Nada-ku, Kobe , Hyogo 657-8501 , Japan
| |
Collapse
|
8
|
Okiyama Y, Nakano T, Watanabe C, Fukuzawa K, Mochizuki Y, Tanaka S. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson–Boltzmann Equation: Implementation and DNA Study. J Phys Chem B 2018; 122:4457-4471. [DOI: 10.1021/acs.jpcb.8b01172] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yoshio Okiyama
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tatsuya Nakano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Chiduru Watanabe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kaori Fukuzawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuji Mochizuki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
9
|
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in
GAMESS
, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD‐FMat)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|
10
|
Nishimoto Y, Fedorov DG. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Phys Chem Chem Phys 2016; 18:22047-61. [DOI: 10.1039/c6cp02186g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic gap in proteins is analyzed in detail, and it is shown that FMO-DFTB/PCM is efficient and accurate in describing the molecular structure of proteins in solution.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Sakyo-ku, Kyoto 606-8103
- Japan
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|