1
|
Mishra A, Vasanthan M, Malliappan SP. Drug Repurposing: A Leading Strategy for New Threats and Targets. ACS Pharmacol Transl Sci 2024; 7:915-932. [PMID: 38633585 PMCID: PMC11019736 DOI: 10.1021/acsptsci.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Less than 6% of rare illnesses have an appropriate treatment option. Repurposed medications for new indications are a cost-effective and time-saving strategy that results in excellent success rates, which may significantly lower the risk associated with therapeutic development for rare illnesses. It is becoming a realistic alternative to repurposing "conventional" medications to treat joint and rare diseases considering the significant failure rates, high expenses, and sluggish stride of innovative medication advancement. This is due to delisted compounds, cheaper research fees, and faster development time frames. Repurposed drug competitors have been developed using strategic decisions based on data analysis, interpretation, and investigational approaches, but technical and regulatory restrictions must also be considered. Combining experimental and computational methodologies generates innovative new medicinal applications. It is a one-of-a-kind strategy for repurposing human-safe pharmaceuticals to treat uncommon and difficult-to-treat ailments. It is a very effective method for discovering and creating novel medications. Several pharmaceutical firms have developed novel therapies by repositioning old medications. Repurposing drugs is practical, cost-effective, and speedy and generally involves lower risks when compared to developing a new drug from the beginning.
Collapse
Affiliation(s)
- Ashish
Sriram Mishra
- Department
of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603202, Tamil Nadu, India
| | - Manimaran Vasanthan
- Department
of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603202, Tamil Nadu, India
| | - Sivakumar Ponnurengam Malliappan
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang Vietnam, Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
2
|
Yu Z, Wu Z, Wang Z, Wang Y, Zhou M, Li W, Liu G, Tang Y. Network-Based Methods and Their Applications in Drug Discovery. J Chem Inf Model 2024; 64:57-75. [PMID: 38150548 DOI: 10.1021/acs.jcim.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Drug discovery is time-consuming, expensive, and predominantly follows the "one drug → one target → one disease" paradigm. With the rapid development of systems biology and network pharmacology, a novel drug discovery paradigm, "multidrug → multitarget → multidisease", has emerged. This new holistic paradigm of drug discovery aligns well with the essence of networks, leading to the emergence of network-based methods in the field of drug discovery. In this Perspective, we initially introduce the concept and data sources of networks and highlight classical methodologies employed in network-based methods. Subsequently, we focus on the practical applications of network-based methods across various areas of drug discovery, such as target prediction, virtual screening, prediction of drug therapeutic effects or adverse drug events, and elucidation of molecular mechanisms. In addition, we provide representative web servers for researchers to use network-based methods in specific applications. Finally, we discuss several challenges of network-based methods and the directions for future development. In a word, network-based methods could serve as powerful tools to accelerate drug discovery.
Collapse
Affiliation(s)
- Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ze Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yimeng Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Yang M, Yang B, Duan G, Wang J. ITRPCA: a new model for computational drug repositioning based on improved tensor robust principal component analysis. Front Genet 2023; 14:1271311. [PMID: 37795241 PMCID: PMC10545866 DOI: 10.3389/fgene.2023.1271311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Background: Drug repositioning is considered a promising drug development strategy with the goal of discovering new uses for existing drugs. Compared with the experimental screening for drug discovery, computational drug repositioning offers lower cost and higher efficiency and, hence, has become a hot issue in bioinformatics. However, there are sparse samples, multi-source information, and even some noises, which makes it difficult to accurately identify potential drug-associated indications. Methods: In this article, we propose a new scheme with improved tensor robust principal component analysis (ITRPCA) in multi-source data to predict promising drug-disease associations. First, we use a weighted k-nearest neighbor (WKNN) approach to increase the overall density of the drug-disease association matrix that will assist in prediction. Second, a drug tensor with five frontal slices and a disease tensor with two frontal slices are constructed using multi-similarity matrices and an updated association matrix. The two target tensors naturally integrate multiple sources of data from the drug-side aspect and the disease-side aspect, respectively. Third, ITRPCA is employed to isolate the low-rank tensor and noise information in the tensor. In this step, an additional range constraint is incorporated to ensure that all the predicted entry values of a low-rank tensor are within the specific interval. Finally, we focus on identifying promising drug indications by analyzing drug-disease association pairs derived from the low-rank drug and low-rank disease tensors. Results: We evaluate the effectiveness of the ITRPCA method by comparing it with five prominent existing drug repositioning methods. This evaluation is carried out using 10-fold cross-validation and independent testing experiments. Our numerical results show that ITRPCA not only yields higher prediction accuracy but also exhibits remarkable computational efficiency. Furthermore, case studies demonstrate the practical effectiveness of our method.
Collapse
Affiliation(s)
- Mengyun Yang
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
- School of Computer Science, Hunan First Normal University, Changsha, China
| | - Bin Yang
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
4
|
Cüvitoğlu A, Isik Z. Network neighborhood operates as a drug repositioning method for cancer treatment. PeerJ 2023; 11:e15624. [PMID: 37456868 PMCID: PMC10340098 DOI: 10.7717/peerj.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Computational drug repositioning approaches are important, as they cost less compared to the traditional drug development processes. This study proposes a novel network-based drug repositioning approach, which computes similarities between disease-causing genes and drug-affected genes in a network topology to suggest candidate drugs with highest similarity scores. This new method aims to identify better treatment options by integrating systems biology approaches. It uses a protein-protein interaction network that is the main topology to compute a similarity score between candidate drugs and disease-causing genes. The disease-causing genes were mapped on this network structure. Transcriptome profiles of drug candidates were taken from the LINCS project and mapped individually on the network structure. The similarity of these two networks was calculated by different network neighborhood metrics, including Adamic-Adar, PageRank and neighborhood scoring. The proposed approach identifies the best candidates by choosing the drugs with significant similarity scores. The method was experimented on melanoma, colorectal, and prostate cancers. Several candidate drugs were predicted by applying AUC values of 0.6 or higher. Some of the predictions were approved by clinical phase trials or other in-vivo studies found in literature. The proposed drug repositioning approach would suggest better treatment options with integration of functional information between genes and transcriptome level effects of drug perturbations and diseases.
Collapse
Affiliation(s)
- Ali Cüvitoğlu
- The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir, Turkiye
| | - Zerrin Isik
- Computer Engineering Department, Engineering Faculty, Dokuz Eylül University, Izmir, Turkiye
| |
Collapse
|