1
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
2
|
Moritsugu K, Takeuchi K, Kamiya N, Higo J, Yasumatsu I, Fukunishi Y, Fukuda I. Flexibility and Cell Permeability of Cyclic Ras-Inhibitor Peptides Revealed by the Coupled Nosé-Hoover Equation. J Chem Inf Model 2021; 61:1921-1930. [PMID: 33835817 DOI: 10.1021/acs.jcim.0c01427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantifying the cell permeability of cyclic peptides is crucial for their rational drug design. However, the reasons remain unclear why a minor chemical modification, such as the difference between Ras inhibitors cyclorasin 9A5 and 9A54, can substantially change a peptide's permeability. To address this question, we performed enhanced sampling simulations of these two 11-mer peptides using the coupled Nosé-Hoover equation (cNH) we recently developed. The present cNH simulations realized temperature fluctuations over a wide range (240-600 K) in a dynamic manner, allowing structural samplings that were well validated by nuclear Overhauser effect measurements. The derived structural ensembles were comprehensively analyzed by all-atom structural clustering, mapping the derived clusters onto principal components (PCs) that characterize the cyclic structure, and calculating cluster-dependent geometric and chemical properties. The planar-open conformation was dominant in aqueous solvent, owing to inclusion of the Trp side chain in the main-chain ring, while the compact-closed conformation, which favors cell permeation due to its compactness and high polarity, was also accessible. Conformation-dependent cell permeability was observed in one of the derived PCs, demonstrating that decreased cell permeability in 9A54 is due to the high free energy barrier separating the two conformations. The origin of the change in free energy surface was determined to be loss of flexibility in the modified residues 2-3, resulting from the increased bulkiness of their side chains. The derived molecular mechanism of cell permeability highlights the significance of complete structural dynamics surveys for accelerating drug development with cyclic peptides.
Collapse
Affiliation(s)
- Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Narutoshi Kamiya
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Higo
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Isao Yasumatsu
- Structure-Based Drug Design Group, Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshifumi Fukunishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ikuo Fukuda
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
A computational study on the interactions between a layered imine-based COF structure and selected anticancer drugs. J Mol Model 2021; 27:44. [PMID: 33474616 DOI: 10.1007/s00894-021-04668-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
The covalent organic frameworks (COFs) are important materials in drug delivery. Herein, the interactions between an imine-based COF with selected commercially available anticancer drugs are studied. Molecular dynamics (MD) simulation studies were used. The studies were carried out in four different temperatures to find out the impact of the temperature on the binding free energies between the drugs and COF structure. It was found that the effect of temperature on binding free energy is ignorable. Between the hydrogen bonding, electrostatic, and van der Waals interactions, the last one is the most important one to keep the drug and COF next to each other. Also, the van der Waals interaction is keeping the layers of COF next to each other to create cavities. The cavities can be loaded with different drugs and the system can be used in drug delivery systems. Based on the obtained results, the drugs that are more lipophilic prefer to adhere more strongly to the COF in comparison with hydrophilic drugs.
Collapse
|
4
|
Fukunishi Y, Mashimo T, Kurosawa T, Wakabayashi Y, Nakamura HK, Takeuchi K. Prediction of Passive Membrane Permeability by Semi-Empirical Method Considering Viscous and Inertial Resistances and Different Rates of Conformational Change and Diffusion. Mol Inform 2020; 39:e1900071. [PMID: 31609549 PMCID: PMC7050510 DOI: 10.1002/minf.201900071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Membrane permeability is an important property of drugs in adsorption. Many prediction methods work well for small molecules, but the prediction of middle-molecule permeability is still difficult. In the present study, we modified a classical permeability model based on Fick's law to study passive membrane permeability. The model consisted of the distribution of solute from water to membrane and the diffusion of solute in each solvent. The diffusion coefficient is the inverse of the resistance, and we examined the inertial resistance in addition to the viscous resistance, the latter of which has been widely used in permeability prediction. Also, we examined three models changing the balance between the diffusion of solute in membrane and the conformational change of solute. The inertial resistance improved the prediction results in addition to the viscous resistance. The models worked well not only for small molecules but also for middle molecules, whose structures have more conformational freedom.
Collapse
Affiliation(s)
- Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery (molprof)National Institute of Advanced Industrial Science and Technology (AIST)2-3-26, Aomi, Koto-kuTokyo135-0064Japan
| | - Tadaaki Mashimo
- Technology Research Association for Next-Generation Natural Products Chemistry2-3-26, Aomi, Koto-kuTokyo135-0064Japan
- IMSBIO Co., Ltd.Owl Tower, 4–21-1, Higashi-Ikebukuro, Toshima-kuTokyo170-0013Japan
| | - Takashi Kurosawa
- Technology Research Association for Next-Generation Natural Products Chemistry2-3-26, Aomi, Koto-kuTokyo135-0064Japan
- Hitachi Solutions East Japan, 12–1 Ekimaehoncho, Kawasaki-ku, KawasakiKanagawa210-0007Japan
| | | | - Hironori K. Nakamura
- Biomodeling Research Co., Ltd.1-704-2 Uedanishi, Tenpaku-ku, NagoyaAichi468-0058Japan
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery (molprof)National Institute of Advanced Industrial Science and Technology (AIST)2-3-26, Aomi, Koto-kuTokyo135-0064Japan
| |
Collapse
|