1
|
Gao Z, Su Y, Xia J, Cao RF, Ding Y, Zheng CH, Wei PJ. DeepFGRN: inference of gene regulatory network with regulation type based on directed graph embedding. Brief Bioinform 2024; 25:bbae143. [PMID: 38581416 PMCID: PMC10998536 DOI: 10.1093/bib/bbae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
The inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions. In addition, the GRNs of real species are always large graphs with direction and high sparsity, which impede the advancement of GRN inference. Therefore, DeepFGRN builds a node bidirectional representation module to capture the directed graph embedding representation of the GRN. Specifically, the source and target generators are designed to learn the low-dimensional dense embedding of the source and target neighbors of a gene, respectively. An adversarial learning strategy is applied to iteratively learn the real neighbors of each gene. In addition, because the expression profiles of genes with regulatory associations are correlative, a correlation analysis module is designed. Specifically, this module not only fully extracts gene expression features, but also captures the correlation between regulators and target genes. Experimental results show that DeepFGRN has a competitive capability for both GRN and FGRN inference. Potential biomarkers and therapeutic drugs for breast cancer, liver cancer, lung cancer and coronavirus disease 2019 are identified based on the candidate FGRNs, providing a possible opportunity to advance our knowledge of disease treatments.
Collapse
Affiliation(s)
- Zhen Gao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yansen Su
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Rui-Fen Cao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yun Ding
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Chun-Hou Zheng
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Pi-Jing Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
2
|
On principal graphical models with application to gene network. Comput Stat Data Anal 2022. [DOI: 10.1016/j.csda.2021.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Chen K, Xu H, Lei Y, Lio P, Li Y, Guo H, Ali Moni M. Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance. Brief Bioinform 2021; 22:6272796. [PMID: 33971668 DOI: 10.1093/bib/bbab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/15/2022] Open
Abstract
Although chemotherapy is the first-line treatment for ovarian cancer (OCa) patients, chemoresistance (CR) decreases their progression-free survival. This paper investigates the genetic interaction (GI) related to OCa-CR. To decrease the complexity of establishing gene networks, individual signature genes related to OCa-CR are identified using a gradient boosting decision tree algorithm. Additionally, the genetic interaction coefficient (GIC) is proposed to measure the correlation of two signature genes quantitatively and explain their joint influence on OCa-CR. Gene pair that possesses high GIC is identified as signature pair. A total of 24 signature gene pairs are selected that include 10 individual signature genes and the influence of signature gene pairs on OCa-CR is explored. Finally, a signature gene pair-based prediction of OCa-CR is identified. The area under curve (AUC) is a widely used performance measure for machine learning prediction. The AUC of signature gene pair reaches 0.9658, whereas the AUC of individual signature gene-based prediction is 0.6823 only. The identified signature gene pairs not only build an efficient GI network of OCa-CR but also provide an interesting way for OCa-CR prediction. This improvement shows that our proposed method is a useful tool to investigate GI related to OCa-CR.
Collapse
Affiliation(s)
- Kexin Chen
- School of Electronics Engineering and Computer Science, Peking University, 100871, Beijing, China
| | - Haoming Xu
- Department of Biomedical Engineering, Duke University, 27708, Durham, United States
| | - Yiming Lei
- School of Electronics Engineering and Computer Science, Peking University, 100871, Beijing, China
| | - Pietro Lio
- Computer Laboratory, University of Cambridge, CB3-0FD, Cambridge, United Kingdom
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100083, Beijing, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100083, Beijing, China
| | - Mohammad Ali Moni
- School of Public health and Community Medicine, University of New South Wales, 2052, Sydney, Australia
| |
Collapse
|
4
|
Li X, Zhang W, Zhang J, Li G. ModularBoost: an efficient network inference algorithm based on module decomposition. BMC Bioinformatics 2021; 22:153. [PMID: 33761871 PMCID: PMC7992795 DOI: 10.1186/s12859-021-04074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 11/15/2022] Open
Abstract
Background Given expression data, gene regulatory network(GRN) inference approaches try to determine regulatory relations. However, current inference methods ignore the inherent topological characters of GRN to some extent, leading to structures that lack clear biological explanation. To increase the biophysical meanings of inferred networks, this study performed data-driven module detection before network inference. Gene modules were identified by decomposition-based methods. Results ICA-decomposition based module detection methods have been used to detect functional modules directly from transcriptomic data. Experiments about time-series expression, curated and scRNA-seq datasets suggested that the advantages of the proposed ModularBoost method over established methods, especially in the efficiency and accuracy. For scRNA-seq datasets, the ModularBoost method outperformed other candidate inference algorithms. Conclusions As a complicated task, GRN inference can be decomposed into several tasks of reduced complexity. Using identified gene modules as topological constraints, the initial inference problem can be accomplished by inferring intra-modular and inter-modular interactions respectively. Experimental outcomes suggest that the proposed ModularBoost method can improve the accuracy and efficiency of inference algorithms by introducing topological constraints.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Zheda Road, 310027, Hangzhou, China
| | - Wei Zhang
- State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Zheda Road, 310027, Hangzhou, China.
| | - Jianming Zhang
- State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Zheda Road, 310027, Hangzhou, China.
| | - Guang Li
- State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Zheda Road, 310027, Hangzhou, China
| |
Collapse
|